- Условие
- Решение
- Онлайн калькулятор. Уравнение плоскости
- Найти уравнение плоскости
- Ввод данных в калькулятор для составления уравнения плоскости
- Дополнительные возможности калькулятора для вычисления уравнения плоскости
- Теория. Уравнение плоскости.
- Уравнение плоскости онлайн
- Предупреждение
- Уравнение плоскости, проходящей через три точки
- Уравнение плоскости, проходящей через одну точку и имеющий нормаль n
- 🎥 Видео
Условие
Даны четыре точки А1(х1, у1, z1), А2(х2, у2, z2), А3(х3, у3, z3), А4(х4, у4, z4). Составить уравнения:
а) плоскости А1А2А3;
б) прямой А1А2;
в) прямой А4М;
г) прямой А3К, параллельной прямой А1А2;
д) плоскости, проходящей через точку А4 перпендикулярно к прямой А1А2.
А1(4, 1, 2), А2(1, 2, 0), А3(3, 5, 7), А4(2, 3, 5)
Решение
a) Пусть M (x;y;z) — произвольная точка плоскости A_(1)A_(2)A_(3)
Тогда векторы
vector=(x-4;y-1;z-2)
vector<A_(1)A_>=(1-4;2-1;0-2)=(-3;1;-2)
vector<A_(1)A_>=(3-4;5-1;7-2)=(-1;4;5)
лежат в одной плоскости, значит компланарны.
Условие компланарности — равенство нулю определителя третьего порядка, составленного из координат этих векторов.
Видео:Уравнение плоскости через 3 точкиСкачать
Онлайн калькулятор. Уравнение плоскости
Предлагаю вам воспользоваться онлайн калькулятором чтобы найти уравнение плоскости.
Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения плоскости и закрепить пройденный материал.
Видео:4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать
Найти уравнение плоскости
Выберите метод решения исходя из имеющихся в задаче данных:
В задаче известны:
Ввод данных в калькулятор для составления уравнения плоскости
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора для вычисления уравнения плоскости
- Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.
Теория. Уравнение плоскости.
Плоскость — поверхность, содержащая полностью каждую прямую, соединяющую любые её точки
В зависимости от условий задачи уравнение плоскости можно составить следующими способами:
- Если заданы координаты трех точек A( x 1, y 1, z 1), B( x 2, y 2, z 2) и C( x 3, y 3, z 3), лежащих на плоскости, то уравнение плоскости можно составить по следующей формуле
x — x 1 | y — y 1 | z — z 1 | = 0 |
x 2 — x 1 | y 2 — y 1 | z 2 — z 1 | |
x 3 — x 1 | y 3 — y 1 | z 3 — z 1 |
Если заданы координаты точки A( x 1, y 1, z 1) лежащей на плоскости и вектор нормали n = , то уравнение плоскости можно составить по следующей формуле:
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Видео:Математика без Ху!ни. Уравнение плоскости.Скачать
Уравнение плоскости онлайн
С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через три точки, и уравнение плоскости, проходящей через одну точку и имеющий заданный нормаль плоскости. Дается подробное решение с пояснениями. Для построения уравнения плоскости выберите вариант задания исходных данных, введите координаты точек в ячейки и нажимайте на кнопку «Решить».
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:Решение, составить уравнение плоскости, проходящей через точки A1, A2, A3 пример 4 Высшая математикаСкачать
Уравнение плоскости, проходящей через три точки
Рассмотрим цель − вывести уравнение плоскости, проходящей через три различные точки M1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3), не лежащие на одной прямой. Так как эти точки не лежат на одной прямой, векторы и не коллинеарны. Следовательно точка M(x, y, z) лежит в одной плоскости с точками M1, M2, M3 тогда и тольно тогда, когда векторы M1M2, M1M3 и компланарны. Но векторы M1M2, M1M3, M1M компланарны тогда и только тогда, когда их смешанное произведение равно нулю. Используя смешанное произведение векторов M1M2, M1M3, M1M в координатах, получим необходимое и достаточное условие принадлежности точки M(x, y, z) к указанной плоскости:
Разложив определитель в левой части выражения, например, по первому столбцу и упростив, получим уравнение плоскости в общей форме, проходящий по точкам M1, M2, M3:
Пример 1. Построить уравнение плоскости, проходящую через точки A(1, 2, 1), B(4, 5, -4), С(2, 1, 2).
(1) |
Подставляя координаты точек A, B, C в (1), получим:
Разложим определитель по первому столбцу:
Уравнение плоскости, проходящей через точки A(1, 2, 1), B(4, 5, -4), С(2, 1, 2) имеет вид:
Видео:Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать
Уравнение плоскости, проходящей через одну точку и имеющий нормаль n
Пример 2. Построить плоскость, проходящую через точку M0(-1, 2, 1) и имеюший нормаль n(1, 4/5, 1).
(2) |
Подставляя координаты векторов M0 и n в (2), получим:
🎥 Видео
2. Уравнение плоскости примеры решения задач #1Скачать
Видеоурок "Уравнение плоскости по трем точкам"Скачать
Решение, найти уравнение плоскости, проходящей через точки A1, A2, A3 пример 1. Высшая математика.Скачать
3. Частные случаи общего уравнения плоскости Неполные уравнения плоскостиСкачать
1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать
Уравнение плоскости. 11 класс.Скачать
Уравнение плоскости. Практическая часть. 11 класс.Скачать
Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
10. Параллельность и перпендикулярность плоскостей Решение задачСкачать
Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Составьте уравнение плоскости, проходящей через ось Оу и точку M (3;2;4).Скачать
Видеоурок "Уравнение плоскости в отрезках"Скачать
17. Показать что прямые пересекаются и составить уравнение плоскости в которой они расположеныСкачать
Уравнение прямой на плоскостиСкачать