В изучении темы о многочленах отдельно стоит упомянуть о том, что многочлены встречаются как стандартного, так и не стандартного вида. При этом многочлен нестандартного вида можно привести к стандартному виду. Собственно, этот вопрос и будем разбирать в данной статье. Закрепим разъяснения примерами с подробным пошаговым описанием.
- Смысл приведения многочлена к стандартному виду
- Способ приведения многочлена к стандартному виду
- Примеры и решения
- Многочлен стандартного вида
- Определение многочлена
- Коэффициенты многочлена
- Многочлен стандартного вида
- Степень многочлена
- Практика
- Учимся приводить многочлены к стандартному виду.
- Что значит привести многочлен к стандартному виду?
- Как привести многочлен к стандартному виду?
- Примеры, решения
- 💡 Видео
Видео:Алгебра 7 класс (Урок№19 - Многочлены стандартного вида.)Скачать
Смысл приведения многочлена к стандартному виду
Немного углубимся в само понятие, действие – «приведение многочлена к стандартному виду».
Многочлены, подобно любым другим выражениям, возможно тождественно преобразовывать. Как итог, мы получаем в таком случае выражения, которые тождественно равны исходному выражению.
Привести многочлен к стандартному виду – означает замену исходного многочлена на равный ему многочлен стандартного вида, полученный из исходного многочлена при помощи тождественных преобразований.
Видео:Многочлен. Приведение многочлена к стандартному виду.Скачать
Способ приведения многочлена к стандартному виду
Порассуждаем на тему того, какие именно тождественные преобразования приведут многочлен к стандартному виду.
Согласно определению, каждый многочлен стандартного вида состоит из одночленов стандартного вида и не имеет в своем составе подобных членов. Многочлен же нестандартного вида может включать в себя одночлены нестандартного вида и подобные члены. Из сказанного закономерно выводится правило, говорящее о том, как привести многочлен к стандартному виду:
- в первую очередь к стандартному виду приводятся одночлены, составляющие заданный многочлен;
- затем производится приведение подобных членов.
Видео:7 класс, 16 урок, Понятие одночлена. Стандартный вид одночленаСкачать
Примеры и решения
Разберем подробно примеры, в которых приведем многочлен к стандартному виду. Следовать будем правилу, выведенному выше.
Отметим, что иногда члены многочлена в исходном состоянии уже имеют стандартный вид, и остается только привести подобные члены. Случается, что после первого шага действий не оказывается подобных членов, тогда второй шаг пропускаем. В общих случаях необходимо совершать оба действия из правила выше.
5 · x 2 · y + 2 · y 3 − x · y + 1 ,
0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 ,
2 3 7 · x 2 + 1 2 · y · x · ( — 2 ) — 1 6 7 · x · x + 9 — 4 7 · x 2 — 8 .
Необходимо привести их к стандартному виду.
Решение
рассмотрим сначала многочлен 5 · x 2 · y + 2 · y 3 − x · y + 1 : его члены имеют стандартный вид, подобные члены отсутствуют, значит многочлен задан в стандартном виде, и никаких дополнительных действий не требуется.
Теперь разберем многочлен 0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 . В его состав входят нестандартные одночлены: 2 · a 3 · 0 , 6 и − b · a · b 4 · b 5 , т.е. имеем необходимость привести многочлен к стандартному виду, для чего первым действием преобразуем одночлены в стандартный вид:
2 · a 3 · 0 , 6 = 1 , 2 · a 3 ;
− b · a · b 4 · b 5 = − a · b 1 + 4 + 5 = − a · b 10 , таким образом получаем следующий многочлен:
0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 = 0 , 8 + 1 , 2 · a 3 − a · b 10 .
В полученном многочлене все члены – стандартные, подобных членов не имеется, значит наши действия по приведению многочлена к стандартному виду завершены.
Рассмотрим третий заданный многочлен: 2 3 7 · x 2 + 1 2 · y · x · ( — 2 ) — 1 6 7 · x · x + 9 — 4 7 · x 2 — 8
Приведем его члены к стандартному виду и получим:
2 3 7 · x 2 — x · y — 1 6 7 · x 2 + 9 — 4 7 · x 2 — 8 .
Мы видим, что в составе многочлена имеются подобные члены, произведем приведение подобных членов:
2 3 7 · x 2 — x · y — 1 6 7 · x 2 + 9 — 4 7 · x 2 — 8 = = 2 3 7 · x 2 — 1 6 7 · x 2 — 4 7 · x 2 — x · y + ( 9 — 8 ) = = x 2 · 2 3 7 — 1 6 7 — 4 7 — x · y + 1 = = x 2 · 17 7 — 13 7 — 4 7 — x · y + 1 = = x 2 · 0 — x · y + 1 = x · y + 1
Таким образом, заданный многочлен 2 3 7 · x 2 + 1 2 · y · x · ( — 2 ) — 1 6 7 · x · x + 9 — 4 7 · x 2 — 8 принял стандартный вид − x · y + 1 .
Ответ:
5 · x 2 · y + 2 · y 3 − x · y + 1 — многочлен задан стандартным;
0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 = 0 , 8 + 1 , 2 · a 3 − a · b 10 ;
2 3 7 · x 2 + 1 2 · y · x · ( — 2 ) — 1 6 7 · x · x + 9 — 4 7 · x 2 — 8 = — x · y + 1 .
Во многих задачах действие приведения многочлена к стандартному виду – промежуточное при поиске ответа на заданный вопрос. Рассмотрим и такой пример.
Задан многочлен 11 — 2 3 z 2 · z + 1 3 · z 5 · 3 — 0 . 5 · z 2 + z 3 . Необходимо привести его к с стандартному виду, указать его степень и расположить члены заданного многочлена по убывающим степеням переменной.
Решение
Приведем члены заданного многочлена к стандартному виду:
11 — 2 3 z 3 + z 5 — 0 . 5 · z 2 + z 3 .
Следующим шагом приведем подобные члены:
11 — 2 3 z 3 + z 5 — 0 . 5 · z 2 + z 3 = 11 + — 2 3 · z 3 + z 3 + z 5 — 0 , 5 · z 2 = = 11 + 1 3 · z 3 + z 5 — 0 , 5 · z 2
Мы получили многочлен стандартного вида, что дает нам возможность обозначить степень многочлена (равна наибольшей степени составляющих его одночленов). Очевидно, что искомая степень равна 5 .
Остается только расположить члены по убывающим степеням переменных. С этой целью мы просто переставим местами члены в полученном многочлене стандартного вида с учетом требования. Таким образом, получим:
z 5 + 1 3 · z 3 — 0 , 5 · z 2 + 11 .
Ответ:
11 — 2 3 · z 2 · z + 1 3 · z 5 · 3 — 0 , 5 · z 2 + z 3 = 11 + 1 3 · z 3 + z 5 — 0 , 5 · z 2 , при этом степень многочлена – 5 ; в результате расположения членов многочлена по убывающим степеням переменных многочлен примет вид: z 5 + 1 3 · z 3 — 0 , 5 · z 2 + 11 .
Видео:Многочлен и его стандартный вид. Алгебра, 7 классСкачать
Многочлен стандартного вида
О чем эта статья:
Видео:Многочлены. 7 класс.Скачать
Определение многочлена
Многочлен — это сумма одночленов. Получается, что многочлен — не что иное, как несколько одночленов, собранных «под одной крышей».
Одночлен — это произведение, состоящее из числового множителя и одной или нескольких переменных, каждая из которых взята в неотрицательной степени.
Рассмотрим примеры многочленов:
Если многочлен состоит из двух одночленов, его называют двучленом:
- 10x − 3x 2
- 10x — одночлен
- −3x 2 — одночлен
Многочлен — это сумма одночленов, поэтому знак «минус» относится к числовому коэффициенту одночлена. Именно поэтому мы записываем −3x 2 , а не просто 3x 2 .
Этот же многочлен можно записать вот так:
- 10x – 3x 2 = 10x − 3x 2 = 10x + (−3x 2 ).
Это значит, что каждый одночлен важно рассматривать вместе со знаком, который перед ним стоит.
Многочлен вида 10x − 3x 2 + 7 называется трехчленом.
Линейный двучлен — это многочлен первой степени: ax + b. a и b здесь — некоторые числа, x — переменная.
Если разделить многочлен с переменной x на линейный двучлен x − b (где b — некоторое положительное или отрицательное число) — остаток будет только многочленом нулевой степени. То есть некоторым числом N, которое можно определить без поиска частного.
Если многочлен содержит обычное число — это число является свободным членом многочлена.
- Например, в многочлене 6a + 2b − x + 2 число 2 — свободный член.
Свободный член многочлена не имеет буквенной части. Кроме того, любое числовое выражение — это многочлен. Например, вот такие числовые выражения — тоже многочлены:
Такие выражения состоят из свободных членов.
Видео:7 класс, 20 урок, Многочлены. Основные понятияСкачать
Коэффициенты многочлена
Коэффициенты членов многочлена — это числа, которые указаны перед переменными множителями. Если перед переменной нет числа, то коэффициент этого члена = 1.
Иными словами — коэффициенты членов многочлена — это члены многочлена, представленные в виде стандартных одночленов.
Например:
Дан многочлен 2x + 5x − 18y
Все одночлены имеют стандартный вид. 2, 5 и 18 — коэффициенты членов данного многочлена.
Видео:Приведите одночлен к стандартному виду.7 клСкачать
Многочлен стандартного вида
Недостаточно просто знать, что такое многочлен и что такое одночлен. Это целая алгебраическая экосистема, где у всего есть названия, определения и особенности.
Давайте разберемся, что такое многочлен стандартного вида. Многочленом стандартного вида называют многочлен, каждый член которого имеет одночлен стандартного вида и не содержит подобных членов.
Получается, что всякий многочлен можно привести к стандартному виду. Таким образом можно получить многочлен, работать с которым гораздо проще и приятнее.
К стандартному виду многочлен приводится очень просто. Нужно лишь привести в нем подобные слагаемые.
Подобные слагаемые — это подобные члены многочлена. Приведение подобных слагаемых в многочлене — приведение его подобных членов. Тут же возникает резонный вопрос: Что такое подобные члены многочлена? Это члены с одинаковой буквенной частью.
Давайте разберем на примере, как «нестандартный» многочлен приводится к стандартному виду.
Дан красавец многочлен: 3x + 5xy 2 + x − xy 2
Приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:
- 3x и x — подобные слагаемые.
- 5xy 2 и −xy 2 — подобные слагаемые.
Получаем многочлен вот такого вида: 3x + 5xy 2 + x − xy 2 = 4x + 4xy 2 .
Как видите, в получившемся многочлене нет подобных членов. Такой многочлен — это многочлен стандартного вида.
Онлайн-подготовка к ОГЭ по математике — отличный способ снять стресс и закрепить знания перед экзаменом.
Видео:Одночлены. 7 класс.Скачать
Степень многочлена
Многочлен может иметь степень — имеет на это полное право.
Степень многочлена стандартного вида — это наибольшая из степеней, входящих в него одночленов.
Из определения можно сделать вывод, что степень многочлена возможно определить только после приведения его к стандартному виду.
- Приводим многочлен к стандартному виду.
- Выбираем одночлен с наибольшей степенью.
Рассмотрим на примере:
Дан многочлен 6x + 4xy 2 + x + xy 2
Сначала приводим многочлен к стандартному виду — для этого приводим подобные слагаемые:
- 6x и x — подобные слагаемые
- 4xy 2 и xy 2 — подобные слагаемые
Получаем многочлен стандартного вида 6x + 4xy 2 + x + xy 2 = 7x + 5xy 2 .
- Степень первого одночлена (7x) — 1.
- Степень второго одночлена (5xy 2 ) — 3.
- Наибольшая из двух степеней — 3.
Отсюда делаем вывод, что многочлен 7x + 5xy 2 — многочлен третьей степени.
Кроме того, можно сделать вывод, что и исходный многочлен 6x + 4xy 2 + x + xy 2 — многочлен третьей степени, поскольку оба многочлена равны друг другу.
В некоторых случаях необходимо сначала привести к стандартному виду одночлены многочлена, а затем уже и сам многочлен.
Пример:
Дан многочлен 6xx 2 + 5xx 2 − 3xx 3 − 3x 2 x
Приведем его к стандартному виду: 6xx 3 + 5xx 2 − 3xx 3 − 3x 2 x = 6x 4 + 5x 3 − 3x 4 − 3x 3
Получившийся многочлен без труда приводим к стандартному виду. Приводим подобные слагаемые:
- 5x 3 и −3x 3 — подобные слагаемые.
- 6x 4 и −3x 4 — подобные слагаемые.
- 6x 4 + 3x 3 − 3x 4 − 3x 3 = 3x 4 − 2x 3
- 6xx 3 + 5xx 2 − 3xx 3 − 3x 2 x — многочлен четвертой степени.
Видео:Как привести одночлен к стандартному виду?Скачать
Практика
Кажется, со стандартным видом многочлена все понятно. Чтобы без труда приводить любой многочлен к стандартному виду, нужно потренироваться, ведь в 7 классе только и разговоров, что о многочленах. Давайте разберем несколько примеров. Попробуйте решить их самостоятельно, сверяясь с ответами.
Задание раз. Приведите многочлен к стандартному виду и определите его степень: 4x + 6xy 2 + x − xy 2 .
Как решаем: приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:
- 4x и x — подобные слагаемые.
- 6xy 2 и −xy 2 — подобные слагаемые.
Получаем многочлен стандартного вида: 4x + 6xy 2 + x − xy 2 = 5x + 5xy 2 .
Ответ: стандартный вид многочлена 5x + 5xy 2 . Данный многочлен — многочлен второй степени.
Задание два. Приведите многочлен к стандартному виду: 2x 2 y 3 − xy 3 − x 4 − x 2 y 3 + xy 3 + 2x 4 .
Как решаем: сначала необходимо привести все одночлены к стандартному виду: 2x 2 y 3 − xy 3 − x 4 − x 2 y 3 + xy 3 + 2x 4 = (−x 4 + 2x 4 ) + (2x 2 y 3 − x 2 y 3 ) + (− xy 3 + xy 3 ) = x 4 + x 2 y 3 + 0 = x 4 + x 2 y 3 .
Многочлен приведен к стандартному виду.
Ответ: x 4 + x 2 y 3
Задание три. Приведите многочлен к стандартному виду и определите его степень: 8x + 8xy 2 − x + xy 2 .
Как решаем: приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:
- 8x и −x — подобные слагаемые.
- 8xy 2 и xy 2 — подобные слагаемые.
Получаем многочлен стандартного вида: 8x + 8xy 2 − x + xy 2 = 7x + 9xy 2 .
Ответ: стандартный вид многочлена 7x + 9xy 2 , данный многочлен — многочлен третьей степени.
Разобраться в многочленах не так-то просто. В этой теме немало нюансов и подводных камней. Чтобы не запутаться в множестве похожих одно на другое определений, побольше практикуйтесь. Чтобы перейти на следующую ступень и начать выполнение арифметических действий с многочленами, важно научиться приводить многочлен к стандартному виду.
Видео:Одночлен и его стандартный вид. Алгебра, 7 классСкачать
Учимся приводить многочлены к стандартному виду.
Изучая начальные сведения о многочленах, мы сказали, что имеют место как многочлены стандартного вида, так и не стандартного. Там же мы отметили, что можно любой многочлен привести к стандартному виду. В этой статье мы для начала выясним, какой смысл несет в себе эта фраза. Дальше перечислим шаги, позволяющие преобразовать любой многочлен в стандартный вид. Наконец, рассмотрим решения характерных примеров. Решения будем описывать очень подробно, чтобы разобраться со всеми нюансами, возникающими при приведении многочленов к стандартному виду.
Навигация по странице.
Видео:Приведение квадратного уравнения к стандартному видуСкачать
Что значит привести многочлен к стандартному виду?
Сначала нужно четко понимать, что понимают под приведением многочлена к стандартному виду. Разберемся с этим.
Многочлены, как и любые другие выражения, можно подвергать тождественным преобразованиям. В результате выполнения таких преобразований, получаются выражения, тождественно равные исходному выражению. Так выполнение определенных преобразований с многочленами не стандартного вида позволяют перейти к тождественно равным им многочленам, но записанным уже в стандартном виде. Такой переход и называют приведением многочлена к стандартному виду.
Итак, привести многочлен к стандартному виду – это значит заменить исходный многочлен тождественно равным ему многочленом стандартного вида, полученным из исходного путем проведения тождественных преобразований.
Видео:КАК ПРИВЕСТИ МНОГОЧЛЕН К СТАНДАРТНОМУ ВИДУ И НАЙТИ ЕГО СТЕПЕНЬ? Примеры | АЛГЕБРА 7 классСкачать
Как привести многочлен к стандартному виду?
Давайте поразмыслим, какие преобразования нам помогут привести многочлен к стандартному виду. Будем отталкиваться от определения многочлена стандартного вида.
По определению каждый член многочлена стандартного вида является одночленом стандартного вида, и многочлен стандартного вида не содержит подобных членов. В свою очередь многочлены, записанные в виде, отличном от стандартного, могут состоять из одночленов в не стандартном виде и могут содержать подобные члены. Отсюда логически вытекает следующее правило, объясняющее как привести многочлен к стандартному виду:
- сначала нужно привести к стандартному виду одночлены, из которых состоит исходный многочлен,
- после чего выполнить приведение подобных членов.
В итоге будет получен многочлен стандартного вида, так как все его члены будут записаны в стандартном виде, и он не будет содержать подобных членов.
Видео:ЧТО ТАКОЕ ОДНОЧЛЕНЫ И МНОГОЧЛЕНЫ? 😉 #shorts #математика #егэ #огэ #профильныйегэСкачать
Примеры, решения
Рассмотрим примеры приведения многочленов к стандартному виду. При решении будем выполнять шаги, продиктованные правилом из предыдущего пункта.
Здесь заметим, что иногда все члены многочлена сразу записаны в стандартном виде, в этом случае достаточно лишь привести подобные члены. Иногда после приведения членов многочлена к стандартному виду не оказывается подобных членов, следовательно, этап приведения подобных членов в этом случае опускается. В общем случае приходится делать и то и другое.
Представьте многочлены в стандартном виде: 5·x 2 ·y+2·y 3 −x·y+1 , 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 и .
Все члены многочлена 5·x 2 ·y+2·y 3 −x·y+1 записаны в стандартном виде, подобных членов он не имеет, следовательно, этот многочлен уже представлен в стандартном виде.
Переходим к следующему многочлену 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 . Его вид не является стандартным, о чем свидетельствуют члены 2·a 3 ·0,6 и −b·a·b 4 ·b 5 не стандартного вида. Представим его в стандартном виде.
На первом этапе приведения исходного многочлена к стандартному виду нам нужно представить в стандартном виде все его члены. Поэтому, приводим к стандартному виду одночлен 2·a 3 ·0,6 , имеем 2·a 3 ·0,6=1,2·a 3 , после чего – одночлен −b·a·b 4 ·b 5 , имеем −b·a·b 4 ·b 5 =−a·b 1+4+5 =−a·b 10 . Таким образом, 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 =0,8+1,2·a 3 −a·b 10 . В полученном многочлене все члены записаны в стандартном виде, более того очевидно, что в нем нет подобных членов. Следовательно, на этом завершено приведение исходного многочлена к стандартному виду.
Осталось представить в стандартном виде последний из заданных многочленов . После приведения всех его членов к стандартному виду он запишется как . В нем есть подобные члены, поэтому нужно провести приведение подобных членов:
Так исходный многочлен принял стандартный вид −x·y+1 .
5·x 2 ·y+2·y 3 −x·y+1 – уже в стандартном виде, 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 =0,8+1,2·a 3 −a·b 10 , .
Зачастую приведение многочлена к стандартному виду является лишь промежуточным этапом при ответе на поставленный вопрос задачи. Например, нахождение степени многочлена предполагает его предварительное представление в стандартном виде.
Приведите многочлен к стандартному виду, укажите его степень и расположите члены по убывающим степеням переменной.
Сначала приводим все члены многочлена к стандартному виду: .
Теперь приводим подобные члены:
Так мы привели исходный многочлен к стандартному виду, это нам позволяет определить степень многочлена, которая равна наибольшей степени входящих в него одночленов. Очевидно, она равна 5.
Осталось расположить члены многочлена по убывающим степеням переменных. Для этого нужно лишь переставить местами члены в полученном многочлене стандартного вида, учитывая требование. Наибольшую степень имеет член z 5 , степени членов , −0,5·z 2 и 11 равны соответственно 3 , 2 и 0 . Поэтому многочлен с расположенными по убывающим степеням переменной членами будет иметь вид .
, степень многочлена равна 5 , а после расположения его членов по убывающим степеням переменной он принимает вид .
💡 Видео
Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Приведение одночлена к стандартному виду; задачиСкачать
Произведение многочленов. 7 класс.Скачать
Многочлены. 10 класс.Скачать
начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать
Многочлены - алгебра 7 класс. Многочлены стандартного видаСкачать
Решение систем уравнений методом подстановкиСкачать