Дано кубическое уравнение ax3 bx2 cx d 0 a 0

Корень кубического уравнения

Дано кубическое уравнение

a x 3 + b x 2 + cx + d = 0 (a0).

Известно, что у этого уравнения ровно один корень. Требуется его найти.

Входные данные

Четыре целых числа: a, b, c, d (-1000a, b, c, d1000).

Выходные данные

Выведите единственный корень уравнения с точностью не менее 6 знаков после десятичной точки.

Видео:ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбикомСкачать

ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбиком

Анализ алгоритма

Локализируем корень равнения f( x) = 0. Для этого найдем такое r, что f(- r) * f( r) r = 1, будем на каждом шаге увеличивать r в два раза пока не будет выполняться неравенство f(- r) * f( r) [-1; 1], [-2; 2], [-4; 4], [- 8 ; 8 ], …. пока не найдем интервал в котором лежит корень уравнения.

Положим l = — r. Далее на промежутке [ l; r] при помощи бинарного поиска (деления отрезка пополам) ищем корень.

Видео:Математика | Кубические уравнения по методу СталлонеСкачать

Математика | Кубические уравнения по методу Сталлоне

Реализация алгоритма

Объявим константу епсилон .

#define EPS 1e-12

Объявим функцию, вычисляющую кубический многочлен.

double f( double x)

return a*x*x*x + b*x*x + c*x + d;

Основная часть программы. Читаем входные данные.

Находим границы [ l; r], в которых лежит искомый корень. Положим изначально r = 1. Будем последовательно увеличивать r в два раза, пока искомый корень не будет находиться в промежутке [- r; r] (для этого необходимо, чтобы функция f( x) принимала противоположные по знаку значения на концах интервала). После чего положим l = — r.

while (f(r) * f(-r) >= 0) r *= 2;

При помощи бинарного поиска ищем корень уравнения f( x) = 0 на промежутке [ l; r].

Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Кубические уравнения. Общие понятия.

Кубическое уравнение — алгебраическое уравнение третьей степени, типа:

Видео:ОГЭ №21 Как решать кубическое уравнение x^3-6x^2-4x+24=0 Группировка и Деление столбиком многочленаСкачать

ОГЭ №21 Как решать кубическое уравнение x^3-6x^2-4x+24=0 Группировка и Деление столбиком многочлена

ax 3 + bx 2 + cx + d = 0 ,

причем a должно быть не равно 0.

Число х будет корнем кубического уравнения тогда, когда после его подстановки уравнение становится верным равенством. У каждого кубического уравнения с действительными коэффициентом будет по крайней мере один действительный корень, два других или тоже действительные, или будут комплексно сопряженной парой.

Для графического анализа кубического уравнения в декартовой системе координат используют кубическую параболу.

Выполнив преобразования есть возможность кубическое уравнение общего типа привести к каноническому типу. Выполним подстановку:

Дано кубическое уравнение ax3 bx2 cx d 0 a 0

Дано кубическое уравнение ax3 bx2 cx d 0 a 0

Дано кубическое уравнение ax3 bx2 cx d 0 a 0

Дано кубическое уравнение ax3 bx2 cx d 0 a 0

Точные методики для решения кубических уравнений:

Формула Кардано;

Возвратное уравнение;

Теорема Безу.

Также можно использовать численные методы решения уравнений.

Дано кубическое уравнение ax3 bx2 cx d 0 a 0

Дано кубическое уравнение ax3 bx2 cx d 0 a 0

Дано кубическое уравнение ax3 bx2 cx d 0 a 0

Деление выше приведенных тождеств друг на друга дает возможность сформулировать ещё несколько верных соотношений:

Видео:№4 Кубическое уравнение x^3-4х+3=0 2 способа решения Разложить на множители Безу Как решить уравнениСкачать

№4 Кубическое уравнение x^3-4х+3=0 2 способа решения Разложить на множители Безу Как решить уравнени

Решение кубических уравнений

Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

Видео:The Cubic Formula: Roots of the General Cubic EquationСкачать

The Cubic Formula: Roots of the General Cubic Equation

Решение двучленного кубического уравнения вида A x 3 + B = 0

Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0

Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.

Найти корни кубического уравнения 2 x 3 — 3 = 0 .

Решение

Необходимо найти х из уравнения. Запишем:

2 x 3 — 3 = 0 x 3 — 3 2 = 0

Необходимо применить формулу сокращенного умножения. Тогда получим, что

x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0

Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

Ответ: x = 3 3 2 6 .

Видео:✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис ТрушинСкачать

✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис Трушин

Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0

Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A

Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.

Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .

Решение

Уравнение является возвратным. Необходимо произвести группировку. Получим, что

5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0

Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :

5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10

Ответ:

x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1

Видео:Самый простой способ решить кубическое уравнениеСкачать

Самый простой способ решить кубическое уравнение

Решение кубических уравнений с рациональными корнями

Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .

Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .

Решение

3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0

Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.

Ответ: х = 0 .

Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :

A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2

Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что

2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0

Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36

Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида

1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0

Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .

Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:

x iКоэффициенты многочлена
2— 11129
— 0 . 52— 11 + 2 · ( — 0 . 5 ) = — 1212 — 12 · ( — 0 . 5 ) = 189 + 18 · ( — 0 . 5 ) = 0

2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9

После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.

Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .

Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

Видео:№2 Кубическое уравнение (x-1)^3+64=0 Как избавиться от третьей степени Как решить уравнение третьейСкачать

№2 Кубическое уравнение (x-1)^3+64=0 Как избавиться от третьей степени Как решить уравнение третьей

Решение кубических уравнений по формуле Кардано

Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .

После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .

Полученные p и q в формулу Кардано. Получим, что

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3

Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .

Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .

Отсюда следует, что

p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108

Производим подстановку в формулу Кордано и получим

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3

— 343 216 3 имеет три значения. Рассмотрим их ниже.

— 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2

Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2

Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6

Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2

Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .

Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .

Преобразуем при помощи формулы Кордано:

y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6

x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3

Ответ: x 1 = — 1 2 , x 2 , 3 = 3

При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.

🔍 Видео

Solving Cubic Equations (factoring)Скачать

Solving Cubic Equations (factoring)

Решение уравнения третьей степени x³-9x-12=0Скачать

Решение уравнения третьей степени x³-9x-12=0

🔻КУБИЧЕСКОЕ УРАВНЕНИЕ В ОГЭ. ЧТО ДЕЛАТЬ?Скачать

🔻КУБИЧЕСКОЕ УРАВНЕНИЕ В ОГЭ. ЧТО ДЕЛАТЬ?

cubic equation (ax3 + bx2 + cx + d = 0) roots formula | KVS tgt | maths |#trendingСкачать

cubic equation (ax3 + bx2 + cx + d = 0) roots formula | KVS tgt | maths |#trending

№3 Кубическое уравнение x^3=2x^2+3x Как разложить на множители Как решить уравнение третьей степениСкачать

№3 Кубическое уравнение x^3=2x^2+3x Как разложить на множители Как решить уравнение третьей степени

№5 Кубическое уравнение x^3-3x^2-4х+12=0 2 способа решения Разложить на множители Безу Как решить урСкачать

№5 Кубическое уравнение x^3-3x^2-4х+12=0 2 способа решения Разложить на множители Безу Как решить ур

Кубическое уравнение. #ShortsСкачать

Кубическое уравнение. #Shorts

Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители ДелениеСкачать

Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители Деление

Решить кубическое уравнение. Два способаСкачать

Решить кубическое уравнение. Два способа

Кубическое уравнение (пример)Скачать

Кубическое уравнение (пример)

Кубическое уравнение (каконическая форма)Скачать

Кубическое уравнение (каконическая форма)
Поделиться или сохранить к себе: