Что значит aq в уравнении реакции

Ответы на упражнения,
задачи и контрольные вопросы к главам 5–7

1. Кислоты – вещества молекулярного строения.

2. В молекулах кислот атом Н связан с другими атомами ковалентной полярной связью.

3. Полярные молекулы воды разрывают полярную молекулу НСl. В растворе вместо нейтральной молекулы НСl оказываются гидратированные ионы Н + и Сl — :

Здесь знак аq (от лат. aquа – вода) означает молекулы воды, участвующие в гидратации ионов. Так же диссоциирует кислота HNO3. Кислотный оксид SO2 в воде образует сернистую кислоту H2SO3, которая распадается на ионы и является электролитом.

4. Практически все молекулы сильных кислот при растворении в воде распадаются на ионы. Слабые кислоты диссоциируют в меньшей степени. Это связано с полярностью связи водород–элемент в кислотах. Чем разбавленней кислота, тем выше степень ее диссоциации.

5. Кислоты – сильные электролиты: H2SO4, HNO3, HCl, HClO4, HBr, HI.

6. Любая кислота при диссоциации в воде в качестве катионов образует только Н + .

7. Молекулы бензола С6Н6 неполярные. Они не притягивают к себе ни атомы Н Что значит aq в уравнении реакции+ , ни атомы Сl Что значит aq в уравнении реакции— молекулы НСl, т.е. растворитель не способствует распаду молекулы НСl на ионы и диссоциация не происходит. А раз в растворе нет ионов, то он не проводит электрический ток.

8. Что значит aq в уравнении реакции

9. Силу кислородсодержащих кислот можно определить по их структурной формуле. Чем больше в формуле атомов О, не включенных в группы ОН, тем более сильным электролитом является кислота. Неустойчивые кислоты – такие, как Н2СО3, – слабые электролиты.

Слабые электролитыЭлектролит средней силыСильные электролиты
Что значит aq в уравнении реакцииЧто значит aq в уравнении реакции Что значит aq в уравнении реакции
Что значит aq в уравнении реакцииЧто значит aq в уравнении реакции

10. Определить присутствие кислоты в растворе можно с помощью индикаторов (от лат. indico – указываю, определяю). Фиолетовый лакмус в кислотах становится красным, оранжевый метилоранж тоже краснеет.

Переход окраски индикаторов в растворах кислот
(а – лакмус: синий Что значит aq в уравнении реакциикрасный; б – метилоранж:
оранжевый Что значит aq в уравнении реакциикрасный)

При взаимодействии многих кислот с мелом СаСО3 наблюдается выделение пузырьков газа СО2:

2HNO3 + CaCO3 = Ca(NO3)2 + H2O + CO2Что значит aq в уравнении реакции.

Кислоты растворяют металлы, например Zn и Fe, с выделением газообразных веществ.

11. Степень диссоциации Что значит aq в уравнении реакции= Что значит aq в уравнении реакции(Н + )•100(%)/Что значит aq в уравнении реакции(СН3СООН). Здесь Что значит aq в уравнении реакции(СН3СООН) – количество вещества растворенной уксусной кислоты (в молекулярной и в диссоциированной формах). Поскольку Что значит aq в уравнении реакции(Н + ) численно равно m(Н + ), Что значит aq в уравнении реакции= 0,001 моль•100(%)/0,101 = 1%.

Ответ. Что значит aq в уравнении реакции= 1%.

12. Молярная концентрация ионов:

смол = Что значит aq в уравнении реакции(ионов)/V(р-ра).

Для 1 л раствора

смол (Что значит aq в уравнении реакции)= 0,3/1 = 0,3 моль/л.

Ответ. смол (Аl 3+ ) = 0,2 моль/л; смол (Что значит aq в уравнении реакции) = 0,3 моль/л.

1. Молекулярное, ионное и сокращенное ионное уравнения реакций.

2. Что значит aq в уравнении реакции

3. Что значит aq в уравнении реакции

4. Что значит aq в уравнении реакции

5. Разбавленная серная кислота реагирует с K2S по типу реакции обмена (см. задание 4). Концентрированная H2SO4 окисляла бы сульфид-ион с образованием других продуктов (S или SO2).

Что значит aq в уравнении реакциикрасный; б – метилоранж: оранжевый –>красный)»>
Подтверждение состава газов, выделяющихся в реакциях

Реакция H2SO4 с NaCl в водном растворе не протекает из-за высокой растворимости HCl в воде. Необходимое условие для реакции – сухой NaCl и H2SO4 (конц.).

В двух последующих реакциях (задание 4) концентрация кислоты не сказывается на характере процесса.

6. а) 2NaOH + CuSO4 = Cu(OH)2 Что значит aq в уравнении реакции+ Na2SO4,

2OH — + Cu 2+ = Cu(OH)2Что значит aq в уравнении реакции;

б) 3AgNO3 + FeCl3 = 3AgCl Что значит aq в уравнении реакции+ Fe(NO3)3,

Ag + + Cl — = AgClЧто значит aq в уравнении реакции;

в) Na2S + ZnCl2 = ZnS Что значит aq в уравнении реакции+ 2NaCl,

S 2- + Zn 2+ = ZnSЧто значит aq в уравнении реакции.

7. Что значит aq в уравнении реакции

Видео:Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по ХимииСкачать

Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по Химии

Метод электронного баланса и ионно-электронный метод (метод полуреакций)

Спецификой многих ОВР является то, что при составлении их уравнений подбор коэффициентов вызывает затруднение.

Для облегчения подбора коэффициентов чаще всего используют метод электронного баланса и ионно-электронный метод (метод полуреакций). Рассмотрим применение каждого из этих методов на примерах.

Видео:Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

Метод электронного баланса

В его основе метода электронного баланса лежит следующее правило: общее число электронов, отдаваемое атомами-восстановителями, должно совпадать с общим числом электронов, которые принимают атомы-окислители .

В качестве примера составления ОВР рассмотрим процесс взаимодействия сульфита натрия с перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции, учитывая, что в кислой среде MnO4 — восстанавливается до Mn 2+ (см. схему):

Найдем степень окисления элементов:

Из приведенной схемы понятно, что в процессе реакции происходит увеличение степени окисления серы с +4 до +6. S +4 отдает 2 электрона и является восстановителем. Степень окисления марганца уменьшилась от +7 до +2, т.е. Mn +7 принимает 5 электронов и является окислителем.

3) Составить электронные уравнения и найти коэффициенты при окислителе и восстановителе.

S +4 – 2e — = S +6 | 5 восстановитель, процесс окисления

Mn +7 +5e — = Mn +2 | 2 окислитель, процесс восстановления

Чтобы число электронов, отданных восстановителем, было равно числу электронов, принятых восстановителем, необходимо:

  • Число электронов, отданных восстановителем, поставить коэффициентом перед окислителем.
  • Число электронов, принятых окислителем, поставить коэффициентом перед восстановителем.

Таким образом, 5 электронов, принимаемых окислителем Mn +7 , ставим коэффициентом перед восстановителем, а 2 электрона, отдаваемых восстановителем S +4 коэффициентом перед окислителем:

4) Уравнять количества атомов элементов, не изменяющих степень окисления

Соблюдаем последовательность: число атомов металлов, кислотных остатков, количество молекул среды (кислоты или щелочи). В последнюю очередь подсчитывают количество молекул образовавшейся воды.

Итак, в нашем случае число атомов металлов в правой и левой частях совпадают.

По числу кислотных остатков в правой части уравнения найдем коэффициент для кислоты.

В результате реакции образуется 8 кислотных остатков SO4 2- , из которых 5 – за счет превращения 5SO3 2- → 5SO4 2- , а 3 – за счет молекул серной кислоты 8SO4 2- — 5SO4 2- = 3SO4 2- .

Таким образом, серной кислоты надо взять 3 молекулы:

Аналогично, находим коэффициент для воды по числу ионов водорода, во взятом количестве кислоты

6H + + 3O -2 = 3H2O

Окончательный вид уравнения следующий:

Признаком того, что коэффициенты расставлены правильно является равное количество атомов каждого из элементов в обеих частях уравнения.

Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Ионно-электронный метод (метод полуреакций)

Реакции окисления-восстановления, также как и реакции обмена, в растворах электролитов происходят с участием ионов. Именно поэтому ионно-молекулярные уравнения ОВР более наглядно отражают сущность реакций окисления-восстановления.

При написании ионно-молекулярных уравнений, сильные электролиты записывают в виде ионов, а слабые электролиты, осадки и газы записывают в виде молекул (в недиссоциированном виде).

