Дана система уравнений какая программа верно отражает решение данной системы уравнений

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Содержание
  1. Калькулятор онлайн. Решение системы двух линейных уравнений с двумя переменными. Метод подстановки и сложения.
  2. Немного теории.
  3. Решение систем линейных уравнений. Способ подстановки
  4. Решение систем линейных уравнений способом сложения
  5. Как можно решить систему уравнений в mathcad
  6. Решение системы уравнений с помощью математического пакета.
  7. Решение системы уравнений матричным способом в среде MathCAD
  8. Решение системы уравнений с помощью функции Given .. Find в среде MathCAD
  9. Решение системы уравнений с помощью функции Given .. Minerr в среде MathCAD.
  10. Создание базы данных «Расписание автобусов» с помощью пакета Access
  11. 2. Работа с массивами
  12. 1. Ранжированные переменные
  13. Рис. 1.1. Примеры использования ранжированных переменных
  14. 2. Работа с массивами
  15. Ранжированная переменная отличается от вектора (одномерного массива) тем, что невозможно использование ее отдельных значений. При необходимости иметь доступ к каждому значению переменной со многими компонентами она должна быть задана в виде одномерного (вектора) и двумерного (матрицы) массива.
  16. Как можно решить систему уравнений в mathcad
  17. Привет студент
  18. ПРОГРАММНАЯ РЕАЛИЗАЦИЯ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ
  19. тема: «ПРОГРАММНАЯ РЕАЛИЗАЦИЯ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ»
  20. Дана система уравнений какая программа верно отражает решение данной системы уравнений
  21. Где учитесь?
  22. 🎬 Видео

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Немного теории.

Видео:Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Видео:10 класс. Алгебра. Системы уравненийСкачать

10 класс. Алгебра. Системы уравнений

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )

Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

Видео:10 класс. Алгебра. Системы уравненийСкачать

10 класс. Алгебра. Системы уравнений

Как можно решить систему уравнений в mathcad

Видео:Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Решение системы уравнений с помощью математического пакета.

Решение системы уравнений матричным способом в среде MathCAD

Матрицей называется прямоугольная таблица, элементы которой принадлежат некоторому множеству.

Дана система уравнений:

Дана система уравнений какая программа верно отражает решение данной системы уравнений

Составляем матрицы А и В. А — матрица данной системы уравнений. В — матрица: столбец для данной системы уравнений.

Дана система уравнений какая программа верно отражает решение данной системы уравнений

По правилам матричного исчисления получаем уравнение: А * х = В. х — матрица: столбец из неизвестных.

Решая это уравнение, найдем решение системы.

Дана система уравнений какая программа верно отражает решение данной системы уравнений

Решение системы уравнений с помощью функции Given .. Find в среде MathCAD

При решении систем не линейных уравнений используется специальный вычислительный блок, открываемый служебным словом-директивой Given.

Дана система уравнений:

Дана система уравнений какая программа верно отражает решение данной системы уравнений

Начальное условие определяет начальное значение искомых переменных, которые задаются путем обычного присваивания. Для многих уравнений берется произвольное начальное значение.

Дана система уравнений какая программа верно отражает решение данной системы уравнений

Записываем служебное слово-директиву Given и задаем уравнения системы с помощью жирного знака равенства между левой и правой частями каждого уравнения.

Дана система уравнений какая программа верно отражает решение данной системы уравнений

Записываем функцию Find. Она возвращает значение одной или ряда переменных для точного решения. Функция Find используется, если решение реально существует.

Таким образом х1 = -0.723;

Дана система уравнений какая программа верно отражает решение данной системы уравнений

Решение системы уравнений с помощью функции Given .. Minerr в среде MathCAD.

Дана система уравнений

Дана система уравнений какая программа верно отражает решение данной системы уравнений

Начальное условие определяет начальное значение искомых переменных, которые задаются путем обычного присваивания:

Дана система уравнений какая программа верно отражает решение данной системы уравнений

Записываем служебное слово-директиву Given и задаем уравнения системы с помощью жирного знака равенства:

Записываем функцию Minerr. Она возвращает значение одной или ряда переменных для приблизительного решения. Функция Minerr пытается найти максимально приближение даже к несуществующему решению путем минимизации средней квадратичной погрешности решения.

Таким образом х1 = -0.723;

Дана система уравнений какая программа верно отражает решение данной системы уравнений

Видео:Решение системы уравнений методом обратной матрицы.Скачать

Решение системы уравнений методом обратной матрицы.

Создание базы данных «Расписание автобусов» с помощью пакета Access

База данных — это набор сведений, относящихся к определенной теме или задаче. БД является информационной моделью предметной области. Обращение к БД осуществляется с помощью систем управления базами данных (СУБД). СУБД Access является системой управления базами данных реляционного типа. Данные хранятся в такой базе в виде таблиц. С каждой таблицей могут быть связаны индексы (ключи), задающие нужные пользователю порядки на множестве строк. Таблицы могут иметь однотипные поля (столбцы), и это позволяет устанавливать между ними связи, выполнять операции реляционной алгебры.

Базы данных, как правило, обладают следующими признаками:

БД содержит некоторое множество данных, необходимых для решения конкретных задач многих пользователей (в том числе как реальных, так и потенциальных) или удовлетворения соответствующих информационных потребностей;

данные или информационные элементы в БД определенным образом структурированы и связаны между собой, при этом структура, состав данных и их содержание в БД не зависят от особенностей прикладных программ, используемых для управления БД;

данные представлены на машиночитаемых носителях в форме, пригодной для оперативного использования их с применением средств вычислительной техники, включая и системы управления базами данных.

Основные функции СУБД следующие:

Определение данных — определить, какая именно информация будет храниться в базе данных, задать свойства данных, их тип, а также указать, как эти данные связаны между собой.

Обработка данных — данные могут обрабатываться самыми различными способами. Можно выбирать любые поля, фильтровать и сортировать данные. Можно объединять данные с другой, связанной с ними, информацией и вычислять итоговые значения.

Управление данными — можно указать, кому разрешено знакомиться с данными, корректировать их или добавлять новую информацию.

Проектируя базу данных «Расписание автобусов», разбиваем ее на две связные таблицы. В первой таблице содержатся следующие поля: пункт назначения; время отправления; время в пути; количество посадочных мест. А во второй: время отправления; расстояние до пункта назначения.

При создании базы данных следует соблюдать следующие принцыпы:

· В каждой таблице не должно быть повторяющихся полей;

· В каждой таблице олжен быть уникальный идентификатор — ключ;

· Каждому значению первичного ключа должна соответствоватьдостаточная информация о сущности или объекте таблицы.

Создадим таблицы в режиме конструктора:

С тем чтобы Microsoft Access мог связать данные из разных таблиц каждая таблица должна содержать поле или набор полей, которые будут задавать индивидуальное значение каждой записи в таблице. Такое поле или набор полей называют основным ключом.

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

2. Работа с массивами

Одна из задач ЭВМ — автоматизация труда, повышение эффективности научных исследований. Основная особенность ЭВМ — ориентация на применение пользователями, не владеющими языками программирования. Такой подход позволяет преодолевать языковой барьер, отделяющий человека от машины. С этой целью разрабатываются пакеты прикладных программ, рассчитанные на широкие круги специалистов. К подобным пакетам относится MATHCAD.

MATHCAD — универсальный математический пакет, предназначенный для выполнения инженерных и научных расчетов. Основное преимущество пакета — естественный математический язык, на котором формируются решаемые задачи.

Объединение текстового редактора с возможностью использования общепринятого математического языка позволяет пользователю получить готовый итоговый документ. Пакет обладает широкими графическими возможностями, расширяемыми от версии к версии. Практическое применение пакета существенно повышает эффективность интеллектуального труда.

Цель работы: изучение выполнения основных операций с массивами, решения систем линейных и нелинейных уравнений в Mathcad.

