Даны точки А(1;2), В(6;2), С(3;0).
a) уравнение и длину BC;
Вектор ВС = (3-6; 0 -2) = (-3; -2). Модуль равен √((-3)² + (-2)²) = √13.
Уравнение ВС: (х — 6)/(-3) = (у — 2)/(-2).
или в общем виде 2х — 3у — 6 = 0.
б) уравнение высоты АД;
Высота АД перпендикулярна стороне ВС: 2х — 3у — 6 = 0.
Её уравнение имеет вид 3х + 2у + С = 0 (коэффициенты А и В из уравнение стороны АВ меняются на -В и А).
Для определения величины С подставим координаты точки А(1;2).
АД: 3*1 + 2*2 + С = 0, отсюда С = -3 — 4 = -7.
АД: 3х + 2у — 7 = 0.
в) уравнение прямой, проходящей через точку А параллельно ВС;
Коэфициенты А и В сохраняются такими же, как и у стороны ВС.
2х — 3у + С = 0, для определения параметра С подставим координаты точки А(1;2): 2*1 – 3*2 + С = 0, отсюда С = -2 + 6 = 4.
Уравнение 2х — 3у + 4 = 0.
г) уравнение прямой, соединяющей середины сторон АВ и ВС.
Это будет средняя линия треугольника, параллельная стороне АС.
Находим координаты точки Д, являющейся серединой стороны АВ.
Д = (А(1;2) + В(6;2))/2 = (3,5; 2).
Коэфициенты А и В сохраняются такими же, как и у стороны АС.
Точки А(1;2) и С(3;0).
Вектор АС = (3-1; 0-2) = (2; -2).
Уравнение АС: (х — 1)/2 = (у — 2)/(-2) или в общем виде
Тогда параллельная прямая имеет вид x + y + С = 0.
Для определения параметра С подставим координаты точки Д(3,5; 2):
1*3,5 + 1*2 + С = 0, отсюда С = -3,5 — 2 = -5,5.
Уравнение х + у – 5,5 = 0 или в целых числах 2x + 2y – 11 = 0.
д) угол А треугольника АВС.
Вектор АВ = (6-1; 2-2) = (4; 0), модуль равен 4.
Вектор АС = (2; -2 ), модуль равен √8 = 2√2.
cos B = (4*2 + 0*(-2)) / (4*2√2) = 8 / (8*√2) = 1/√2 = √2/2.
B = arc cos(√2/2) = 45 градусов.
Видео:Уравнения стороны треугольника и медианыСкачать

Уравнение высоты треугольника
Как составить уравнение высоты треугольника по координатам его вершин?
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Следовательно, для составления уравнения высоты треугольника нужно:
- Найти уравнение стороны треугольника.
- Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.
Дано: ΔABC, A(-7;2), B(5;-3), C(1;8).
Написать уравнения высот треугольника.
1) Составим уравнение стороны BC треугольника ABC.
Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:
Таким образом, уравнение прямой BC —
Угловой коэффициент прямой, перпендикулярной BC,
Значит, уравнение высоты, проведённой к стороне BC, имеет вид
Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:
Итак, уравнение высоты, проведённой к стороне BC:
2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):
Уравнение прямой AB:
Угловой коэффициент перпендикулярной ей прямой
Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):
Угловой коэффициент прямой, перпендикулярной AC,
Таким образом, уравнение перпендикулярной AC прямой имеет вид
Подставив в него координаты точки B(5;-3), найдём b:
Итак, уравнение высоты треугольника ABC, опущенной из вершины B:
Видео:Уравнение прямой и треугольник. Задача про высотуСкачать

Даны точки a b c найти уравнение и длину bc уравнение высоты ad
Внимание! Если вы делали заказ после 19.08.2021, вход в новый Личный кабинет — тут
Неправильный логин или пароль.
Укажите электронный адрес и пароль.
Пожалуйста, укажите электронный адрес или номер телефона, который вы использовали при регистрации. Вам будет отправлено письмо со ссылкой на форму изменения пароля или SMS сообщение с новым паролем.
Инструкция по изменению пароля отправлена на почту.
Чтобы зарегистрироваться, укажите ваш email и пароль
Нажимая кнопку «Зарегистрироваться» вы даете согласие на обработку персональных данных в соответствии с политикой конфеденциальности.
🌟 Видео
Вычисляем высоту через координаты вершин 1Скачать

№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнениеСкачать

Математика без Ху!ни. Уравнение плоскости.Скачать

найти уравнение высоты треугольникаСкачать

Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACDСкачать

Вычисление медианы, высоты и угла по координатам вершинСкачать

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)Скачать

Нахождение длины отрезка по координатамСкачать

Уравнения прямой на плоскости | Векторная алгебраСкачать

Математика без Ху!ни. Смешанное произведение векторовСкачать

Составляем уравнение прямой по точкамСкачать

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?Скачать

Аналитическая геометрия на плоскости. Решение задачСкачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.Скачать

Как найти длину биссектрисы, медианы и высоты? | Ботай со мной #031 | Борис ТрушинСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).Скачать














