Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО КИНЕМАТИКЕ

1.1. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее , принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее , Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ее исключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить ее в уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить ее занимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее .

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее , а y Даны уравнения движения точки определить уравнение траектории точки и построить ее , Пересечение с осями нет.

4. Для определения закона движения точки по траектории воспользуемся формулой:

Даны уравнения движения точки определить уравнение траектории точки и построить ее , при Даны уравнения движения точки определить уравнение траектории точки и построить ее ,

видим, что с выходом из начального положения координата х увеличивается, а координата y увеличивается. Это направление примем за положительное, тогда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее ,

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

1.2. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее, принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее, Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ееисключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить еев уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить еезанимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее.

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее, а y Даны уравнения движения точки определить уравнение траектории точки и построить ее, Пересечение с осью OX в точке (0;9).

4. Для определения закона движения точки по траектории воспользуемся формулой:

Даны уравнения движения точки определить уравнение траектории точки и построить ее, при Даны уравнения движения точки определить уравнение траектории точки и построить ее,

видим, что с выходом из начального положения координата х уменьшается, а координата y увеличивается. Это направление примем за положительное, тогда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее,

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

1.3. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее , принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее , Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ее исключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить ее в уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить ее занимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее .

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее , а y Даны уравнения движения точки определить уравнение траектории точки и построить ее , траектория пересекает ось ОХ при Даны уравнения движения точки определить уравнение траектории точки и построить ее , Даны уравнения движения точки определить уравнение траектории точки и построить ее и ось OY Даны уравнения движения точки определить уравнение траектории точки и построить ее и Даны уравнения движения точки определить уравнение траектории точки и построить ее

4. Для определения закона движения точки по траектории воспользуемся формулой:

Даны уравнения движения точки определить уравнение траектории точки и построить ее , при Даны уравнения движения точки определить уравнение траектории точки и построить ее ,

видим, что с выходом из начального положения координата х уменьшается, а координата y увеличивается. Это направление примем за положительное, тогда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее ,

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

1.4. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее , принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее , Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ее исключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить ее в уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить ее занимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее .

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее , а y Даны уравнения движения точки определить уравнение траектории точки и построить ее , Пересечение с осью OX в точке (0;3,375), а с осью OY (0;-4,5).

4. Для определения закона движения точки по траектории воспользуемся формулой:

Даны уравнения движения точки определить уравнение траектории точки и построить ее , при Даны уравнения движения точки определить уравнение траектории точки и построить ее ,

видим, что с выходом из начального положения координата х уменьшается, а координата y увеличивается. Это направление примем за положительное, тогда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее ,

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

1.5. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее , принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее , Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ее исключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее ,

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить ее в уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить ее занимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее .

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее , а y Даны уравнения движения точки определить уравнение траектории точки и построить ее , Пересечение с осью OX в точке (0;-0,75) и пересечение с осью OY (-1;0).

4. Для определения закона движения точки по траектории воспользуемся формулой:

Даны уравнения движения точки определить уравнение траектории точки и построить ее , при Даны уравнения движения точки определить уравнение траектории точки и построить ее ,

видим, что с выходом из начального положения координата х уменьшается, а координата y увеличивается. Это направление примем за положительное, тогда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее ,

1.6. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее , принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее , Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ее исключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить ее в уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить ее занимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее .

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее , а y Даны уравнения движения точки определить уравнение траектории точки и построить ее , Пересечение с осями нет.

4. Для определения закона движения точки по траектории воспользуемся формулой:

Даны уравнения движения точки определить уравнение траектории точки и построить ее , при Даны уравнения движения точки определить уравнение траектории точки и построить ее ,

видим, что с выходом из начального положения координата х уменьшается, а координата y увеличивается. Это направление примем за положительное, тогда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее ,

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

1.7. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее , принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее , Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ее исключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить ее в уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить ее занимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее .

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее , а y Даны уравнения движения точки определить уравнение траектории точки и построить ее , Даны уравнения движения точки определить уравнение траектории точки и построить ее , Даны уравнения движения точки определить уравнение траектории точки и построить ее

4. Для определения закона движения точки по траектории воспользуемся формулой Даны уравнения движения точки определить уравнение траектории точки и построить ее , при Даны уравнения движения точки определить уравнение траектории точки и построить ее , видим, что с выходом из начального положения координата х увеличивается, а координата y уменьшается. Это направление примем за положительное, тогда Даны уравнения движения точки определить уравнение траектории точки и построить ее ,

откуда Даны уравнения движения точки определить уравнение траектории точки и построить ее .

1.8. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее, принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее, Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ееисключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить еев уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить еезанимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее.

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее, а y Даны уравнения движения точки определить уравнение траектории точки и построить ее, траектория пересекает ось ОХ при Даны уравнения движения точки определить уравнение траектории точки и построить ее, Даны уравнения движения точки определить уравнение траектории точки и построить ее

4. Для определения закона движения точки по траектории воспользуемся формулой:

Даны уравнения движения точки определить уравнение траектории точки и построить ее, при Даны уравнения движения точки определить уравнение траектории точки и построить ее,

видим, что с выходом из начального положения координата х уменьшается, а координата y увеличивается. Это направление примем за положительное, тогда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее,

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

1.9. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее , принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее , Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ее исключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить ее в уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить ее занимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее .

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее , а y Даны уравнения движения точки определить уравнение траектории точки и построить ее , Пересечение с осью OX в точке (0;-0,75) и пересечение с осью OY (-1;0).

4. Для определения закона движения точки по траектории воспользуемся формулой:

Даны уравнения движения точки определить уравнение траектории точки и построить ее , при Даны уравнения движения точки определить уравнение траектории точки и построить ее ,

видим, что с выходом из начального положения координата х уменьшается, а координата y увеличивается. Это направление примем за положительное, тогда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее ,

Даны уравнения движения точки определить уравнение траектории точки и построить ее .

1.10. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее, принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее, Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ееисключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить еев уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить еезанимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее.

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее, а y Даны уравнения движения точки определить уравнение траектории точки и построить ее, Пересечение с осями в точке (0;0).

4. Для определения закона движения точки по траектории воспользуемся формулой:

Даны уравнения движения точки определить уравнение траектории точки и построить ее, при Даны уравнения движения точки определить уравнение траектории точки и построить ее,

видим, что с выходом из начального положения координата х уменьшается, а координата y увеличивается. Это направление примем за положительное, тогда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее,

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

1.11. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее, принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее, Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ееисключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить еев уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить еезанимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее.

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее, а y Даны уравнения движения точки определить уравнение траектории точки и построить ее, Пересечение с осями в точке (0;0).

4. Для определения закона движения точки по траектории воспользуемся формулой:

Даны уравнения движения точки определить уравнение траектории точки и построить ее, при Даны уравнения движения точки определить уравнение траектории точки и построить ее,

видим, что с выходом из начального положения координата х уменьшается, а координата y увеличивается. Это направление примем за положительное, тогда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее,

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

1.12. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее, принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее, Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ееисключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить еев уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить еезанимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее.

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее, а y Даны уравнения движения точки определить уравнение траектории точки и построить ее, Пересечение с осью OX в точке (0; Даны уравнения движения точки определить уравнение траектории точки и построить ее) и пересечение с осью OY (-3;0).

4. Для определения закона движения точки по траектории воспользуемся формулой:

Даны уравнения движения точки определить уравнение траектории точки и построить ее, при Даны уравнения движения точки определить уравнение траектории точки и построить ее,

видим, что с выходом из начального положения координата х уменьшается, а координата y увеличивается. Это направление примем за положительное, тогда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее,

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

1.13. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее, принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее, Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ееисключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить еев уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить еезанимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее.

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее, а y Даны уравнения движения точки определить уравнение траектории точки и построить ее, Пересечение с осью OY в точке (0;11,75).

4. Для определения закона движения точки по траектории воспользуемся формулой:

Даны уравнения движения точки определить уравнение траектории точки и построить ее, при Даны уравнения движения точки определить уравнение траектории точки и построить ее,

видим, что с выходом из начального положения координата х уменьшается, а координата y увеличивается. Это направление примем за положительное, тогда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее,

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

1.14. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее, принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее, Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ееисключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить еев уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить еезанимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее.

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее, а y Даны уравнения движения точки определить уравнение траектории точки и построить ее, Пересечение с осью OX в точке (0;0,75) и пересечение с осью OY (1;0).

4. Для определения закона движения точки по траектории воспользуемся формулой:

Даны уравнения движения точки определить уравнение траектории точки и построить ее, при Даны уравнения движения точки определить уравнение траектории точки и построить ее,

видим, что с выходом из начального положения координата х уменьшается, а координата y увеличивается. Это направление примем за положительное, тогда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее,

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

1.15. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее, принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее, Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ееисключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить еев уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить еезанимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее.

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее, а y Даны уравнения движения точки определить уравнение траектории точки и построить ее, Пересечение с осью OX в точке (0;-6,5).

4. Для определения закона движения точки по траектории воспользуемся формулой:

Даны уравнения движения точки определить уравнение траектории точки и построить ее, при Даны уравнения движения точки определить уравнение траектории точки и построить ее,

видим, что с выходом из начального положения координата х уменьшается, а координата y увеличивается. Это направление примем за положительное, тогда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее,

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

1.16. Даны уравнения движения точки.

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории Даны уравнения движения точки определить уравнение траектории точки и построить ее, принимая за начало отсчета расстояний начальное положение точки.

5. Построить график движения точки.

Дано: Даны уравнения движения точки определить уравнение траектории точки и построить ее, Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Решение: 1. Для получения уравнения траектория вида Даны уравнения движения точки определить уравнение траектории точки и построить ееисключим из уравнений движения время t :

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Строим уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

2. Для определения положения точки в начальный момент времени необходимо подставить значение Даны уравнения движения точки определить уравнение траектории точки и построить еев уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Точка при Даны уравнения движения точки определить уравнение траектории точки и построить еезанимает положение Даны уравнения движения точки определить уравнение траектории точки и построить ее.

3. Так как x может принимать значения Даны уравнения движения точки определить уравнение траектории точки и построить ее, а y Даны уравнения движения точки определить уравнение траектории точки и построить ее, Пересечение с осью OX в точке (0;3,75) и пересечение с осью OY (9;0).

4. Для определения закона движения точки по траектории воспользуемся формулой:

Даны уравнения движения точки определить уравнение траектории точки и построить ее, при Даны уравнения движения точки определить уравнение траектории точки и построить ее,

видим, что с выходом из начального положения координата х уменьшается, а координата y увеличивается. Это направление примем за положительное, тогда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее,

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Адрес: Россия, 450071, г.Уфа, почтовый ящик 21

Видео:Траектория и уравнения движения точки. Задача 1Скачать

Траектория и уравнения движения точки. Задача 1

iSopromat.ru

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Пример решения задачи по определению траектории равноускоренного движения точки, заданного уравнениями, скорости и ускорения в некоторые моменты времени, координаты начального положения точки, а также путь, пройденный точкой за время t.

Видео:Кинематика точки Задание К1Скачать

Кинематика точки  Задание К1

Задача

Даны уравнения движения точки определить уравнение траектории точки и построить ее

где x и y – в см, а t – в с. Определить траекторию движения точки, скорость и ускорение в моменты времени t0=0 с, t1=1 с и t2=5 с, а также путь, пройденный точкой за 5 с.

Видео:К1 Определение скорости и ускорения точки по заданным уравнениям ее движенияСкачать

К1 Определение скорости и ускорения точки по заданным уравнениям ее движения

Решение

Расчет траектории

Определяем траекторию точки. Умножаем первое заданное уравнение на 3, второе – на (-4), а затем складываем их левые и правые части:

Получилось уравнение первой степени – уравнение прямой линии, значит движение точки – прямолинейное (рисунок 1.5).

Для того, чтобы определить координаты начального положения точки A0, подставим в заданные уравнения значения t0=0; из первого уравнения получим x0=2 см, из второго y0=1 см. При любом другом значении t координаты x и y движущейся точки только возрастают, поэтому траекторией точки служит полупрямая 3x-4y=2 с началом в точке A0 (2; 1).

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Расчет скорости

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Расчет ускорения

Определяем ускорение точки. Его проекции на оси координат:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Проекции ускорения не зависят от времени движения,

Даны уравнения движения точки определить уравнение траектории точки и построить ее

т.е. движение точки равноускоренное, векторы скорости и ускорения совпадают с траекторией точки и направлены вдоль нее.

С другой стороны, поскольку движение точки прямолинейное, то модуль ускорения можно определить путем непосредственного дифференцирования уравнения скорости:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Определение пути

Определяем путь, пройденный точкой за первые 5с движения. Выразим путь как функцию времени:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Проинтегрируем последнее выражение:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Если t=t0=0, то C=s0; в данном случае s0=0, поэтому s=2,5t 2 . Находим, что за 5с точка проходит расстояние

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Видео:кинематика точкиСкачать

кинематика точки

Решение задач, контрольных и РГР

По желанию можете добавить файл или фото задания

Стоимость мы сообщим в течение 5 минут
на указанный вами адрес электронной почты.

Если стоимость устроит вы сможете оформить заказ.

НАБОР СТУДЕНТА ДЛЯ УЧЁБЫ

Даны уравнения движения точки определить уравнение траектории точки и построить ее

— Рамки A4 для учебных работ
— Миллиметровки разного цвета
— Шрифты чертежные ГОСТ
— Листы в клетку и в линейку

Видео:Теоретическая механика 2020 - Практика 1. Кинематика точки.Скачать

Теоретическая механика 2020 - Практика 1. Кинематика точки.

Задача 1.2 (1)

Даны уравнения движения точки:

Даны уравнения движения точки определить уравнение траектории точки и построить ее; Даны уравнения движения точки определить уравнение траектории точки и построить ее(х, у – м; t – с). (б)

1. Определить уравнение траектории и построить ее.

2. Определить начальное положение точки на траектории.

3. Указать моменты времени, когда точка пересекает оси координат.

4. Найти закон движения точки по траектории s = s(t), принимая за начало отсчета расстояний начальное положение точки.

  1. Построить график движения точки.

1. Для получения уравнения траектории вида F(x, y) = 0 исключим из уравнений движения (б) время t: из первого уравнения системы (б) найдем

Даны уравнения движения точки определить уравнение траектории точки и построить ее,

подставляя это выражение во второе уравнение той же системы, получим уравнение траектории

Даны уравнения движения точки определить уравнение траектории точки и построить ееРис. 1.2Это – уравнение прямой линии. Для построения прямой представим ее уравнение в отрезках Даны уравнения движения точки определить уравнение траектории точки и построить ее, где а – отрезок, отсекаемый прямой на оси х, b – отрезок, отсекаемый прямой на оси у. В данном случае а = -5 м, b = 5 м. Откладываем на оси х отрезок а = -5 м, по оси у – отрезок b = 5 м. Через полученные точки проводим прямую (рис. 1.2).

2. Для определения положения точки в начальный момент времени необходимо подставить значение t = 0 в уравнения движения (б)

Даны уравнения движения точки определить уравнение траектории точки и построить еем;

Даны уравнения движения точки определить уравнение траектории точки и построить еем.

Точка при t = 0 занимает положение М0 (-1;4).

3. В момент пересечения точкой оси у координата х равна нулю, а первое уравнение системы (б) примет вид:

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Даны уравнения движения точки определить уравнение траектории точки и построить ее

В момент пересечения точкой оси х координата у равна нулю, а второе уравнение системы (б) примет вид:

Даны уравнения движения точки определить уравнение траектории точки и построить ееили Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Но косинус не может быть больше 1. Следовательно, точка не пересекает ось х (см. об этом также п. 4 решения задачи).

4. Для определения закона движения точки по траектории воспользуемся формулой (1.8). За начало отсчета координаты s примем начальное положение точки М0. Подставляя в уравнения (б) значения t > 0, видим, что с выходом из начального положения М0 координаты точки х и у увеличиваются. Это направление движения точки примем за положительное направление отсчета координаты s (см. стрелку Даны уравнения движения точки определить уравнение траектории точки и построить еена рис. 1.2), а в формуле (1.8) оставим знак “плюс”:

Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Даны уравнения движения точки определить уравнение траектории точки и построить ееДаны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее. (в)

Из закона (в) следует, что координата s не может быть отрицательной, т.е. точка движется по полупрямой М0М (рис.1.2) и ось х не пересекает (см. по этому поводу п. 3 решения задачи).

5. График движения точки – это графическое представление зависимости расстояния s от времени t. Для построения такого графика по оси абсцисс откладывают последовательные значения времени t, а по оси ординат – соответствующие им значения расстояния s. Построенные точки соединяют плавной линией. График зависимости (в) можно построить быстрее, если воспользоваться известным графиком косинуса. Для этого вначале построим график функции Даны уравнения движения точки определить уравнение траектории точки и построить ее(штриховая линия на рис. 1.3), затем этот график сместим вдоль оси s на величину Даны уравнения движения точки определить уравнение траектории точки и построить еем.

Видео:Теоретическая механика. Задание К1 (часть 1) из сборника ЯблонскогоСкачать

Теоретическая механика. Задание К1 (часть 1) из сборника Яблонского

Координатный способ определения движения точки в теоретической механике

Содержание:

Координатный способ определения движения точки:

При координатном способе определения движения точки должны быть даны уравнения движения, т. е. заданы координаты точки как функции времени:
Даны уравнения движения точки определить уравнение траектории точки и построить ее

Видео:Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

Задание движения точки в прямоугольных координатах

Как известно из курса аналитической геометрии, положение точки M в пространстве может быть определено положением ее проекций P, Q и R на три взаимно перпендикулярные оси (рис. 84), называемые осями координат.

Даны уравнения движения точки определить уравнение траектории точки и построить ее
Рис. 84

Положение точки P на оси Ox вполне определяют абсциссой х. Совершенно так же положение точек Q и R определяют ординатой у и аппликатой z.

Если точка M движется относительно осей xOyz, то проекции Р, Q и R перемещаются по осям и координаты точки M изменяются.

Для определения движения точки M нужно знать ее координаты для каждого мгновения, выразить их в функциях времени.

Эти функции непрерывны, так как точка не может из одного положения перейти в другое, минуя промежуточные. Они должны быть однозначны, так как точка занимает в пространстве в каждое мгновение только одно положение.

Соотношения (58) называют кинематическими уравнениями движения точки в прямоугольных координатах, а способ определения движения точки посредством соотношений (58) называют координатным способом определения движения точки. Это название неточно, потому что, кроме прямолинейных прямоугольных координат, существует множество других координатных систем.

Если траектория точки лежит в одной плоскости, то движение точки определяют двумя уравнениями в системе координат xОy: x=x(t), y=y(t).

Следовательно, при координатном способе задания движения точки в пространстве нужно задать ее три координаты, а на плоскости—две координаты как функции времени. Если точка движется прямолинейно, то, приняв прямую, по которой она движется, за ось абсцисс, мы определим движение точки одним уравнением

Если движение точки задано в координатной форме, то для определения ее траектории надо из уравнений движения исключить время

Уравнение траектории

Можно определить траекторию точки, если в уравнениях движения (58) давать аргументу t различные значения и, вычислив соответствующие значения функций, отмечать положения точки по ее координатам. Следовательно. кинематические уравнения движения точки (58) можно
рассматривать как уравнения ее траектории в параметрической форме, а время — как независимый переменный параметр.

Однако более удобно получить уравнение траектории, исключив время из уравнений (58). В самом деле, траекторией называют геометрическое место всех положений движущейся точки, но в геометрии нет понятия времени, а поэтому для получения уравнения траектории нужно из кинематических уравнений движения (58) исключить время t. Если точка движется в плоскости, то, исключив время из уравнений (58′) и (58″), мы получим соотношение, связывающее х и у:

Это уравнение плоской кривой—траектории точки. Если же движение задано тремя уравнениями (58), то, исключив время, получим два уравнения между тремя координатами:
Даны уравнения движения точки определить уравнение траектории точки и построить ее(59 / )

выражающие, как известно из аналитической геометрии, кривую (траекторию) в пространстве. Точнее говоря, уравнения (59) или (59′) выражают кривую, которая полностью или в некоторой своей части является геометрическим местом всех положений движущейся точки.

Иногда бывает нужно выразить в естественной форме движение точки, заданное в прямоугольных координатах уравнениями (58), и, кроме уравнения траектории, дать также уравнение (51) движения точки по траектории. Чтобы его получить, надо продифференцировать уравнения (58) и полученные дифференциалы координат точки подставить в известную из курса высшей математики формулу, выражающую абсолютную величину элемента дуги:

Даны уравнения движения точки определить уравнение траектории точки и построить ее(60)

Проинтегрировав (60), мы получим уравнение (51), выражающее длину дуги s как функцию времени, или, что то же, закон движения точки по траектории.

Задача №1

По заданным уравнениям движения точки в координатной форме найти уравнение траектории и уравнение движения по траектории:

1) х = 5 cos 2t, y = 3+5sin 2t;
2) x=21,2 sin 2 t, у = 21,2 cos 2t.

В обоих примерах за единицу длины принят сантиметр, за единицу времени — секунда.

Решение. Чтобы определить уравнение траектории по уравнениям движения, перенесем во втором из заданных уравнений 3 влево, возведем оба уравнения в квадрат и, сложив, получим

Это уравнение окружности с центром в точке: x = 0, y = +3.

Чтобы получить закон движения, продифференцируем заданные уравнения: dx=—10 sin 2t dt, dy = 10 cos 2t dt.

Возводя в квадрат, складывая, извлекая квадратный корень и интегрируя, находим закон движения по траектории:
s=10t + C, где C = s0.

2) Исключим время из уравнений движения во втором примере:

Это уравнение первого порядка относительно х и у, следовательно, траектория-прямая линия. Прямая отсекает на положительных направлениях осей координат отрезки по 21,2 см. Однако не вся прямая служит траекторией точки: из заданных уравнений видно, что х и у должны быть всегда положительны и не могут быть больше 21,2 см каждый, поэтому траекторией точки является лишь отрезок прямой x+y = 21,2, лежащей в первом квадранте (рис. 85).

Даны уравнения движения точки определить уравнение траектории точки и построить ее
Рис. 85

На этом примере мы видим, что траекторией точки иногда является лишь часть линии, выражаемой уравнением траектории.

Продифференцируем уравнения движения:

dx = 21,2 ∙ 2 sin t cos t dt,
dy = 21,2 ∙ 2 sin t cos t dt.

Теперь no формуле (60) нетрудно найти элемент дуги траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

ля получения уравнения (51) движения точки по траектории остается лишь проинтегрировать найденное выражение. Интегрируем и подставляем начальные условия (при t= 0, s0 = 0):

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Ответ. Уравнения траекторий x 2 +(y-3) 2 = 25 и x+y=21,2; уравнения движения по траектории s=10t+s0 и s = 30 sin 2 t.

Задача №2

Движение точки задано уравнениями:
х = x’ cos φ (t)—y’ sin φ (t),
y = x’ sin φ (t) + y’ cos φ (t),

где х’ и у’ — некоторые постоянные величины, a φ(t)— любая функция времени. Определить траекторию точки.

Решение. Возведем каждое из уравнений в квадрат, а затем сложим их:

x 2 + y 2 = χ ‘2 + y ‘2 .

По условию, х’ и у’ — постоянные. Обозначая сумму их квадратов через r 2 , получим

Ответ. Окружность с центром в начале координат радиуса Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Задача №3

Поезд длиной l м сначала идет по горизонтальному пути (рис. 86, а), а потом поднимается в гору под углом 2α к горизонту. Считая поезд однородной лентой, найти траекторию его центра тяжести.

Даны уравнения движения точки определить уравнение траектории точки и построить ее
Рис. 86

Решение. Для решения задачи нужно определить координаты центра тяжести поезда, найти уравнения движения центра тяжести и исключить из них время.

Направим оси координат по внутренней и внешней равиоделяшнм угла 2α (рис. 86, б). Траектория центра тяжести поезда не зависит от скорости поезда. Для простоты подсчетов предположим, что он идет равномерно со скоростью υ м/сек и в начальное мгновение t=0 подошел к горе.

Тогда за время t сек на гору поднимется υt м состава поезда и останется на горизонтальном пути l — υt м. Будем считать, что единица длины поезда весит γ.

Применяя формулы (48), найдем координаты центра тяжести поезда:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Координаты центра тяжести представлены здесь как функции времени, следовательно, полученные соотношения являются уравнениями движения центра тяжести поезда. Определяя t (или υt) из первого уравнения и подставляя во второе, найдем уравнение траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Задача №4

Мостовой кран движется вдоль цеха согласно уравнению х = t; по крану катится в поперечном направлении тележка согласно уравнению у = 1,5t (х и у—в м, t — в сек). Цепь укорачивается со скоростью t>=0,5. Определить траекторию центра тяжести груза (в начальном положении центр тяжести груза находился в горизонтальной плоскости хОу, ось Oz направлена вертикально вверх).

Решение. В условии задачи даны лишь два уравнения движения и вертикальная скорость груза:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

откуда dz = 0,5dt, и легко получаем третье уравнение:

z = 0,5t

Определив t из первого уравнения, подставим во второе и в третье:

y= 1,5x, z = 0,5x

Координаты груза должны удовлетворять одновременно обоим уравнениям, т. е. траектория лежит одновременно в обеих плоскостях и является линией их пересечения.
Ответ. Прямая.

Алгебраическая величина скорости проекции точки на координатную ось равна первой производной от текущей координаты по времени:
Даны уравнения движения точки определить уравнение траектории точки и построить ее

Алгебраическая величина скорости проекции точки на ось

Пусть движение точки M определяется тремя уравнениями:
x =x(t), (58′)
y = y(t), (58″)
z = z(t). (58″‘)

По мере движения точки M в пространстве ее проекции P, Q и R движутся по своим прямолинейным траекториям, т. е. по осям координат, и их движения вполне соответствуют движению точки М.

Так, координата (абсцисса) точки P всегда равна абсциссе точки М, а координаты точек QnR всегда равны ординате и аппликате точки М. Следовательно, при движении точки M в пространстве согласно уравнениям (58) точка P движется по оси Ox согласно уравнению (58′), а точки Q и R— соответственно по осям Oy и Oz согласно уравнениям (58″) и (58″‘).

Таким образом, движение точки M в пространстве можно разложить на три прямолинейных движения ее проекций P, Q и R.

Определим скорость υp точки P при движении этой точки по ее прямолинейной траектории Ох, иными словами, определим скорость проекции точки M на ось Ох.

Алгебраическая величина скорости выражается по формуле (53), причем дифференциалом расстояния точки P является дифференциал абсциссы х, а поэтому

Даны уравнения движения точки определить уравнение траектории точки и построить ее(61)

Следовательно, алгебраическая величина скорости проекции P точки M на координатную ось равна первой производной от текущей координаты х по времени t. Она положительна, если точка P движется в положительном направлении оси Ох, и отрицательна, если точка P движется в отрицательном направлении.
Аналогично получаем алгебраические скорости проекций Q и R на ось Oy и на ось Oz:

Даны уравнения движения точки определить уравнение траектории точки и построить ее(61″)

Даны уравнения движения точки определить уравнение траектории точки и построить ее(61″‘)

Чтобы получить векторы скоростей проекций, надо умножить величины (61) на единичные векторы:
Даны уравнения движения точки определить уравнение траектории точки и построить ее(61)

Алгебраическая величина скорости проекции точки на ось равна проекции скорости той же точки на туже ось:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Скорость проекции и проекция скорости

Пусть точка М за бесконечно малый отрезок времени dt передвинулась по своей траектории на элемент дуги ds, абсолютную величину которого выразим формулой (60):
Даны уравнения движения точки определить уравнение траектории точки и построить ее

где dx, dy и dz — проекции элемента дуги на оси координат, или, Что то же, элементарные приращения координат точки М.

На рис. 87 эти элементы условно изображены конечными отрезками. Как видно из чертежа, косинусы углов, составляемых элементарным перемещением (а следовательно, и скоростью точки), с осями х, у и z соответственно равны

Даны уравнения движения точки определить уравнение траектории точки и построить ее(62)

Величина скорости точки M может быть определена по (53):

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Чтобы определить проекцию скорости Даны уравнения движения точки определить уравнение траектории точки и построить еена какую-либо ось, надо умножить абсолютную величину скорости на косинус угла между направлением скорости и направлением этой оси. Таким образом, для проекций скорости точки M на оси координат имеем:

Даны уравнения движения точки определить уравнение траектории точки и построить ее(63′)

Даны уравнения движения точки определить уравнение траектории точки и построить ее(63″)

Даны уравнения движения точки определить уравнение траектории точки и построить ее(63″‘)

Даны уравнения движения точки определить уравнение траектории точки и построить ее
Рис. 87

Равенства (63) словами нужно читать так: проекция скорости точки на ось равна алгебраической скорости проекции точки на ту же ось.

Задача №5

Доказать, что проекция Даны уравнения движения точки определить уравнение траектории точки и построить еескорости Даны уравнения движения точки определить уравнение траектории точки и построить ееточки M (х, у, z) иа плоскость хОу равняется скорости Даны уравнения движения точки определить уравнение траектории точки и построить ее, с которой движется по плоскости проекция M1 (х, у, О) точки M на ту же плоскость.

Решение. Скорость Даны уравнения движения точки определить уравнение траектории точки и построить ееточки M составляет с осью Oz угол γυ, следовательно, угол, составляемый ею с плоскостью хОу, равен 90° — yυ п косинус этого угла равен sinγυ. Поэтому модуль проекции скорости точки M на плоскость хОу

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Подводя Даны уравнения движения точки определить уравнение траектории точки и построить еепод радикал и выражая cosγυ, по формуле (62), мы убедимся, что проекция скорости на плоскость равна по величине скорости проекции:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Направления векторов Даны уравнения движения точки определить уравнение траектории точки и построить ееи Даны уравнения движения точки определить уравнение траектории точки и построить еетоже совпадают, так как направляющие косинусы их одинаковы. Теорема доказана.

Модуль скорости точки равен квадратному корню из суммы квадратов проекций скорости на оси координат:
Даны уравнения движения точки определить уравнение траектории точки и построить ее

Модуль скорости. Возведем в квадрат каждое из равенств:
Даны уравнения движения точки определить уравнение траектории точки и построить ее(63)

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Сумма квадратов направляющих косинусов равна единице и

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее(64)

Перед радикалом взят положительный знак, так как величина скорости (ее модуль) всегда положительна. В этом ее существенное отличие от алгебраической величины скорости (53), характеризующей скорость точки при движении по заданной траектории и имеющей знак « + » или «—» в зависимости от направления движения. Величину (64) иногда называют полной скоростью.

Направление скорости можно определить по направляющим косинусам скорости:
Даны уравнения движения точки определить уравнение траектории точки и построить ееДаны уравнения движения точки определить уравнение траектории точки и построить ее

Направляющие косинусы скорости

Равенство (64) позволяет определить модуль скорости точки, движение которой задано уравнениями (58). Направление скорости определяется по косинусам углов, составляемых положительными направлениями осей координат с направлением скорости. Значения этих косинусов, называемых направляющими косинусами скорости, мы получим из уравнений (63):

Даны уравнения движения точки определить уравнение траектории точки и построить ее(62′)

где Даны уравнения движения точки определить уравнение траектории точки и построить ее, Даны уравнения движения точки определить уравнение траектории точки и построить ееи Даны уравнения движения точки определить уравнение траектории точки и построить ее— производные от х, у и z по t.

Если точка движется в плоскости хОу, то γυ = 90 o , cosγυ = 0 и cos αυ = sin βυ.

Задача №6

Уравнения движения суть

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Определить траекторию и скорость.

Решение. Из уравнений движения следует, что х и у всегда больше нуля.
Для определения уравнения траектории возведем каждое из уравнений движения в квадрат и составим разность

x 2 — у 2 = a 2

Для определения скорости найдем сначала ее проекции:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее

а затем уже и полную скорость.

Ответ. Траектория — ветвь гиперболы x 2 — у 2 = a 2 — расположена в области положительных значений х; скорость Даны уравнения движения точки определить уравнение траектории точки и построить ее.

Задача №7

Движение точки задано уравнениями

Даны уравнения движения точки определить уравнение траектории точки и построить ее

причем ось Ox горизонтальна, ось Oy направлена по вертикали вверх, υ0, g и Даны уравнения движения точки определить уравнение траектории точки и построить ее—величины постоянные. Найти траекторию точки, координаты наивысшего ее положения, проекции скорости на координатные оси в тот момент, когда точка находится на оси Ох.

Решение. Уравнения описывают движение тела, брошенного со скоростью υ0 под углом α0 к горизонту (к оси Ох).
Чтобы найти уравнение траектории, определим время из первого уравнения и подставим найденное значение во второе; получим

Даны уравнения движения точки определить уравнение траектории точки и построить ее

уравнение параболы, проходящей через начало координат (рис. 88).

Даны уравнения движения точки определить уравнение траектории точки и построить ее
Рис. 88

Чтобы определить координаты наивысшего положения, мы можем применить известные из дифференциального исчисления правила нахождения максимума функции, т. е. взять производную Даны уравнения движения точки определить уравнение траектории точки и построить ее, приравняв ее нулю, определить значение х и, подставив его в уравнение траектории, определить соответствующее значение у, убедившись при этом, что вторая производная Даны уравнения движения точки определить уравнение траектории точки и построить ее. Однако мы найдем координаты наивысшего положения точки другим методом, для чего, продифференцировав по времени уравнения движения точки, найдем проекции ее скорости:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Первое из этих уравнений показывает, что проекция скорости на горизонтальную ось постоянна и равна проекции начальной скорости.

Исследование второго уравнения убеждает, что проекция скорости на вертикальную ось в начальное мгновение положительна и равна υ0 sin α0; затем, по мере увеличения t, проекция υy уменьшается, оставаясь положительной до мгновения Даны уравнения движения точки определить уравнение траектории точки и построить ее, когда υy обращается в нуль, после чего υy становится отрицательной, возрастая по абсолютной величине с течением времени t.

Таким образом, точка движется вправо, сначала поднимаясь, затем опускаясь. Мгновение Даны уравнения движения точки определить уравнение траектории точки и построить ее, при котором точка кончила подниматься, но еще не начала опускаться, соответствует максимальному подъему точки. В это мгновение скорость горизонтальна и Даны уравнения движения точки определить уравнение траектории точки и построить ее. Подставляя найденное значение t в уравнения движения, найдем координаты наивысшей точки траектории:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Определим проекции скорости в мгновение, когда точка находится на оси Ох. В это мгновение ордината точки равна нулю. Приравняем пулю второе из уравнений движения:
Даны уравнения движения точки определить уравнение траектории точки и построить ее

Точка находится на оси Ox два раза: при t=0 при Даны уравнения движения точки определить уравнение траектории точки и построить ее

Первое значение t соответствует началу движения, второе —падению точки на ось Ох. Второе значение равно времени всего полета, и оно вдвое больше полученного нами ранее времени наивысшего подъема: время падения равно времени подъема.

Подставляя значение t=0 в уравнения, определяющие проекции скорости, найдем проекции скорости в начальное мгновение:

Подставляя второе из найденных значений t, найдем скорости в момент падения:

Ответ: 1) Парабола Даны уравнения движения точки определить уравнение траектории точки и построить ее

2) Даны уравнения движения точки определить уравнение траектории точки и построить ее

3) υx = υ0 cos α0, υy = Даны уравнения движения точки определить уравнение траектории точки и построить ееυ0 sin α0.

причем верхний знак соответствует началу движения, а нижний—концу.

Задача №8

По осям координат (рис. 89) скользят две муфты A и B, соединенные стержнем AB длиной l. Скорость В равна υB.

При каком положении муфт скорость муфты А вдвое больше υB?

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Решение. Координата точки А связана с координатой точки В соотношением

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Считая х и у функциями времени и продифференцировав это равенство по времени, найдем зависимость между скоростями обеих точек:
Даны уравнения движения точки определить уравнение траектории точки и построить ее

Но Даны уравнения движения точки определить уравнение траектории точки и построить ееи по условию надо, чтобы величина Даны уравнения движения точки определить уравнение траектории точки и построить еебыла равна 2υB, т. е.

Даны уравнения движения точки определить уравнение траектории точки и построить ее

откуда после алгебраических преобразований получаем ответ.

Ответ: Даны уравнения движения точки определить уравнение траектории точки и построить ее(см. задачи № 57 и 89, где даны другие решения).

Проекция ускорения точки на координатную ось равна первой производной по времени от проекции скорости на ту же ось или второй производной от текущей координаты по времени:
Даны уравнения движения точки определить уравнение траектории точки и построить ее

Ускорение проекции и проекция ускорения

Ускорение характеризует изменение скорости точки в данное мгновение. Оно выражается пределом отношения изменения вектора скорости к соответствующему промежутку времени при стремлении этого промежутка времени к нулю.

Для того чтобы определить ускорение точки M при ее движении в пространстве, рассмотрим сначала движение по оси Ox точки Р, являющейся проекцией точки M на эту ось.

Пусть в некоторое мгновение t алгебраическая величина скорости точки P была υх, а в мгновение tl = t + Δt стала υx+∆υx. Тогда ускорение точки P по величине и по знаку выразится пределом

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Если знаки υx и ap одинаковы, то движение точки P ускоренное, а если различны, то замедленное.

Аналогично выразятся ускорения проекций Q и R точки M на другие координатные оси:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Проекции υx, υy и υz сами являются производными по времени от координат точки, поэтому ускорения проекций можно выразить вторыми производными по времени от координат точки. Эти равенства характеризуют не только величины, но и знаки ускорений проекций. Иными словами, они выражают изменение алгебраических скоростей проекций P, Q и R в мгновение t.

Только что доказанная теорема о равенстве алгебраической скорости проекции точки на ось и проекции скорости той же точки на ту же ось справедлива для любого момента времени. Следовательно, эта теорема относится не только к скорости, но и к ее изменению в любое мгновение, т. е. к ускорению. Это значит, что написанные выше равенства выражают также проекции ax, ау и аz ускорения а точки M на оси координат Ox, Oy и Oz:

Даны уравнения движения точки определить уравнение траектории точки и построить ее(65)

где cosαa, cosβa и cosγa—направляющие косинусы ускорения.

Можно рассматривать эти величины (65) как векторы, направленные по осям координат:

Даны уравнения движения точки определить уравнение траектории точки и построить ее(65′)

Модуль ускорения точки равен квадратному корню из суммы квадратов проекций ускорения на оси координат:
Даны уравнения движения точки определить уравнение траектории точки и построить ее

Величина ускорения при координатном способе задания движения точки

Возведем в квадрат каждое из равенств:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

и затем сложим их:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее(66)

Перед радикалом взят знак плюс, так как модуль вектора—величина положительная. Ускорение точки в отличие от проекций ускорения на оси координат или на другие направления обычно называют полным ускорением. Поэтому равенство (66) можно прочитать так: величина полного ускорения точки равна квадратному корню из суммы квадратов его проекций на оси координат.

Направление ускорения можно определить по направляющим косинусам ускорения:
Даны уравнения движения точки определить уравнение траектории точки и построить ее, Даны уравнения движения точки определить уравнение траектории точки и построить ее

Направляющие косинусы ускорения

Направление ускорения определяют по косинусам углов, составляемых положительными направлениями осей координат с вектором ускорения. Формулы направляющих косинусов получаем из уравнений (65):
Даны уравнения движения точки определить уравнение траектории точки и построить ее (67′)

Даны уравнения движения точки определить уравнение траектории точки и построить ее (67»)

Даны уравнения движения точки определить уравнение траектории точки и построить ее (67»’)

Для определения направления ускорения в каждом конкретном случае надо сначала найти ускорение проекций по (65), для чего необходимо дважды продифференцировать уравнения движения (58), затем найти величину ускорения по (66), а потом определить направляющие косинусы ускорения по (67).

Направление ускорения обычно не совпадает с направлением скорости, и направляющие косинусы (67) ускорения только при прямолинейном ускоренном движении точки постоянно равны направляющим косинусам (62) скорости.

Если точка движется в плоскости хОу, то γa = 90 o , cosγa = 0, cosα0 = sin βa.

Задача №9

Точка M движется в системе координат хОу согласно уравнениям х= r cos πt, y=r sinπt, где х и у—в см, a t — в сек. Найти уравнение траектории точки М, ее скорость, направляющие косинусы скорости, ускорение, направляющие косинусы ускорения. Для значений времени t=0; 0,25; 0,5; 0,75, . 2 сек дать чертежи положений точки M, вектора скорости и вектора ускорения.

Решение. Из уравнения движения видно, что координаты точки M являются проекциями на соответствующие оси радиуса-вектора r, составляющего с осью абсцисс угол πt:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Для определения траектории точки исключаем время из уравнений движения. Получаем уравнение окружности

x 2 + y 2 = r 2

Найдем теперь проекции скорости на оси координат, для чего продифференцируем по времени уравнения движения:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее

откуда по (64) получаем модуль скорости

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Величина скорости точки M постоянна.

Направляющие косинусы скорости определим по формуле (62′):

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Эти соотношения показывают, что направление скорости непрерывно меняется и что скорость перпендикулярна радиусу-вектору, проведенному из центра О в точку М.

Ускорение точки M найдем по его проекциям, для чего продифференцируем выражения, полученные для проекций скорости:
Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее

откуда по (66) получаем величину ускорения

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Ускорение характеризует быстроту изменения вектора скорости не только по величине, но и по направлению, поэтому, несмотря на постоянство модуля скорости точки М, ускорение этой точки не равно нулю. Как видно из полученного

Даны уравнения движения точки определить уравнение траектории точки и построить ее
Рис. 90

равенства, величина полного ускорения постоянна. Направление ускорения определим по направляющим косинусам согласно (67):
Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Направление ускорения точки M противоположно направлению радиуса-вектора.
Положения точки M в различные мгновения показаны на рис. 90, а, векторы скорости — на рис. 90,6 и векторы ускорения — на рис. 90, в.

Ответ. Точка M движется по окружности радиуса r против часовой стрелки с постоянной по величине скоростью υ = rπ и с постоянным по величине ускорением a = rπ 2 .

Задача №10

Снаряд выбрасывается из орудия с начальной скоростью υ=1600 м/сек под утлом α0 = 55 o к горизонту. Определить теоретическую дальность и высоту обстрела, учитывая, что ускорение свободно падающих тел g = 9,81 м/сек 2 .

Решение. Сначала составим уравнения движения снаряда в координатной форме, направив оси, как показано на чертеже (см. рис. 88), для этого определим проекции ускорения:
Даны уравнения движения точки определить уравнение траектории точки и построить ее

Разделив переменные, интегрируем:
υх= С1, υy = — gt + С2

Подставляя вместо переменных величин их начальные значения, увидим, что C1 и C2 равны проекциям начальной скорости:

1600 cos 55 o = C1, 1600 sin 55 o = — gt + C2.

Подставим их в уравнения, полученные для проекций скорости:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Разделяя переменные и интегрируя, найдем

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Даны уравнения движения точки определить уравнение траектории точки и построить ее

При t = 0 координаты снаряда были: х =0, у = 0. Подставляя эти данные, найдем, что C3 = O и C4 = O. Значения cos 55° и sin 55° найдем в тригонометрических таблицах. Уравнения движения снаряда примут вид:

Даны уравнения движения точки определить уравнение траектории точки и построить ее

Далее поступим, как при решении задачи № 42: приравняв вертикальную скорость нулю, найдем время подъема снаряда (t= 133,7 сек); подставляя это значение t в уравнение движения по оси Оу, найдем теоретическую высоту обстрела (h = 87 636 м); удваивая время /, найдем время полета снаряда (t = 267,4 сек); подставляя это значение- в уравнение движения по оси Ох, найдем теоретическую дальность обстрела (l = 245 393 м).
Ответ. l = 245 км; h = 87,5κм.

Рекомендую подробно изучить предмет:
  • Теоретическая механика
Ещё лекции с примерами решения и объяснением:
  • Касательное и нормальное ускорения точки
  • Основные законы динамики
  • Колебания материальной точки
  • Количество движения
  • Пара сил в теоретической механике
  • Приведение системы сил к данной точке
  • Система сил на плоскости
  • Естественный и векторный способы определения движения точки

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

📽️ Видео

Дифференциальные уравнения движения точкиСкачать

Дифференциальные уравнения движения точки

Кинематика точкиСкачать

Кинематика точки

Дифференциальное уравнение движения материальной точки.Скачать

Дифференциальное уравнение движения материальной точки.

Cложное движение точки. ТермехСкачать

Cложное движение точки. Термех

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Решение графических задач на равномерное движениеСкачать

Решение графических задач на равномерное движение

Уравнение движения тела дано в виде x=2−3t. ВычислиСкачать

Уравнение движения тела дано в виде x=2−3t. Вычисли

Кинематика точки в плоскости. ТермехСкачать

Кинематика точки в плоскости. Термех

Физика - уравнения равноускоренного движенияСкачать

Физика - уравнения равноускоренного движения

Урок 7. Механическое движение. Основные определения кинематики.Скачать

Урок 7. Механическое движение. Основные определения кинематики.

Кинематика точки. Авторы: Борисов Никита, Ларионов Егор, Петрашова Полина. Решение задачи.Скачать

Кинематика точки. Авторы: Борисов Никита, Ларионов Егор, Петрашова Полина. Решение задачи.

Уравнение прямой в пространстве через 2 точки. 11 класс.Скачать

Уравнение прямой в пространстве через 2 точки. 11 класс.
Поделиться или сохранить к себе: