Видео:Уравнение окружности (1)Скачать
Ваш ответ
Видео:9 класс, 6 урок, Уравнение окружностиСкачать
решение вопроса
Видео:№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).Скачать
Похожие вопросы
- Все категории
- экономические 43,414
- гуманитарные 33,633
- юридические 17,906
- школьный раздел 608,054
- разное 16,856
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Видео:ПРОСТОЙ СЕКРЕТ ДЛЯ НАЧИНАЮЩИХ! Реши алгебру за 12 минут — Уравнение ОкружностиСкачать
Уравнение окружности.
Окружностью принято обозначать множество всех точек плоскости, равноудаленных от одной точки – от центра.
В формулировке окружности упоминается расстояние между точкой окружности и центром.
Формула расстояния между двумя точками М1(х1; у1) и М2(х2; у2) имеет вид:
,
Применив формулу и формулировку окружности, получаем уравнение окружности с центром в точке С (х0; у0) и радиусом r.
Отметим произвольную точку М(х; у) на этой окружности.
.
Предположим, что М принадлежит окружности с центром С и радиусом r, то МС = r.
Следовательно, МС 2 = r 2 и координаты точки М удовлетворяют уравнению окружности (х – х0 ) 2 +(у – у0 ) 2 = r 2 .
Из выше изложенного делаем вывод, что уравнение окружности с центром в точке С (х0; у0) и радиусом r имеет вид:
В случае когда центр окружности совпадает с началом координат, то получаем частный случай уравнения окружности с центром в точке О (0;0):
Видео:№970. Напишите уравнение окружности, проходящей через точку А (1; 3), если известноСкачать
Уравнение окружности
Для расчета уравнения, надо знать определение окружности. Итак, окружность – это множество точек в пространстве, равноудаленных от одной точки, называемой центром. Отрезок, соединяющий две точки окружности и проходящий через точку центра, называется диаметром. Отрезок, соединяющий две точки окружности – хорда. Отрезок, соединяющий центр и любую точку окружности – радиус. Радиус равен половине диаметра.
Рассчитывая уравнение окружности, получаем следующие данные:
• координаты точки центра;
• длину радиуса.
И наоборот, зная длину радиуса и координаты точки центра, можно определить координаты любой точки и начертить окружность.
Для чего необходимо рассчитывать уравнение окружности? Зная длину радиуса, который рассчитывается, исходя из данных уравнения, можно определить длину любой окружности и площадь круга по следующим формулам:
• l=2πr, где l – длина окружности, π=3,14
• S=πr2
Следует помнить, круг – это множество точек на плоскости координат, расположенных внутри окружности. Оптимальный способ рассчитать уравнение окружности – воспользоваться онлайн калькулятором. Это ускорит процесс и позволит быстро решить задачи по соответствующим формулам.
🔍 Видео
УРАВНЕНИЕ ОКРУЖНОСТИСкачать
Составляем уравнение окружностиСкачать
Составить уравнение окружности. Геометрия. Задачи по рисункам.Скачать
9 класс, 7 урок, Уравнение прямойСкачать
ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать
Составьте уравнение плоскости, проходящей через ось Оу и точку M (3;2;4).Скачать
начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать
Уравнение окружностиСкачать
Уравнение окружности | Геометрия 7-9 класс #90| ИнфоурокСкачать
Составить уравнения касательных к окружности (x-1)2+(y+3)2=40, перпендикулярных прямой 3x+y-4=0Скачать
№960. Какие из точек А (3; -4), В(1; 0), С(0; 5),Скачать
Уравнение окружности. Решение задач.Скачать
Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
#13. Задача с параметром: уравнение окружности!Скачать