При написании полуреакций в ионной схеме указывают частицы, подвергающиеся изменению их степеней окисления, а также характеризующие среду, частицы:

H +кислая среда, OH —щелочная среда и H2Oнейтральная среда.

Пример 1.

Рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции:

2) Записать уравнение в ионном виде

В уравнении сократим те ионы, которые не принимают участие в процессе окисления-восстановления:

SO3 2- + MnO4 — + 2H + = Mn 2+ + SO4 2- + H2O

3) Определить окислитель и восстановитель и составить полуреакции процессов восстановления и окисления.

В приведенной реакции окислитель — MnO4 — принимает 5 электронов восстанавливаясь в кислой среде до Mn 2+ . При этом освобождается кислород, входящий в состав MnO4 — , который, соединяясь с H + образует воду:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O

Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона. Как видно образовавшийся ион SO4 2- содержит больше кислорода, чем исходный SO3 2- . Недостаток кислорода восполняется за счет молекул воды и в результате этого происходит выделение 2H + :

SO3 2- + H2O — 2e — = SO4 2- + 2H +

4) Найти коэффициенты для окислителя и восстановителя

Необходимо учесть, что окислитель присоединяет столько электронов, сколько отдает восстановитель в процессе окисления-восстановления:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O |2 окислитель, процесс восстановления

SO3 2- + H2O — 2e — = SO4 2- + 2H + |5 восстановитель, процесс окисления

5) Просуммировать обе полуреакции

Предварительно умножая на найденные коэффициенты, получаем:

2MnO4 — + 16H + + 5SO3 2- + 5H2O = 2Mn 2+ + 8H2O + 5SO4 2- + 10H +

Сократив подобные члены, находим ионное уравнение:

2MnO4 — + 5SO3 2- + 6H + = 2Mn 2+ + 5SO4 2- + 3H2O

6) Записать молекулярное уравнение

Молекулярное уравнение имеет следующий вид:

Пример 2.

Далее рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в нейтральной среде.

В ионном виде уравнение принимает вид:

Также, как и предыдущем примере, окислителем является MnO4 — , а восстановителем SO3 2- .

В нейтральной и слабощелочной среде MnO4 — принимает 3 электрона и восстанавливается до MnО2. SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + 2H2O + 3e — = MnО2 + 4OH — |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |3 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Пример 3.

Составление уравнения реакции между сульфитом натрия и перманганатом калия в щелочной среде.

В ионном виде уравнение принимает вид:

В щелочной среде окислитель MnO4 — принимает 1 электрон и восстанавливается до MnО4 2- . Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + e — = MnО2 |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |1 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Необходимо отметить, что не всегда при наличии окислителя и восстановителя, возможно самопроизвольное протекание ОВР. Поэтому для количественной характеристики силы окислителя и восстановителя и для определения направления реакции пользуются значениями окислительно-восстановительных потенциалов.

Еще больше примеров составления окислительно-восстановительных реакций приведены в разделе Задачи к разделу Окислительно-восстановительные реакции. Также в разделе тест Окислительно-восстановительные реакции

Видео:РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

Энергетика химических процессов. Энтальпия, законы термодинамики

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Энергетика химических процессов

  • 5.1. Общие понятия
  • 5.2. Внутренняя энергия. Первый закон термодинамики
  • 5.3. Энтальпия системы. Тепловые эффекты химических реакций
  • 5.4. Термохимические расчеты
  • 5.5. Химическое сродство. Энтропия химических реакций. Энергия Гиббса
  • 5.6. Второй и третий законы термодинамики

Глава 5 . Энергетика химических процессов

Науку о взаимных превращениях различных видов энергии называют термодинамикой. Термодинамика устанавливает законы этих превращений, а также направление самопроизвольного тече­ния различных процессов в данных условиях.

5.1. Общие понятия. При протекании химических реакций изменяет­ся энергетическое состояние системы, в которой идет эта реакция. Состояние системы характеризуется термодинамическими парамет­рами (р, Т, с и др.). При изменении параметров меняется и состояние системы. В термодинамике свойст­ва системы рассматриваются при ее равновесном состоянии. Термодинамическое состояние системы называют равновесным в том случае, когда его термодинамические параметры одинаковы во всех точках системы и не изменяются самопроизвольно (без затраты работы) во времени. Термодинамика изучает переходы системы из одного состояния в другое. Но переходы должны осуществляться при термодинамическом равновесии с окружающей средой, т.е. очень медленно, а в идеале — бесконечно медленно. При этом могут изменяться все параметры состояния системы, либо некоторые параметры остаются без изменения. Если процессы перехода системы происходят при постоянстве каких-то параметров системы, то они называются:

а) изобарическими = const);

б) изохорическими (Т= const);

в) изотермическими = const);

г) изобарно-изотермическими (р,T – const) и т.д.

Термодинамика изучает возможность или невозможность самопроизвольного перехода системы из одного состояния в другое и энергетические эффекты этих переходов. Скорость и механизм про­цессов перехода — это области химической кинетики.

5.2. Внутренняя энергия. Первый закон термодинамики. При химических реакциях происходят глубокие качественные изменения в системе, рвутся связи в исходных веществах и возникают новые связи в конечных продуктах. Эти изменения сопровождаются поглощением или выделением энергии. В большинстве случаев этой энергией является теплота. Раздел термодинамики, изучающий тепловые эффекты химических реакций, называют термохимией. Реакции, которые сопровож­даются выделением теплоты, называют экзотермическими, а те, которые сопровождаются поглощением теплоты, — эндотер­мическими. Теплота реакции является, таким образом, мерой изменения свойств системы, и знание ее может иметь большое значение при определении условий протекания той или иной реакции.

При любом процессе соблюдается закон сохранения энергии как проявление более общего закона природы — закона сохранения материи. Теплота Q, поглощенная системой, идет на изменение ее внутренней энергии и на совершение работы А:

Количественное соотношение между изменением внутренней энергии, теплотой и работой устанавливает первый закон термодинамики:

Уравнение означает, что теплота, подведенная к системе, расходуется на приращение внутренней энергии системы и на работу системы над окружающей средой.

Внутренняя энергия системы U — это общий ее запас, включающий энергию поступательного и вращательного движений молекул, энергию внутримолекулярных колебаний атомов и атомных групп, энергию движения электронов, внутриядерную энергию и т.д. Внутренняя энергия — полная энергия системы без потенциальной энергии, обусловленной положением системы в пространстве, и без кинетической энергии системы как целого. Абсолютное значение внутренней энергии U веществ неизвестно, так как нельзя привести систему в состояние, лишенное энергии. Внутренняя энергия, как и любой вид энергии, является функцией состояния, т.е. ее изменение одно­значно определяется начальным и конечным состояниями системы и не зависит от пути перехода, по которому протекает процесс:

где: U – изменение внутренней энергии системы при переходе из начального состояния U1 в конечное U2. Если U2 > U1, то U> 0.

Если U2 0 (Н2 > Н1). В дальнейшем теп­ловые эффекты всюду выражаются через H.

5.4. Термохимические расчеты. Термохимические расчеты основаны на законе Гесса, позволяющее рассчитать энтальпию химической реакции: тепловой эффект реакции зависит только от природы и физического состояния исходных веществ и конечных продуктов, но не зависит от пути перехода.

Часто в термохимических расчетах применяют следствие из закона Гесса: тепловой эффект реакции (Нx.p.) равен сумме теплот образования Нобр продуктов реакции за вычетом суммы теплот образования исходных веществ с учетом коэффициентов перед формулами этих веществ в уравнении реакции:

Пример 1. При взаимодействии кристаллов хлорида фосфора (V) с парами воды образуется жидкий РОС13 и хлороводород. Реакция сопровождается выделением 111,4 кДж теплоты. Напи­шите термохимическое уравнение этой реакции.

Решение. Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепло­вых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Qp, равные изменению энтальпии системы Н. Значение Н приводят обычно в правой части уравнения, отделяя его запятой или точкой с запятой. Приняты следующие сокращенные обозначения агрегат­ного состояния вещества: г — газообразное, ж — жидкое, к — крис­таллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно.

Если в результате реакции выделяется теплота, то Н 1 /2О2= 2СО2(г)+3Н2О(ж); ∆Hх.р.= -1559,87 кДж

Вычислите теплоту образования этана, если известны теплоты образования СO2(г) и Н2O(ж) (см. табл. 15).

Решение. Теплотой образования (энтальпией) данного соединения называют тепловой эффект реакции образования 1 моль этого соединения из простых веществ, взятых в их устойчивом состоянии при данных условиях.

Обычно теплоту образования относят к стандартному состоянию, т.е. 25° С (298 К) и 1,01310 5 Па и обозначают через.Так как тепловой эффект с температурой изменяется незначительно, то в дальнейшем индексы опускаются и тепловой эффект обозначается через Н. Следовательно, нужно вычислить тепловой эффект реакции, термохимическое уравнение которой имеет вид

исходя из следующих данных:

На основании закона Гесса с термохимическими уравнениями можно оперировать так же, как и с алгебраическими. Для получения искомого результата следует уравнение (б) умножить на 2, уравнение (в) — на 3, а затем сумму этих уравнений вычитают из уравнения (а):

∆H =-1559,87-2(-393,51)-3(-285,84)= +84,67 кДж;

Так как теплота образования равна теплоте разложения с обратным знаком, то .

Что значит aq в уравнении реакции

К тому же результату придем, если для решения задачи применить вывод из закона Гесса:

Учитывая, что теплоты образования простых веществ условно приняты равными нулю

Пример 3. Реакция горения этилового спирта выражается термохимическим уравнением

Вычислите тепловой эффект реакции, если известно, что молярная теплота парообразования С2Н5OН(ж) равна +42,36 кДж, а теплоты образования С2Н5OН(г), СO2(г), Н2O(ж) см. табл. 15.

Решение. Для определения Н реакции необходимо знать теплоту образования С2Н5OН(ж). Последнюю находим из данных:

Вычисляем H реакции, применяя следствие из закона Гесса:

5.5. Химическое сродство. Энтропия химических реакций. Энергия Гиббса. Самопроизвольно могут протекать реакции, сопровождаю­щиеся не только выделением, но и поглощением теплоты.

Реакция, идущая при данной температуре с выделением теплоты, при другой температуре проходит с поглощением теплоты. Здесь проявляется диалектический закон единства и борьбы противоположностей. С одной стороны, система стремится к упорядочению (агрегации), к уменьшению Н; с другой стороны, система стремится к беспорядку (дезагрегации). Первая тенденция растет с понижением, а вторая — с повышением температуры. Тенденцию к беспорядку характеризует величина, которую называют энтропией.

Энтропия S, так же как внутренняя энергия U, энтальпия Н, объем V и др., является свойством вещества, пропорциональным его количеству. S, U, H, V обладают аддитивными свойствами, т.е. при соприкосновении системы суммируются. Энтропия отражает движение частиц вещества и является мерой неупорядоченности системы. Она возрастает с увеличением движения частиц: при нагревании, испарении, плавлении, расширении газа, при ослаблении или разрыве связей между атомами и т.п. Процессы, связанные с упорядоченностью системы: конденсация, кристаллизация, сжатие, упрочнение связей, полимеризация и т.п.— ведут к уменьшению энтропии. Энтропия является функцией состояния, т.е. ее изменение зависит только от начального (S1) и конечного (S2) состояний и не зависит от пути процесса:

Что значит aq в уравнении реакции

Так как энтропия увеличивается с повышением температуры, то можно считать, что мера беспорядка равна TS. Энтропия выражается в Дж/(моль.К).

Таким образом, движущая сила процесса складывается из двух сил: стремления к упорядочению (Н) и стремления к беспорядку (TS). При р = const и Т = const общую движущую силу процесса, которую обозначают G, можно найти из соотношения

где: величина G называется изобарно-изотермическим потенци­алом или энергией Гиббса.

Мерой химического сродства является убыль энергии Гиббса (G), которая зависит от природы вещества, его количества и температуры.

Энергия Гиббса является функцией состояния, поэтому

Самопроизвольно протекающие процессы идут в сторону уменьшения потенциала и, в частности, в сторону уменьшения G. Если G 0, процесс самопроизвольно проходить не может. Чем меньше G, тем сильнее стремление к протеканию данного процесса и тем дальше он от состояния равновесия, при котором G = 0 и H= TS.

Из соотношения G = H – TS видно, что самопроизвольно могут протекать и процессы, для которых H>0 (эндотерми­ческие). Это возможно, когда S>0, но |TS| > |H| и тогда G 0.

5.6. Второй и третий законы термодинамики. Для систем, которые не обмениваются с окружающей средой ни энергией, ни веществом (изолированные системы), второй закон термодинамики имеет следующую формулировку: в изолированных системах са­мопроизвольно идут только такие процессы, которые сопровождаются возрастанием энтропии: AS > 0.

Второй закон термодинамики имеет статистический характер, т.е.
справедлив лишь для систем, состоящих из очень большого числа
частиц.

Однако, если в системе протекает химическая реакция, то система обменивается энергией с окружающей средой, т.е. не является изоли­рованной. Химические реакции обычно сопровождаются изменением как энтропии, так и энтальпии.

В отличие от других термодинамических функций, можно определить не только изменение, но абсолютное значение энтропии. Это вытекает из высказанного в 1911 г. М. Планком постулата, согласно которому «при абсолютном нуле энтропия идеального кристалла равна нулю». Этот постулат получил название третьего закона термодинамики.

Пример 1. В каком состоянии энтропия 1 моль вещества больше при одинаковой температуре: в кристаллическом или парообразном?

Решение. Энтропия есть мера неупорядоченности состояния вещества. В кристалле частицы (атомы, ионы) расположены упорядоченно и могут находиться лишь в определенных точках пространства, а для газа таких ограничений нет. Объем 1 моль газа гораздо больше объема 1 моль кристаллического вещества; возможность хаотичного движения молекул газа больше. А так как энтропию можно рассматривать как количественную меру хаотичности атомно-молекулярной структуры вещества, то энтропия 1 моль паров вещества больше энтропии 1 моль его кристаллов при одинаковой температуре.

Пример 2. Прямая или обратная реакция будет протекать при стандартных условиях в системе

Решение. ВычислимΔG 0 298 прямой реакции. Значения ΔG 0 298соответствующих веществ приведены в табл. 16. Зная, что ΔG есть функция состояния и что ΔG для простых веществ, находящихся в устойчивых при стандартных условиях агрегатных состояниях, равны нулю, находим ΔG 0 298процесса:

∆G 0 298 = 2 (-137,27) +2 (0) – (-50,79-394,38) = +170,63 кДж

То, что ΔG 0 298> 0, указывает на невозможность самопроиз­вольного протекания прямой реакции при Т = 298К и давлении взятых газов равном 1,013 ∙ 10 5 Па (760 мм рт. ст. = 1 атм).

Стандартная энергия Гиббса образования ΔG 0 298некоторых веществ

Что значит aq в уравнении реакции
ВеществоСостояниеΔG 0 298, кДж/мольВеществоСостояниеΔG 0 298, кДж/моль
ВаСО3к-1138,8FeOк-244,3
СаСО3к-1128,75Н2Ож-237,19
3O4к-1014,2Н2Oг-228,59
ВеСО3к-944,75PbO2к-219,0
СаОк-604,2СОг-137,27
ВеОк-581,61СН4г-50,79
NaFк-541,0NO2г+51,84
ВаОк-528,4NOг+86,69
СО2г-394,38C2H2г+209,20
NaClк-384,03
ZnOк-318,2

Стандартные абсолютные энтропии ΔS 0 298 некоторых веществ

ВеществоСостояниеΔS 0 298, Дж/(моль.К)веществоСостояниеΔS 0 298,Дж/(моль.К)
САлмаз2,44Н2Oг188,72
СГрафит5,69N2г191,49
Feк27,23г192,50
Tiк30,7СОг197,91
SРомб31,9с2H2г200,82
TiO2к50,3O2г205,03
FeOк54,0H2Sг205,64
H2Oж69,94NOг210,20
2О3к89,96CO2г213,65
NH4C1к94,5C2H4г219,45
СН3ОНж126,8Cl2г222,95
Н2г130,59NO2г240,46
3O4к146,4РС13г311,66
СН4г186,19PCl5г352,71
НС1г186,68

Пример 3. На основании стандартных теплот образования (см. табл. 15) и абсолютных стандартных энтропий веществ (табл.17) вычислите ΔS 0 298 реакции, протекающей по уравнению

Решение. ∆G 0 = ∆H 0 – TS 0 ; ∆H и ∆S – функции состояния, поэтому

∆Н 0 х.р.=∑ ∆Н 0 прод – ∑ ∆Н 0 исх ; ∆S 0 x.p.= ∑S 0 прод – ∑ S 0 исх

∆Н 0 х.р.=(-393,51+0) – (110,52 – 285,84) = +2,85 кДж

∆S 0 x.p.=(213,65+130,59)-(197,91+69,94) = +76,39 = 0,07639 кДж/(моль∙К);

∆G 0 = +2,85 – 298 ∙ 0,07639 = – 19,91 кДж

Пример 4. Реакция восстановления Fе2О3 водородом протекает по уравнению

Возможна ли эта реакция при стандартных условиях, если изменение энтропии S=0,1387 кДж/(мольК)? При какой температуре начнется восстановление Fе2О3?