Видео:Решение систем уравнений. Подготовка к ЕГЭ и ОГЭСкачать

Решение систем уравнений. Подготовка к ЕГЭ и ОГЭ

1. Ранжированные переменные

В математике часто возникает необходимость в задании некоторого ряда значений. Например, при вычислении Дана система уравнений какая программа верно отражает решение данной системы уравненийнужно сформировать ряд чисел от 1 до N с шагом 1 и перемножить их. Для создания таких рядов в Mathcad используются ранжированные переменные . В простом случае для создания ранжированной переменной используется выражение

Где Name – имя переменной, Nbegin – начальное значение переменной, Nend – ее конечное значение. Символ «…» (он вводится с клавиатуры знаком точка с запятой «;») указывает на изменение переменной в заданных границах. Если Nbegin <Nend,то шаг изменения переменной будет равен +1, в противном случае –1. Например, выражение a:=1…10 описывает ранжированную переменную a со значениями от 1 до 10.

Для создания ранжированной переменной общего вида используется выражение

где Step — заданный шаг изменения переменной (он должен быть положительным, если Nbegin <Nendи отрицательным в противном случае).

Например, выражение a:=1, 1.5, …10 описывает ранжированную переменную a со значениями от 1 до 10 с шагом 0,5.

Ранжированные переменные широко применяются для представления функций в виде таблиц вывода , а также для построения их графиков.

Если после некоторого выражения с ранжированной переменной поставить знак равенства, то после щелчка мышью на экране будет выведена таблица значений этого выражения. Такие таблицы называются таблицами вывода .

Необходимо учитывать следующее свойство таблиц вывода: если количество значений ранжированной переменной и, соответственно, строк в таблице вывода больше 16, то выводятся первые 16 строк. Если указатель мыши находится в пределах таблицы, то щелчок левой кнопкой мыши приводит к появлению вертикальной полосы прокрутки, позволяющей просмотреть все строки таблицы.

Помните, что задание ранжированных переменных эквивалентно заданию конечных циклов.

Примеры использования ранжированных переменных приведены на рисунке 1.1.

Дана система уравнений какая программа верно отражает решение данной системы уравнений

Видео:Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

Рис. 1.1. Примеры использования ранжированных переменных

Видео:Решение системы уравнений методом обратной матрицы - bezbotvyСкачать

Решение системы уравнений методом обратной матрицы - bezbotvy

2. Работа с массивами

Ранжированная переменная отличается от вектора (одномерного массива) тем, что невозможно использование ее отдельных значений. При необходимости иметь доступ к каждому значению переменной со многими компонентами она должна быть задана в виде одномерного (вектора) и двумерного (матрицы) массива.

Местоположение элемента массива задается одним индексом для вектора и двумя для матрицы. Индексы могут быть только положительными целыми числами . Для ввода индекса используется знак « [ » – прямая открывающая скобка.

Для задания массивов можно либо воспользоваться командой Matrices меню Math, либо нажать комбинацию клавиш Ctrl+V , либо щелкнуть на значке с изображением шаблона матрицы. Любое из этих действий вызывает появление диалогового окна, в котором надо указать количество строк m и столбцов n в массиве. При m=1 получим вектор-столбец, а при n=1 – вектор-строку.

В отношении массивов действуют те же правила присваивания и вывода, что и для обычных переменных. В частности, с помощью оператора присваивания можно создать массив заданного размера и заданного типа без ручного заполнения шаблона (рисунок 2.1.).

Дана система уравнений какая программа верно отражает решение данной системы уравнений

Рис. 2.1 Пример создания матриц без использования шаблонов матриц

Для работы с массивами Mathcad содержит ряд операторов и функций. Ниже представлены операторы для работы с векторами и матрицами. В таблице используются следующие обозначения: V – для векторов, M – для матриц, Z – для скалярных величин.

Видео:СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ

Как можно решить систему уравнений в mathcad

Дана система уравнений какая программа верно отражает решение данной системы уравнений

Линейное алгебраическое уравнение можно определить как уравнение, в которое искомые неизвестные входят в первой степени и между собой не перемножаются, т.е. в левой части линейного уравнения обычно записывается линейная комбинация искомых неизвестных, а в правой – свободный член. Совокупность таких уравнений образует систему линейных алгебраических уравнений (СЛАУ). Если СЛАУ имеет единственное решение, то она называется определённой. В случаях, когда решений бесконечное множество, СЛАУ называется неопределённой. Для решения определенных СЛАУ применяют методы Крамера, Гаусса, матричный, численные методы. Для неопределённой СЛАУ можно находить общее решение и какие-либо частные решения из их бесконечного множества.

В соответствии с ФГОС раздел «Линейная алгебра» модуля «Математика 1» входит в рабочие программы всех унифицированных образовательных математических кластеров дисциплины «Математика» [1]. В рабочие программы в обязательном порядке включаются индивидуальные домашние задания (ИДЗ) по всем разделам, в том числе и по разделу «Линейная алгебра». Решение СЛАУ «вручную» требует много времени, большого внимания, довольно громоздких преобразований и вычислений. Если допущена ошибка в решении СЛАУ, её бывает нелегко обнаружить. Целью применения пакета Mathcad в учебном процессе явилась потребность использования возможностей компьютеров для решения СЛАУ.

Квадратные СЛАУ с невырожденной основной матрицей системы, а также матричные уравнения в среде пакета Mathcad легко решаются матричным методом. Например, чтобы решить СЛАУ

Дана система уравнений какая программа верно отражает решение данной системы уравнений

достаточно задать основную матрицу системы

Дана система уравнений какая программа верно отражает решение данной системы уравнений,

столбец свободных членов

Дана система уравнений какая программа верно отражает решение данной системы уравнений,

записав произведение обратной матрицы A –1 на матрицу В и воспользовавшись клавишей «=», получить решение:

Дана система уравнений какая программа верно отражает решение данной системы уравнений.

Проверка правильности решения также осуществляется в одно действие умножением матрицы А на найденную матрицу решения:

Дана система уравнений какая программа верно отражает решение данной системы уравнений.

Можно предварительно записать найденную матрицу

Дана система уравнений какая программа верно отражает решение данной системы уравнений.

решения СЛАУ, тогда для проверки потребуется ввести с клавиатуры произведение Дана система уравнений какая программа верно отражает решение данной системы уравненийи клавишу «=»:

Дана система уравнений какая программа верно отражает решение данной системы уравнений.

Начиная с шестой версии Mathcad, квадратные СЛАУ с невырожденной матрицей можно решать, используя встроенную функцию lsolve(A,B): X:= lsolve(A,B), и сразу получить решение

Дана система уравнений какая программа верно отражает решение данной системы уравнений.

Для решения неопределенных СЛАУ в среде пакета Mathcad имеется несколько возможностей. Версия Mathcad 13/14 (в предыдущих версиях Mathcad основная матрица СЛАУ должна быть квадратной) позволяет находить одно из бесконечного множества частных решений СЛАУ при помощи встроенной функции lsolve(A,B) [2]. Например, так:

Дана система уравнений какая программа верно отражает решение данной системы уравненийlsolveДана система уравнений какая программа верно отражает решение данной системы уравнений,

если решается СЛАУ

Дана система уравнений какая программа верно отражает решение данной системы уравнений.

Замена знака равенства стрелкой из палитры символьных операций Symbolic возвращает частное решение в виде рациональных чисел:

Дана система уравнений какая программа верно отражает решение данной системы уравненийlsolveДана система уравнений какая программа верно отражает решение данной системы уравнений.

Но общее решение, применяя встроенную функцию lsolve(A,B), найти не удается.

Получить общее решение СЛАУ можно директивой solve палитры символьных операций Symbolic. Для этого надо в левую метку директивы solve записать матрицу из одного столбца и таким количеством строк, сколько уравнений в СЛАУ, отделяя свободные члены равенствами из палитры Boolean или вводя знаки «=» с клавиатуры вместе с клавишей Ctrl (получается «жирный» знак равенства). В правой метке следует перечислить имена всех неизвестных СЛАУ. Например,

Дана система уравнений какая программа верно отражает решение данной системы уравненийsolve,t,u,v Дана система уравнений какая программа верно отражает решение данной системы уравнений.

Возвращается общее решение, в котором t, u – базисные неизвестные, v – свободная неизвестная. Частное решение, возвращаемое встроенной функцией lsolve(A,B), соответствует свободной неизвестной Дана система уравнений какая программа верно отражает решение данной системы уравнений.

Недостаток применения директивы solve заключается в том, что в рассматриваемом примере базисные неизвестные выбираются единственным образом, хотя в качестве базисных неизвестных можно выбрать любую другую пару неизвестных, т.к. в рассматриваемом примере все миноры второго порядка основной матрицы системы отличны от нуля.

Обойти проблему можно, применяя предлагаемый наиболее близкий к классическому исследованию и решению СЛАУ алгоритм.

Ввести основную матрицу СЛАУ, обозначив ее A, например. В задаче исследовать СЛАУ на совместность задать расширенную матрицу системы А1.

Ввести столбец свободных членов, обозначив его, например, В.

Найти ранг основной матрицы системы: rank(A). Для СЛАУ больших размеров найти rank(A1). Если rank(A)≠rank(A1), СЛАУ несовместна, т.е. решений не имеет, и на этом исследование и решение СЛАУ заканчивается.

Если rank(A) = rank(A1), выбрать отличный от нуля базисный минор F (порядок базисного минора равен рангу основной матрицы СЛАУ) и базисные неизвестные, коэффициенты при которых вошли в базисный минор.

Оставшиеся свободные неизвестные перенести к свободным членам и ввести получившийся столбец С как функцию свободных неизвестных.

Получить общее решение, умножив обратную матрицу Дана система уравнений какая программа верно отражает решение данной системы уравненийна матрицу С.

Присвоив свободным неизвестным числовые значения, получить соответствующее частное решение.

Для проверки надо матрицу А умножить на матрицу-столбец В1 решения, составленного из свободных и базисных неизвестных или из значений неизвестных частного решения.

Применение алгоритма рассмотрим на предыдущем примере

Дана система уравнений какая программа верно отражает решение данной системы уравнений.

1. Дана система уравнений какая программа верно отражает решение данной системы уравнений

4. Выберем базисными неизвестными Дана система уравнений какая программа верно отражает решение данной системы уравненийи Дана система уравнений какая программа верно отражает решение данной системы уравнений. Тогда

Дана система уравнений какая программа верно отражает решение данной системы уравнений

Определитель матрицы F отличен от нуля: Дана система уравнений какая программа верно отражает решение данной системы уравнений.

5. Составим матицу С:

Дана система уравнений какая программа верно отражает решение данной системы уравнений.

6. Получим общее решение

Дана система уравнений какая программа верно отражает решение данной системы уравнений.

7. Пусть свободная неизвестная

Дана система уравнений какая программа верно отражает решение данной системы уравнений.

При этом значения базисных неизвестных Дана система уравнений какая программа верно отражает решение данной системы уравненийи Дана система уравнений какая программа верно отражает решение данной системы уравненийполучатся умножением

Дана система уравнений какая программа верно отражает решение данной системы уравнений.

8. Составим столбец

Дана система уравнений какая программа верно отражает решение данной системы уравнений.

Тогда Дана система уравнений какая программа верно отражает решение данной системы уравнений,

или сделаем проверку для частного решения:

Дана система уравнений какая программа верно отражает решение данной системы уравнений

и получим Дана система уравнений какая программа верно отражает решение данной системы уравнений.

Преимущества предлагаемого алгоритма заключаются в том, что решение СЛАУ осуществляется не формально, когда возвращается единственный вариант ответа. В процессе реализации алгоритма исследуются основные свойства СЛАУ: ранги основной и расширенной матриц системы, выбираются базисные неизвестные и свободные неизвестные, возвращаются общие решения при любом допустимом наборе базисных и свободных неизвестных. Заменяя столбцы основной матрицы СЛАУ столбцом свободных членов со свободными неизвестными, можно получать общее решение и методом Крамера, о чём в учебной литературе упоминаний нет. Вот как это можно осуществить для СЛАУ

Дана система уравнений какая программа верно отражает решение данной системы уравнений,

решенной выше матричным методом:

Дана система уравнений какая программа верно отражает решение данной системы уравнений;

Дана система уравнений какая программа верно отражает решение данной системы уравнений.

Таким образом, методом Крамера получено общее решение Дана система уравнений какая программа верно отражает решение данной системы уравнений.

Видео:Системы уравнений методы решения. Системы уравнений высших степеней.Скачать

Системы уравнений методы решения.  Системы уравнений высших степеней.

Привет студент

ПРОГРАММНАЯ РЕАЛИЗАЦИЯ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Приднестровский государственный университет им. Т.Г. Шевченко

Кафедра программного обеспечения вычислительной техники

и автоматизированных систем

КУРСОВАЯ РАБОТА

«Информатика и программирование»

Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

тема: «ПРОГРАММНАЯ РЕАЛИЗАЦИЯ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ»

студентка группы ИТ13ДР62ИС1

Арабаджи Федор Иванович

ЗАДАНИЕ

на курсовую работу по дисциплине

«ПРОГРАММИРОВАНИЕ»

Студента группы ________ — ___________________

утверждена протоколом кафедры _________ № _____ от «____» ____________ 20___ г.

Цель курсовой работы:

Задачи курсовой работы:

Результаты курсовой работы:

График обязательных консультаций:

Дата сдачи записки на регистрацию «_____» __________20__ г.

Дата защиты курсовой работы «_____» __________20__ г.

Задание принял к исполнению «_____» __________20__ г. ___________/________________/

Руководитель работы ______________________ /________________/

СОДЕРЖАНИЕ

2 ОПИСАНИЕ ПРЕДМЕТНОЙ ОБЛАСТИ………………………………….

2.3 Метод обратной матрицы…………………………………………….

3 РУКОВОДСТВО ПРОГРАММИСТА………………………………………..

3.1 Введение и общие сведения……………………………………………

3.2 Структура программного продукта………………………………….

3.4 Описание исходных текстов программного продукта…………….

3.5 Аппаратная и программная часть…………………………………….

3.6 Результаты тестирования и опытной эксплуатации………………….

4 РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ……………………………………….

4.3 Установка программного продукта……………………………….…..

4.4 Запуск и работа с программным продуктом…………………….……

4.5 Удаление программного продукта…………………………………….

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ…………………………….

Введение

Последние десятилетия характеризуются бурным развитием вычислительной техники. Расширяются области применения вычислительных машин и совершенствуются методы их использования. Созданы универсальные языки программирования и разработаны мощные операционные системы.

Сейчас невозможно представить себе какую-либо область деятельности, обходящуюся без применения компьютерной техники.

Компьютеры используются при проведении различных инженерных расчётов, при решении экономических задач, в процессе управления производством, при получении оценок производственных ситуаций и во многих других случаях.

Решение систем линейных алгебраических уравнений является одной из основных задач линейной алгебры. Эта задача имеет важное прикладное значение при решении научных и технических проблем. Кроме того, является вспомогательной при реализации многих алгоритмов вычислительной математики, математической физики, обработки результатов экспериментальных исследований.

Алгебраическое уравнение называется линейным, если оно содержит переменные только в первой степени и не содержит произведений переменных.

Решение систем линейных алгебраических уравнений является одной из фундаментальных задач математики. В частности, она возникает при решении краевых задач для дифференциальных и интегральных уравнений, к которым сводятся реальные проблемы техники, физики, экономики, математики и др. Подобные программы довольно популярны, в особенности среди пользователей глобальной сети Интернет. Они могут быть широко применимы в среде образовательных учреждений. Например, преподавателю необходимо проверить десятки работ студентов в короткий срок или составить варианты контрольных работ, помочь студенту в решении систем линейных уравнений и в их объяснении, так как программа будет содержать краткую теоретическую справку.

Чтобы быстро справится с решением системы линейных уравнений, можно воспользоваться средствами вычислительной техники – написать программу на языке программирования.

Учитывая современные возможности, можно облегчить процесс решения систем линейных уравнений. Данную задачу можно выполнить программно для упрощения и автоматизации процесса решения систем линейных уравнений методом Гаусса, методом Крамера, а также методом обратной матрицы с помощью Windows-приложения, реализованного средствами языка высокого уровня С#.

Данный продукт найдёт своё применение в сфере образования. В частности, например, учащиеся с помощью данной программы смогут проверить правильность решения систем линейных уравнений.

1 постановка задачи

В данной курсовой работе необходимо создать программный продукт при помощи Windows Forms на языке C#, который представлял бы возможность:

  • ввода данных с клавиатуры или считывания их из файла с представлением права выбора пользователю;
  • решения системы линейных уравнений;
  • запись данных в файл;
  • доступа к файлу, куда записываются входные и выходные данные.

Программа должна выполнять решение систем линейных уравнений методом Гаусса, методом Крамера или методом обратной матрицы.

Окно программы должно содержать:

  • пункты меню: Файл, Правка, Примеры, Справка, О программе;
  • поле выбора метода решения системы линейных уравнений;
  • поле выбора количества уравнений в системе;
  • поля для входных и выходных данных;
  • кнопки операций.

Входными данными являются числа вещественного типа, введенные с клавиатуры или считанные из файла. Программа распознает входные данные и производит решение системы одним из выбранных методов.

Результатом работы программы служит отображение получившейся матрицы или определителя (в зависимости от выбранного способа) и корни системы уравнений, полученные в результате решения системы.

2 описание предметной области

Решение систем линейных алгебраических уравнений – одна из фундаментальных задач математики. Система m линейных алгебраических уравнений с n неизвестными (или, линейная система, также употребляется аббревиатура СЛАУ) в линейной алгебре — это система уравнений вида (Рисунок 1)

Рисунок 1- Система уравнений

В системе уравнений (Рисунок 1) m является количеством уравнений, а n количество неизвестных. x1, x2,xn это неизвестные, которые надо определить. a11, a12, … amn коэффициенты системы, а b1, b2, … bm свободные члены. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно.

Существуют следующие способы решения систем линейных уравнений:

– метод обратной матрицы.

2.1 Метод Гаусса

Метод Гаусса – классический метод решения системы линейных алгебраических уравнений. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних (по номеру), находятся все переменные системы. Хотя в настоящее время данный метод повсеместно называется методом Гаусса, он был известен и до К.Ф. Гаусса. Первое известное описание данного метода приведено в китайском трактате «Математика в девяти книгах», составленном между первым веком до н. э. и вторым веком н. э.

Далее приведено более подробное описание метода. Пусть исходная система будет вида (Рисунок 2):

Рисунок 2 — Исходная система уравнений

На рисунке 2.1 указана матрица A, вектор x и вектор b. Матрицей А называется основная матрица системы, вектором x – столбец неизвестных, вектором – столбец свободных членов.

Рисунок 2.1 — Матрица A

Согласно свойству элементарных преобразований над строками, основную матрицу этой системы можно привести к треугольному (или ступенчатому) виду (эти же преобразования нужно применять к столбцу свободных членов), что показано на рисунке 2.2

Рисунок 2.2 — Матрица треугольного вида

При этом будем считать, что базисный минор (ненулевой минор максимального порядка) основной матрицы находится в верхнем левом углу, то есть в него входят только коэффициенты при переменных xj1, … , xjr.

Тогда переменные xj1, … , xjr называются главными переменными. Все остальные называются свободными.

Если хотя бы одно число βi ≠ 0, где i > r, то рассматриваемая система несовместна, то есть у неё нет ни одного решения.

Пусть βi ≠ 0 для любых i > r. Перенесём свободные переменные за знаки равенств и поделим каждое из уравнений системы на свой коэффициент при самом левом x (см. рисунок 2.3):

Рисунок 2.3- Несовместная система

Если свободным переменным системы (рисунок 2.3) придавать все возможные значения и решать новую систему относительно главных неизвестных снизу вверх (то есть от нижнего уравнения к верхнему), то мы получим все решения этой системы линейных алгебраических уравнений. Так как эта система получена путём элементарных преобразований над исходной системой, то по теореме об эквивалентности при элементарных преобразованиях системы (рисунок 2) и (рисунок 2.3) эквивалентны, то есть множества их решений совпадают.

2.2 Метод Крамера

Метода Крамера – способ решения систем линейных алгебраических уравнений с числом уравнений равным числу неизвестных с ненулевым главным определителем матрицы коэффициентов системы, причём для таких уравнений решение существует и единственно. Назван по имени Габриэля Крамера, предложившего этот метод в 1750 г.

Рисунок 2.4 — Система линейных уравнений

Для системы n линейных уравнений (рисунок 2.4) с n неизвестными с определителем матрицы системы ≠ 0, решение записывается по формуле показанном на рисунке 2.5:

Рисунок 2.5 — Нахождение решения

i-ый столбец матрицы системы заменяется столбцом свободных членов.

2.3 Метод обратной матрицы

Метод обратной матрицы – метод решения системы линейных алгебраических уравнений, использующий понятие обратной матрицы.

Обратная матрица – такая матрица A −1 , при умножении на которую, исходная матрица A даёт в результате единичную матрицу E (формула 2.6).

Обратная матрица находится по формуле 2.7.

В формуле 2.7 det обозначает определитель.

Если необходимо решить систему линейных уравнений Ax = b, где b – ненулевой вектор, в который входят свободные члены, x – искомый вектор. Если обратная матрица A -1 существует, то x = A -1 b. В противном случае либо размерность пространства решений больше нуля, либо их нет вовсе.

3 ПРОграммная реализация решения задачи

3.1 Введение и общие сведения

Одна из основных задач линейной алгебры – решение систем линейных алгебраических уравнений. Эта задача имеет важное прикладное значение при решении научных и технических проблем. Кроме того, является вспомогательной при реализации многих алгоритмов вычислительной математики, математической физики, обработки результатов экспериментальных исследований.

Программа «MATrix» предназначена для решения систем линейных алгебраических уравнений тремя методами:

  • методом Гаусса;
  • методом Крамера;
  • методом обратной матрицы.

Данный программный продукт значительно упрощает получение корней систем линейных уравнений.

3.2 Структура программного продукта

В процессе разработки программного продукта были реализованы следующие формы:

  • Formcs – форма приветсвия;
  • MATrix.cs – форма, обеспечивающая решение систем линейных алгебраических уравнений методом Гаусса, методом Крамера или методом обратной матрицы по выбору пользователя;
  • About.cs – форма, содержащая информацию о программном продукте.

На рисунке 3.1 изображена функциональная схема.

Видео:Система с тремя переменнымиСкачать

Система с тремя переменными

Дана система уравнений какая программа верно отражает решение данной системы уравнений

3.14159.. e Число e — основание натурального логарифма, примерно равно

2,7183.. i Комплексная единица oo Символ бесконечности — знак для бесконечности

© Контрольная работа РУ — калькуляторы онлайн

Видео:Решение системы трех уравнений по формулам КрамераСкачать

Решение системы трех уравнений по формулам Крамера

Где учитесь?

Для правильного составления решения, укажите:

🎬 Видео

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

решаем систему уравнений методом подстановкиСкачать

решаем систему уравнений методом подстановки

Примеры решения системы уравнений с двумя переменными 3 часть.Скачать

Примеры решения системы уравнений с двумя переменными 3 часть.
Поделиться или сохранить к себе: