Co2 как окислитель уравнения реакции

Оксид углерода (II)

Co2 как окислитель уравнения реакции

Оксид углерода (II)

Строение молекулы и физические свойства

Оксид углерода (II) («угарный газ») – это газ без цвета и запаха. Сильный яд. Небольшая концентрация угарного газа в воздухе может вызвать сонливость и головокружение. Большие концентрации угарного газа вызывают удушье.

Строение молекулы оксида углерода (II) – линейное. Между атомами углерода и кислорода образуется тройная связь, за счет дополнительной донорно-акцепторной связи:

Co2 как окислитель уравнения реакции

Способы получения

В лаборатории угарный газ можно получить действием концентрированной серной кислоты на муравьиную или щавелевую кислоты:

НСООН → CO + H2O

В промышленности угарный газ получают в газогенераторах при пропускании воздуха через раскаленный уголь:

CO2 + C → 2CO

Еще один важный промышленный способ получения угарного газа — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

C 0 + H2 + O → C +2 O + H2 0

Угарный газ в промышленности также можно получать неполным окислением метана:

Химические свойства

Оксид углерода (II) – несолеобразующий оксид . За счет углерода со степенью окисления +2 проявляет восстановительные свойства.

1. Угарный газ горит в атмосфере кислорода . Пламя окрашено в синий цвет:

2. Оксид углерода (II) окисляется хлором в присутствии катализатора или под действием света с образованием фосгена. Фосген – ядовитый газ.

3. Угарный газ взаимодействует с водородом при повышенном давлении . Смесь угарного газа и водорода называется синтез-газ. В зависимости от условий из синтез-газа можно получить метанол, метан, или другие углеводороды.

Например , под давлением больше 20 атмосфер, при температуре 350°C и под действием катализатора угарный газ реагирует с водородом с образованием метанола:

4. Под давлением оксид углерода (II) реагирует с щелочами. При этом образуется формиат – соль муравьиной кислоты.

Например , угарный газ реагирует с гидроксидом натрия с образованием формиата натрия:

CO + NaOH → HCOONa

5. Оксид углерода (II) восстанавливает металлы из оксидов .

Например , оксид углерода (II) реагирует с оксидом железа (III) с образованием железа и углекислого газа:

Оксиды меди (II) и никеля (II) также восстанавливаются угарным газом:

СО + CuO → Cu + CO2

СО + NiO → Ni + CO2

6. Угарный газ окисляется и другими сильными окислителями до углекислого газа или карбонатов.

Например , пероксидом натрия:

Видео:Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.Скачать

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.

Взаимодействие углекислого газа с веществами и его химические свойства

Co2 как окислитель уравнения реакции

Общие химические свойства углекислого газа: CO2 инертен, то есть химически не активен; при попадании в водный раствор легко вступает в реакции.
Большинство кислотных оксидов устойчивы к высоким температурам, но углекислота при их воздействии восстанавливается.

Видео:8 класс. ОВР. Окислительно-восстановительные реакции.Скачать

8 класс. ОВР. Окислительно-восстановительные реакции.

Взаимодействие с другими веществами:

1) Углекислота относится к кислотным оксидам, то есть в сочетании с водой образуется кислота. Однако угольная кислота неустойчива и распадается сразу. Эта реакция имеет обратимый характер:

Диоксид углерода + вода ↔ угольная кислота

Co2 как окислитель уравнения реакции Молекула угольной кислоты

2) При взаимодействии углекислого газа и соединений азота с водородом (аммиаком) в водном растворе происходит разложение до углеаммонийной соли.

Аммиак + углекислота = гидрокарбонат аммония

Co2 как окислитель уравнения реакции Углеаммонийная соль

Полученное вещество часто используется в приготовлении хлеба и различных кондитерских изделий.

3) Ход некоторых реакций должен поддерживаться высокими температурами. Примером является производство мочевины при 130 °C и давлении 200 атм., схематически изображаемое так:

Аммиак + диоксид углерода → карбамид + вода

Также под воздействием температуры около 800 градусов протекает реакция образования оксида цинка:

Цинк + двуокись углерода → оксид цинка + оксид углерода

4) Возможно уравнение с гидроксидом бария, при котором выделяется средняя соль.

Гидроксид бария + углекислота = карбонат бария + оксид водорода.

Применяется для регулировки калориметров по теплоемкости. Также вещество используют в промышленности для производства красных кирпичей, синтетических тканей, фейерверков, гончарных изделий, плитки для ванн и туалетов.

5) Углекислый газ выделяется при реакциях горения.

Метан + кислород = углекислота + вода (в газообразном состоянии) + энергия

Этилен + кислород = диоксид углерода + оксид водорода + энергия

Этан + кислород = двуокись углерода + вода + энергия

Этанол + кислород = вода + углекислота + энергия

6) Газ не поддерживает горения, этот процесс возможен только с некоторыми активными металлами, например, магнием.

Магний + углекислота = углерод + оксид магния.

MgO активно применяется при производстве косметических средств. Вещество используют в пищевой промышленности как пищевую добавку.

7) Двуокись углерода реагирует с гидроксидами с получением солей, которые существуют в двух формах, как карбонаты и бикарбонаты. Например, углекислый газ и гидроксид натрия, согласно формуле, образуют гидрокарбонат Na:

диоксид углерода + гидроксид натрия → гидрокарбонат натрия.

Или же при большем количестве NaOH образуется карбонат Na с образованием воды:

Диоксид углерода + гидроксид натрия → карбонат натрия + вода

Кислотно-щелочные реакции углекислоты используются на протяжении веков для затвердевания известкового раствора, что может быть выражено простым уравнением:

Гидроксид кальция + двуокись углерода → карбонат кальция + оксид водорода

Co2 как окислитель уравнения реакцииВ зелёных растениях играет важную роль в процессе фотосинтеза:

Диоксид углерода + вода → глюкоза + кислород.

9) Химические свойства углекислоты используются в промышленности при производстве соды, суть этого процесса можно выразить суммарным уравнением:

Хлорид натрия + Диоксид углерода + аммиак + вода → гидрокарбонат натрия + хлорид аммония

10) Фенолят Na разлагается при взаимодействии с углекислым газом, при этом малорастворимый фенол выпадает в осадок:

Фенолят натрия + двуокись углерода + оксид водорода = фенол + гидрокарбонат натрия

11) Пероксид натрия и углекислый газ, взаимодействуя, образуют среднюю соль карбоната Na с выделением кислорода.

Пероксид натрия + углекислота → карбонат натрия + кислород

Co2 как окислитель уравнения реакции Колба с пероксидом натрия

Образование углекислоты происходит при растворении в воде кальцинированной соды (стиральной соды).

Гидрокарбонат натрия + вода → углекислота + вода + гидроксид натрия
При этой реакции (гидролиз по катиону) образуется сильнощелочная среда.

12) CO2 вступает в реакцию с гидроксидом калия, последний образуется путем электролиза хлористого калия.

Гидроксид калия + углекислота → карбонат калия + вода

13) Газ в силу своего строения не реагирует с благородными газами, то есть гелием, неоном, аргоном, криптоном, ксеноном, радоном, оганесоном.

Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

Заключение

Мы привели большую часть химических реакций, в которых участвует CO2. Ученые всего мира пытаются решить проблему увеличения концентрации углекислоты в воздухе, не без помощи реакций с другими веществами, которые известны химикам. А какие химические формулы взаимодействия углекислого газа знаете вы?

Co2 как окислитель уравнения реакции

Co2 как окислитель уравнения реакции

Co2 как окислитель уравнения реакции

Co2 как окислитель уравнения реакции

Co2 как окислитель уравнения реакции

Co2 как окислитель уравнения реакции

Co2 как окислитель уравнения реакции

Спасибо, что указали на ошибку. Исправили.

Скажите пожалуйста На производстве углекислоты мы заменили на комрессорном агрегате старый охладитель углекислого газа с трубками из нержавейки на новый, с латунными трубками. То есть в начале этих трубок охладителя Углекислый газ будет под давлением 16 бар и температурой 130 градусов, на выходе + 10 градусов, всё это с выделением конденсата. Не будет ли какой-то непредвиденной реакции в зоне взаимодействия уг. газа, латуни и воды? Охладитель работает хорошо, но не разрушаться ли трубки от коррозии?

Необходимо определиться для начала, откуда поступает к вам углекислый газ, какие еще газы поступают вместе с углекислым газом в охладитель. У нас, в энергетическом производстве, на определенном участке пароводяного тракта установлены латунные трубки, в которых происходит нагрев теплоносителя. Мы производим замеры растворенного кислорода в конденсате перед подачей его на подогреватели с трубками из латуни. В нашем случае большая концентрация кислорода в воде, при нагревании последней, приводит к коррозии латунных трубок.

Здравствуйте Вячеслав. Углекислый газ поступает с брожения пивного сусла. Углекислый газ (у.г.) сжимается компрессором и при t 130* подаётся на теплообменник (т.о.). хладоносителем t -4*. На латунных стенках т.о. образуется конденсат который отделяется от у.г. в конденсатоотводчике. Содержание кислорода в конденсате не должно быть большим, если вообще не минимальное. После установки нового т.о. конденсатоотводчик стал забиваться непонятной серой массой похожей на мокрый графит. Компрессор разбирали — проблема не в нём (думали одно из графитовых колец размолотило). Разбирать и осматривать т.о. более трудоёмкий процесс.

Затрудняюсь вам ответить на этот вопрос, надо изучать состав газа на входе в теплообменник. Возможно образование угольной кислоты в теплообменнике. А при наличии кислорода кислота может вызывать коррозию, но это не точно.

Видео:Окислительно-восстановительные реакции с нуля!| Екатерина Строганова | 100балльный репетиторСкачать

Окислительно-восстановительные реакции с нуля!| Екатерина Строганова | 100балльный репетитор

Углерод

В XVII – XVIII вв., в период расцвета теории флогистона, считали , что уголь полностью состоит из этого таинственного вещества: ведь при горении угля почти не образуется твердого остатка. И только А.Л.Лавуазье, изучая горение угля, пришел к выводу, что уголь – всего лишь простое вещество. Лавуазье назвал новый элемент Carboneum вместо старого латинского названия carbone pur – «чистый уголь», которым долгое время пользовались химики.

Алмаз. При слове «алмаз» сразу же вспоминаются окутанные завесой тайны истории, повествующие о поисках сокровищ. Когда-то люди, охотившиеся за алмазами, и не подозревали, что предметом их страсти является кристаллический углерод – тот самый углерод, который образует сажу, копоть и уголь. Впервые это доказал Лавуазье. Он поставил опыт по сжиганию алмаза, используя собранную специально для этого зажигательную машину. Оказалось, алмаз сгорает на воздухе при температуре около 700 о С, не оставляя твердого остатка, как и обычный древесный уголь.

Co2 как окислитель уравнения реакцииНеобработанные алмазы

В структуре алмаза каждый атом углерода имеет четырех соседей, которые расположены от него на равных расстояниях в вершинах тетраэдра. Весь кристалл представляет собой единый трёхмерный каркас. С этим связаны многие свойства алмаза, в частности его самая высокая среди минералов твёрдость. Она-то и дала камню имя, которое происходит от греч. «адамас» — «твердый, непреклонный, несокрушимый».

Кристаллы алмаза, особенно огранённые (бриллианты), очень сильно преломляют свет. Этим и обусловлена знаменитая «игра бриллиантов».

В России ювелирные алмазы вошли в моду в середине XVIII в. Ими украшали не только царские диадемы и скипетры, но также брелки, застежки, трости, табакерки и даже обувь! Мелкие алмазы используются для резки стекла и металлов, служат наконечниками свёрл, резцов. Алмазный порошок издревле применяют для полировки и огранки драгоценных камней.

Графит. В древности графит считали одним из минералов свинца, возможно из-за того, что, подобно свинцу, он оставляет на бумаге след (поэтому из графита делают грифели). В XVIII в. К. В. Шееле доказал, что графит представляет собой минеральный уголь». Родственные отношения между алмазом и графитом были подробно изучены коллегой Лавуазье французским химиком Луи Бернаром Гитоном де Морво: при осторожном нагревании алмаза без доступа воздуха он получил порошок графита.

Co2 как окислитель уравнения реакцииГрафит

Графит – мягкое вещество серого цвета. Атомы углерода связаны в нем в плоские слои, состоящие из соединенных рёбрами шестиугольников, наподобие пчелиных сот. Каждый атом в таком слое имеет трёх соседей. Для образования трёх ковалентных связей атом предоставляет три электрона, а четвертый электрон, образуя π-связи, делокализован по всему кристаллу. Этим объясняются такие свойства графита, как металлический блеск и электропроводность.

Поскольку электронные облака атомов из соседних плоских слоев перекрываются, между слоями возникают слабые связи, которые рвутся даже при незначительной нагрузке. Для того чтобы убедиться, достаточно провести карандашом по листу бумаги: на листе останется след из чешуек графита.

Графит широко применяется в технике. Графитовый порошок используется для изготовления минеральных красок, а также в качестве смазочного материала – между отдельными слоями графита взаимодействие настолько слабое, что возникает скольжение. Графитовые стержни служат электродами во многих электрохимических процессах; из смеси графита с глиной изготовляют тигли для плавки металлов. Блоки из особо чистого графита являются основным материалом для создания атомных реакторов. В первом отечественном реакторе, например, было использовано 450 т графита.

В отсутствии кислорода графит и алмаз выдерживают нагревание до высоких температур: эти вещества переходят в газовую фазу в виде молекул Сn лишь при 3000 о С. Поэтому графит используют как теплозащитный материал для головных частей ракет.

Химические свойства углерода

При обычной температуре углерод малоактивен. При нагревании он реагирует со многими простыми и сложными веществами.

Углерод может быть как окислителем, так и восстановителем, поэтому в соединениях может проявлять положительную и отрицательную степень окисления.

  1. Углерод как восстановитель

Как и другие неметаллы, углерод проявляет свойства при взаимодействии с кислородом и другими более электроотрицательными элементами.

а) углерод горит на воздухе с выделением большого количества тепла. При этом образуется СО2:

При недостатке кислорода образуется СО:

б) раскаленный углерод реагирует с парами серы, легко соединяется с хлором и другими галогенами:

в) так как для углерода в отличие от других неметаллов весьма характерны восстановительные свойства, он может восстанавливать оксиды металлов и неметаллов:

2C + PbO2 = Pb + 2CO

Это свойство углерода широко используется в металлургии.

г) при пропускании через раскаленный уголь водяного пара получается смесь оксида углерода (II) с водородом, или водяной газ:

  1. Углерод как окислитель

Углерод проявляет окислительные свойства при взаимодействии с металлами и водородом.

а) углерод взаимодействует с металлами, образуя карбиды металлов:

В промышленности карбид кальция получают при взаимодействии углерода с негашеной известью СаО, которую получают из известняка СаСО3:

CaO + 3C = CaC2 + CO↑

б) углерод реагирует с водородом, при этом образуется метан СН4:

Кислородные соединения углерода

Оксид углерода (II) СО, или угарный газ. Он не имеет запаха и цвета, плохо растворим в воде, токсичен.

В лаборатории его получают разложением муравьиной кислоты при нагревании в присутствии серной кислоты или фосфорного ангидрида:

Углерод в угарном газе имеет степень окисления +2, поэтому для него характерны реакции присоединения, в которых он является восстановителем.

Угарный газ горит с образованием углекислого газа и выделением тепла:

Он реагирует с хлором на свету в присутствии катализатора – угля. При этом образуется фосген:

Фосген – ядовитый газ, применялся как отравляющее средство в первую мировую войну.

Восстановительные свойства угарного газа используются в металлургии для получения металлов из руд:

CO + FeO = CO2 + Fe

Оксид углерода (IV), или углекислый газ СО2.

Он бесцветен, не имеет запаха, тяжелее воздуха, плохо растворяется в воде. Он образуется при:

а) горении углерода в избытке кислорода:

б) разложении карбонатов и гидрокарбонатов при нагревании:

Оксид углерода (IV) не поддерживает горения. Только некоторые активные металлы горят в нем, так как отнимают кислород:

2Mg + CO2 = 2MgO + C

Оксид углерода (IV) – кислотный оксид. Он реагирует с основаниями, основными оксидами, с водой. При взаимодействии с водой образуется угольная кислота:

Co2 как окислитель уравнения реакцииМрамор (карбонат кальция)

Угольная кислота. Как двухосновная кислота она диссоциирует по двум ступеням и поэтому образует два ряда солей – нормальные и кислые соли (карбонаты и гидрокарбонаты). Примеры солей: гидрокарбонаты – NaHCO3, Mg(HCO3)2; карбонаты — Na2CO3, CaCO3.

Карбонаты щелочных металлов и аммония хорошо растворимы в воде. Карбонаты щелочноземельных металлов в воде практически нерастворимы. Карбонаты алюминия, хрома, железа не могут существовать в водных растворах, так как подвергаются полному гидролизу, в результате которого выпадает осадок соответствующего гидроксида и выделяется углекислый газ.

Все карбонаты, кроме карбонатов щелочных металлов, при нагревании разлагаются на оксид металла и углекислый газ:

Качественной реакцией на карбонаты и гидрокарбонаты является их взаимодействие с растворами кислот, при котором выделяется углекислый газ:

При пропускании СО2 через известковую воду Са(ОН)2 выпадает осадок СаСО3 (раствор мутнеет):

Са(ОН)2 + СО2 = СаСО3↓ + Н2О (качественная реакция на СО2)

Скачать:

Скачать бесплатно реферат на тему: «Углерод» Углерод.doc (246 Загрузок)

Скачать бесплатно реферат на тему: «Углерод в природе» Углерод-в-природе.doc (269 Загрузок)

Скачать бесплатно реферат на тему: «Подгруппа углерода» Подгруппа-углерода.-Углерод.docx (214 Загрузок)

Скачать бесплатно реферат на тему: «Углеродные нанотрубки» Углеродные-нанотрубки.doc (226 Загрузок)

Скачать бесплатно реферат на тему: «Алмаз-минерал» Алмаз-минерал.docx (243 Загрузки)

Скачать бесплатно реферат на тему: «Алмаз-графит» Алмаз-графит.docx (240 Загрузок)

Скачать бесплатно реферат на тему: «Уголь» Уголь.docx (224 Загрузки)

Скачать рефераты по другим темам можно здесь

*(на изображении записи фотография бриллианта)

Похожее

Один ответ на “Углерод”

Все интересно написано , в статье об углероде не много не понятно для чего там просто написан Na2CO3

Добавить комментарий Отменить ответ

Co2 как окислитель уравнения реакции

Репетитор по химии. Занятия проходят онлайн по Скайпу. По всем вопросам пишите в Ватсапп: +7 928 285 70 42

🎦 Видео

Химия 9 класс — Как определять Степень Окисления?Скачать

Химия 9 класс — Как определять Степень Окисления?

ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 классСкачать

ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 класс

Окислительно-восстановительные реакции. 1 часть. 9 класс.Скачать

Окислительно-восстановительные реакции. 1 часть. 9 класс.

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по ХимииСкачать

Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по Химии

Учимся составлять электронный баланс/овр/8классСкачать

Учимся составлять электронный баланс/овр/8класс

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.

Окислительно-восстановительные реакции (ОВР). Что надо знать и как их решатьСкачать

Окислительно-восстановительные реакции (ОВР). Что надо знать и как их решать

Ионные уравнения реакций. Как составлять полные и сокращенные уравненияСкачать

Ионные уравнения реакций. Как составлять полные и сокращенные уравнения

Составление уравнений химических реакций. 1 часть. 8 класс.Скачать

Составление уравнений химических реакций.  1 часть. 8 класс.

Химия, 9 класс, тема "Окислительно-восстановительные реакции" (учитель Швецова Елена Евгеньевна)Скачать

Химия, 9 класс, тема "Окислительно-восстановительные реакции" (учитель Швецова Елена Евгеньевна)

Окислительно-восстановительные реакции. Видеоурок по химии 9 классСкачать

Окислительно-восстановительные реакции. Видеоурок по химии 9 класс

8 класс. Степень окисления.Скачать

8 класс. Степень окисления.

66. Окислительно-восстановительные реакции.Скачать

66. Окислительно-восстановительные реакции.
Поделиться или сохранить к себе: