Эта задача может быть решена точно лишь для очень узкого класса функций. Уже для многочленов степени выше четырех не существует формул, выражающих их корни через коэффициенты с помощью радикалов. Для большинства же уравнений, встречающихся в различных приложениях математики и технических задачах, приближенные методы решения являются единственно возможными.
Приближенно решить уравнение или вычислить корень уравнения с заданной точностью — это значит найти такое число , для которого выполняется неравенство , то есть указать на числовой прямой точку, лежащую на расстоянии не большем, чем допустимая погрешность, от точного значения корня.
Приближенное решение уравнения распадается на несколько задач:
·Локализация и отделение корня.
·Вычисление корня уравнения с заданной точностью .
Локализация и отделение корня
Локализация корней ¾ необходимо определить количество, характер и расположение корней на числовой прямой. Все следующие задачи решаются для каждого корня в отдельности.
Отделение корня ¾ нужно указать отрезок , внутри которого лежит один и только один корень данного уравнения.
Оба шага выполняются с помощью исследования функции методами математического анализа. Обычно строится схема графика функции и на основании первой теоремы Больцано–Коши и признака монотонности функции делается вывод.
Теорема 1. (Первая теорема Больцано–Коши) Если функция непрерывна на отрезке и на его концах принимает значения разного знака, т.е. то на этом отрезке существует хотя бы одна точка, в которой функция обращается в ноль.
Теорема 2. Для того чтобы дифференцируемая на интервале функция возрастала (убывала) на этом интервале, необходимо и достаточно, чтобы во всех его точках производная была неотрицательной (неположительной) .
Т.о. первая теорема обеспечивает существование корня на отрезке, а вторая его единственность.
Дано уравнение . Отделить корень уравнения.
Перепишем уравнение в виде и построим графики функций.
Из рисунка видно, что корень принадлежит отрезку . Обоснуем это аналитически.
непрерывная.
, по теореме 1.1 на отрезке существует корень.
на , значит функция возрастает. Это обеспечивает единственность корня.
Метод половинного деления (бисекции)
Пусть имеется отрезок , содержащий единственный корень уравнения .
Ограничения. Никаких ограничений для функции нет.
Алгоритм. Обозначим отрезок . Делим отрезок пополам точкой . Если , из двух получившихся отрезков и выбираем тот, который содержит корень уравнения, т.е. тот на концах которого, функция принимает значения разных знаков, его обозначим . Этот новый отрезок делим пополам и т.д. В результате получим последовательность вложенных отрезков .
Теорема 3. Для любой последовательности вложенных отрезков существует единственная точка, принадлежащая всем отрезкам этой последовательности.
Эта точка и есть корень уравнения.
Правило остановки. Процесс деления продолжается до тех пор, пока длина отрезка не станем меньше , действительно , тогда в качестве можно взять или любую точку этого отрезка.
Середина -го отрезка дает приближение к корню, имеющее оценку погрешности . Это показывает, что метод сходится со скоростью геометрической прогрессии со знаменателем . Это довольно медленно.
· Метод очень прост.
· Не имеет ограничений
· Если есть проблемы с отделением корня и в отрезке их несколько, то не понятно к какому сходимся.
· Метод не применим к корням четной кратности.
· Не обобщается на системы уравнений.
Вычислим корень уравнения с точностью .
-1
1,718
0,5
-0,101
1,718
0,5
0,5
0,75
-0,101
0,68
0,25
0,5
0,625
-0,101
0,259
0,125
0,5
0,563
-0,101
0,071
0,063
0,531
0,563
-0,016
0,071
0,032
0,531
0,547
-0,016
0,027
0,016
0,531
0,539
-0,016
0,005
0,008
Ограничения. Этот метод может быть использован только в том случае, если функция на отрезке не имеет точек перегиба, т.е. постоянна по знаку.
Алгоритм. Через точки кривой проведем хорду: или после преобразований .
По рисунку видно, что точка пересечения хорды с осью абсцисс лежит правее точки , т.е. находится ближе к корню, для нее ,
т.е.
или .
Эту точку будем считать первым приближением корня, т.е. .
Теперь вместо отрезка можно использовать . При этом получим точку и т.д.
Таким образом, получим последовательность значений : если , то .
На следующем рисунке
, тогда .
Теорема 4. Если функция непрерывна и выпукла на отрезке и , то уравнение имеет на отрезке единственный корень, и последовательность монотонно сходится к нему.
Как видно, метод дает приближение к корню только с одной стороны и близость друг к другу последовательных приближений не обеспечивает близость к корню.
При выборе нулевого приближения следует руководствоваться рисунком или следующим правилом: .
Если , то вычисления можно прекратить, когда выполнено условие . Это правило универсальное и может быть использовано для любого метода. Причем в силу выпуклости функции можно утверждать, что .
Вычислим корень уравнения с точностью .
Ранее установлено, что корень принадлежит отрезку .
, для всех .
Т.к. , возьмем , .
Будем использовать правило остановки 1, для этого вычислим и и возьмем .
-1
0,368
-0,42
0,492
-0,122
0,526
-0,032
0,534
-0,008
Ограничения. Те же что и для метода хорд.
Алгоритм. Выберем из условия , т.е. конец отрезка противоположенный тому, который использовали в методе хорд.
Через точку проведем касательную к функции : . Положив , найдем точку пересечения касательной с осью абсцисс: . Точка находится к корню ближе, чем . Продолжим построение касательных и вычисление последовательных приближений к корню по формуле .
Для метода касательных также можно сформулировать теорему о сходимость этой последовательности к корню, аналогичную методу хорд.
Можно использовать правила из предыдущего метода.
Скорость сходимости. При выборе начального приближения из достаточно малой окрестности корня метод сходится квадратично, т.е. скорость сходимости велика. Для кратного корня скорость геометрической прогрессии.
Вычислим корень уравнения с точностью .
Возьмем , т.к. .
Будем использовать правило остановки 4, для этого вычислим и . Тогда
где f ( x ) — заданная алгебраическая или трансцендентная функция.
Функция называется алгебраической, если для получения её значения нужно выполнить арифметические операции и возведение в степень с рациональным показателем. Примеры трансцендентных функций — показательная , логарифмическая, тригонометрические, обратные тригонометрические.
Решить уравнение — значит найти все его корни, то есть те значения х , которые обращают уравнение в тождество, или доказать, что корней нет.
В общем случае не существует формул, по которым определяются точные значения корней уравнения (1.1). Для отыскания корней используют приближенные методы, при этом корни находятся с некоторой заданной точностью ε . Это означает, что если x — точное значение корня уравнения, а x ’ — его приближенное значение с точностью ε , то | x — x ’ | ≤ ε . Если корень найден с точностью ε , то принято писать x = x ± ε .
Будем предполагать, что уравнение (1.1) имеет лишь изолированные корни, то есть для каждого корня существует окрестность, не содержащая других корней этого уравнения.
Приближенное решение уравнения состоит из двух этапов:
1. Отделение корней, то есть нахождение интервалов из области определения функции f ( x ), в каждом из которых содержится только один корень уравнения (1).
2. Уточнение корней до заданной точности.
Отделение корней можно проводить графически и аналитически.
Для того , чтобы графически отделить корни уравнения (1.1), строят график функции y = f ( x ). Абсциссы точек его пересечения с осью Ox есть действительные корни уравнения (рис. 1). Практически бывает удобнее заменить уравнение (1.1) равносильным ему уравнением
, (1.2)
где Φ( x ) и Ψ( x ) — более простые функции, чем f ( x ). Абсциссы точек пересечения графиков функций y = Φ( x ) и y = Ψ( x ) дают корни уравнения (1.2), а значит и исходного уравнения (1.1) (рис.2).
Аналитическое отделение корней основано на следующей теореме: если непрерывная на отрезке [ a , b ] функция y = f ( x ) принимает на концах отрезка значения разных знаков, т.е. f ( a )· f ( b ) f ( x ) = 0; если при этом производная f ’ ( x ) сохраняет знак внутри отрезка [ a , b ], то корень является единственным.
Уточнение корней заключается в сужении интервала изоляции корня и выполняется одним из специальных методов. Рассмотрим самый простой из них — метод половинного деления.
Пусть корень отделён и принадлежит отрезку [ a , b ]. Находим середину отрезка [ a , b ] по формуле
Если f ( c ) = 0, то с — искомый корень. Если f ( c ) ≠ 0, то в качестве нового отрезка изоляции корня [ a 1 , b 1 ] выбираем ту половину [ a , c ] или [ c , b ], на концах которой f ( x ) принимает значения разных знаков. Другими словами, если f ( a ) ∙ f ( c ) a , c ], если f ( a ) ∙ f ( c ) — отрезку [ c , b ]. Полученный отрезок снова делим пополам, находим c1 ,
вычисляем f ( c 1 ), выбираем отрезок [ a 2 , b 2 ] и т.д. Длина каждого нового отрезка вдвое меньше длины предыдущего, то есть за n шагов отрезок сократится в 2 n раз. Как только будет выполнено условие
то в качестве приближенного значения корня, вычисленного с точностью ε , можно взять
Пример . Пусть требуется решить уравнение
с точностью ε = 0,0001. Отделим корень графически. Для этого преобразуем уравнение к виду
и построим графики функций (рис. 4):
Из рисунка видно, что абсцисса точки пересечения этих графиков принадлежит отрезку [0; 1].
Уточнение корня выполним методом половинного деления.
Корень принадлежит отрезку
Корень принадлежит отрезку
Корень принадлежит отрезку
Видео:АЛГЕБРА 7 класс : Уравнение и его корни | ВидеоурокСкачать
Уточнение корня уравнения методом половинного деления
Пояснения к работе
2.1 Краткие теоретические сведения:
Отделение корней
Пусть имеется уравнение вида
где f (х) — алгебраическая или трансцендентная функция. Напомним, что функция называется алгебраической, если для получения значения функции по данному значению х нужно выполнить арифметические операции и возведение в степень с рациональным показателем. К трансцендентнымфункциям относятся все неалгебраические функции – показательная , логарифмическая , тригонометрические и обратные тригонометрические .
Решить уравнение (1) — значит установить, имеет ли оно корни, сколько корней, и найти значения корней с требуемой точностью. Решение указанной задачи в общем случае начинают с этапа отделения корней, который заключается в установлении количества корней, а также наиболее тесных промежутков, каждый из которых содержит только один корень.
Грубое отделение корней во многих случаях можно произвести графическим методом. При этом задачу часто удается сильно упростить, заменив уравнение (1) равносильным ему уравнением
В этом случае строятся графики функций f1(х) и f2(x), а потом на оси ОХ отмечаются по возможности наименьшие отрезки, локализующие абсциссы точек пересечения этих графиков с осью ОХ.
Пример 1.Для графического отделения корней уравнения sin2х- 1n х = 0 преобразуем его к равносильному уравнению sin2х = lnх и отдельно построим графики функций sin2х и lnx (рис. 1).
Из графика вполне очевидно, что уравнение имеет единственный корень ξ и этот корень находится на отрезке [1; 1,5].
Рис. 1 Графическое отделение корня уравнения sin2х-lnx = 0
При решении задачи об отделении корней бывают полезными следующие очевидные
1) если непрерывная на отрезке [а; b] функция f (х) принимает на его концах значения разных знаков (т.е. f (а) f (b) 0, так что отрезком, на котором находится корень, можно считать [1,3; 1,5].
В простейших случаях графическое отделение корней можно осуществить вручную, однако в более сложных случаях для исследования вопроса о наличии (и количестве) корней уравнения на заданном отрезке целесообразнее воспользоваться инструментальным пакетом или составить программу для ЭВМ на языке программирования. Рассмотрим коротко суть идеи для применения указанных подходов.
Пусть имеется уравнение f (х) = 0, причем известно, что все интересующие вычислителя корни находятся на отрезке [А; В], в котором функция f (х) определена, непрерывна и f (А) f (В)
х
знак f(x)
+
—
—
+
Уравнение имеет два корня, т.к. происходит две смены знака функции. Составим новую таблицу, с более мелким интервалом изоляции корня
х
-1
знак f(x)
+
—
—
—
—
—
+
Корни уравнения находятся в промежутках (-1; 0) и (4; 5)
Уточнение корня уравнения методом половинного деления
Второй этап приближенного решения алгебраических и трансцендентных уравнений – уточнение корней.
Пусть уравнение f (х) = 0 имеет на отрезке [а; b] единственный корень, причем функция f(х) на этом отрезке непрерывна. Разделим отрезок [а; b] пополам точкой с = (а + b )/2. Если
f (с)≠0 (что наиболее вероятно), то возможны два случая: либо f (х) меняет знак на отрезке [a; с] (рис. 3, а), либо на отрезке [с; b](рис. 3, б).
К решению уравнения f (х) = 0 методом половинного деления
Выбирая в каждом случае тот из отрезков, на котором функция меняет знак, и продолжая
процесс половинного деления дальше, можно дойти до сколь угодно малого отрезка, содержащего
Рассмотренный метод, его называют методом половинного деления(другое название — метод дихотомии), можно использовать как метод решения уравнения с заданной точностью.
Действительно, если на каком-то этапе процесса получен отрезок [а; b], содержащий корень, то, приняв приближенно х=(а + b)/2, получим ошибку, не превышающую значения
(заметим, что речь в данном случае идет о погрешности метода). Метод половинного деления требует утомительных ручных вычислений, однако он легко реализуется с помощью программы на ЭВМ.
Пример 3. Методом половинного деления уточнить до меньший корень уравнения
.
Решение: отделим корни этого уравнения аналитически. Функция f(х) определена на всей числовой оси. Приравняем производную нулю и найдем критические точки:
.
Составим таблицу знаков функции:
х
-2
-1
знак f(x)
—
+
—
—
+
+
Из таблицы видим, что левый корень принадлежит интервалу ( ; -2). Возьмем для пробы . Тогда получим таблицу:
х
-3
-2
-1
знак f(x)
—
+
—
—
+
Следовательно, корни уравнения принадлежат промежуткам (-3; -2); (-2; -1); (0; 1). Уточним меньший корень, лежащий в интервале (-3; -2), метом половинного деления. Для удобства вычислений составим таблицу (знаки «-» и «+» в верхних индексах означают, что )
п
-3
-2
-2,500
-15,625
18,750
0,125
-3
-2.500
-2,750
-20,800
22,689
-1,111
-2,750
-2.500
-2.625
-17, 90
20,670
-0,320
-2,625
-2,500
-2,563
-16,840
19,701
-0,130
-2,563
-2,500
-2,532
-16,230
19,233
0,003
-2,563
-2,532
-2,548
-16,540
19,479
-0,071
-2,548
-2,532
-2,540
-16,390
19,356
-0,034
-2,540
-2,532
-2,536
-16,310
19,293
-0,014
-2,536
-2,532
-2,534
-16,270
19,263
-0,007
-2.534
-2,532
-2,533
-16, 250
19,248
-0,002
-2,533
-2,532
Итак, корень уравнения .
📹 Видео
Отделение корней уравнений аналитическим методом. Уточнение корней методом половинного деленияСкачать