Решение. Вычисляем ∆G 0 реакции:

∆G = ∆Н-Т∆S = 96,61 – 298 ∙ 0,1387 = +55,28 кДж

Так как ∆G > 0, то реакция при стандартных условиях невоз­можна; наоборот, при этих условиях идет обратная реакция окисления железа (коррозия). Найдем температуру, при которой∆G=0:

Что значит aq в уравнении реакции

Следовательно, при температуре 696,5 К начнется реакция восстановления Fе2О3 Иногда эту температуру называют температурой начала реакции.

Пример 5. Вычислите ∆H 0 , ∆S и ∆G 0 реакции, протекающей по уравнению

Возможна ли реакция восстановления Fе2О3 углеродом при 500 и 1000 К?

Решение. ∆H 0 xp и ∆S 0 xp находим из соотношений (1) и (2) (см. разделы «Энергетика химических процессов. Термохимические расчеты» и «Химическое сродство»):

∆Н 0 x.p.= [3(-110,52)+2 ∙ 0] – [- 822,10 + 3 ∙ 0] = -331,56+822,10 = +490,54 кДж

∆S 0 x.p.=(2 ∙ 27,2+3 ∙ 197,91) – (89,96+3 ∙ 5,69) = 541,1 Дж/(моль ∙ К)

Энергию Гиббса при соответствующих температурах находим из соотношения

💥 Видео

25. Схема реакции и химическое уравнениеСкачать

25. Схема реакции и химическое уравнение

Составление уравнений химических реакций. 1 часть. 8 класс.Скачать

Составление уравнений химических реакций.  1 часть. 8 класс.

Уравнения химический реакций на ОГЭ: как составлять без ошибок?Скачать

Уравнения химический реакций на ОГЭ: как составлять без ошибок?

Расстановка коэффициентов в химических реакциях: как просто это сделатьСкачать

Расстановка коэффициентов в химических реакциях: как просто это сделать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

Уравнивание реакций горения углеводородовСкачать

Уравнивание реакций горения углеводородов

Как УРАВНИВАТЬ химические уравнения | Расстановка коэффициентов в химических реакцияхСкачать

Как УРАВНИВАТЬ химические уравнения | Расстановка коэффициентов в химических реакциях

Задачи на ВЫХОД ПРОДУКТА химической реакции | Расчет выхода продукта от теоретически возможногоСкачать

Задачи на ВЫХОД ПРОДУКТА химической реакции | Расчет выхода продукта от теоретически возможного

Химические уравнения - Как составлять уравнения реакций // Составление Уравнений Химических РеакцийСкачать

Химические уравнения - Как составлять уравнения реакций // Составление Уравнений Химических Реакций

ЭКЗО- и ЭНДО- термические реакции. Химия – ПростоСкачать

ЭКЗО- и ЭНДО- термические реакции. Химия – Просто

Расстановка коэффициентов в химических реакциях: как просто это сделатьСкачать

Расстановка коэффициентов в химических реакциях: как просто это сделать

Химические уравнения. СЕКРЕТНЫЙ СПОСОБ: Как составлять химические уравнения? Химия 8 классСкачать

Химические уравнения. СЕКРЕТНЫЙ СПОСОБ: Как составлять химические уравнения? Химия 8 класс

Реакции замещенияСкачать

Реакции замещения

Химия | Тепловой эффект химической реакции (энтальпия)Скачать

Химия | Тепловой эффект химической реакции (энтальпия)

Экзо- и эндотермические реакции. Тепловой эффект химических реакций. 8 класс.Скачать

Экзо- и эндотермические реакции. Тепловой эффект химических реакций. 8 класс.

Габриелян О. С. 8 класс §30 "Реакции разложения".Скачать

Габриелян О. С. 8 класс §30 "Реакции разложения".
Поделиться или сохранить к себе: