- В математике, решение уравнения — это задача по нахождению таких значений аргументов (чисел, функций, наборов и т. д.), при которых выполняется равенство (выражения слева и справа от знака равенства становятся эквивалентными). Значения неизвестных переменных, при которых это равенство достигается, называются решениями или корнями данного уравнения. Решить уравнение означает найти множество всех его решений (корней) или доказать, что корней нет.
решается для неизвестного
с помощью замены
, так как замена переменной
превращает уравнение в тождество:
. Кроме того, если положить неизвестной переменную
, тогда уравнение решается с помощью замены
превращает уравнение в тождество:
могут одновременно рассматриваться как неизвестные переменные. Существует много решений уравнения для подобного случая, например,
для всех возможных значений.
В зависимости от задачи может требоваться найти одно решение (любое подходящее решение) или все решения уравнения. Все решения уравнения называются множеством решений. Помимо простого нахождения решения, может ставиться задача по нахождению наилучшего решения уравнения по какому-либо параметру. Задачи такого рода называются задачами оптимизации. Решения задач оптимизации, как правило, не называются «решениями уравнения».
- Делаем Карту слов лучше вместе
- Что такое уравнение: определение, решение, примеры
- Определение уравнения
- Корень уравнения
- Равносильные уравнения
- Что такое уравнение и корни уравнения? Как решить уравнение?
- Что такое уравнение? Смысл и понятия.
- Правила уменьшения или увеличения уравнения на определенное число.
- Правила уменьшения или увеличения уравнения в несколько раз.
- Как решать уравнения? Алгоритм действий.
- 📸 Видео
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.
Насколько понятно значение слова бронх (существительное):
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Что такое уравнение: определение, решение, примеры
В данной публикации мы рассмотрим, что такое уравнение, а также, что значит его решить. Представленная теоретическая информация сопровождается практическими примерами для лучшего понимания.
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Определение уравнения
Уравнение – это равенство, содержащее неизвестное число, которе требуется найти.
Это число обычно обозначается маленькой латинской буквой (чаще всего – x , y или z ) и называется переменной уравнения.
Другими словами, равенство является уравнением только в том случае, когда содержит букву, значение которой требуется вычислить.
Примеры простейших уравнений (одна неизвестная и одно арифметическое действие):
В более сложных уравнениях переменная может встречаться несколько раз, также, в них могут содержаться скобки и более сложные математические операции. Например:
Также, в уравнении может быть несколько переменных, например:
Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать
Корень уравнения
Допустим, у нас есть уравнение .
Оно обращается в верное равенство при . Это значение (число) и является корнем уравнения.
Решить уравнение – это значит найти его корень или корни (в зависимости от количества переменных), либо доказать, что их нет.
Обычно, корень пишется так: . Если корней несколько, они просто перечисляются через запятую, например: , .
Примечания:
1. Некоторые уравнения могут быть не решаемы.
Например: . Какое бы мы число не подставили вместо x , получить верное равенство не получится. В этом случае в ответе пишется: “уравнение не имеет корней”.
2. Некоторые уравнения имеют бесконечное множество корней.
Например: . В данном случае решением является любое число, т.е. , , , где N , Z и R – это натуральные, целые и действительные числа, соответственно.
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Равносильные уравнения
Уравнения, имеющие одни и те же корни, называются равносильными.
Например: и . У обоих уравнений решением является число два, т.е. .
Основные равносильные преобразования уравнений:
1. Перенос какого-то слагаемого из одной части уравнений в другую с изменением его знака на противоположный.
Например: 3x + 7 = 5 равносильно .
2. Умножение/разделение обеих частей уравнения на одно и то же число, не равное нулю.
Например: 4x – 7 = 17 равносильно .
Уравнение, также, не изменится, если к обеим его частям прибавить/отнять одно и то же число.
3. Приведение подобных слагаемых.
Например: 2x + 5x – 6 + 2 = 14 равносильно .
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Что такое уравнение и корни уравнения? Как решить уравнение?
Уравнения бывают разные. Вы изучите их многие виды в курсе математике, но все они решаются по одним правилам, эти правила мы сейчас рассмотрим подробно.
Видео:Линейное уравнение с одной переменной. 6 класс.Скачать
Что такое уравнение? Смысл и понятия.
Узнаем сначала все понятия, связанные с уравнением.
Определение:
Уравнение – это равенство, содержащее переменные и числовые значения.
Переменные (аргументы уравнения) или неизвестные уравнения – их обозначают в основном латинскими буквами (x, y, z, f и т.д.). При подстановки числового значения переменной в уравнение получаем верное равенство – это корень уравнения.
Решить уравнение – это значит найти все корни уравнения или доказать, что у данного уравнения нет корней.
Корни уравнения – это значение переменной при котором уравнение превращается в верное равенство.
Рассмотрим теперь, все термины на простом примере:
x+1=3
В данном случае x – переменная или неизвестное значение уравнения.
Можно устно решить данное уравнение. Какое надо число прибавить к 1, чтобы получить 3? Конечно, число 2. То есть наша переменная x =2. Корень уравнения равен 2. Проверим правильно ли мы решили уравнение? Чтобы проверить уравнение, нужно вместо переменной подставить полученный корень уравнения.
Получили верное равенство. Значит, правильно нашли корни уравнения.
Но бывают более сложные уравнения, которые устно не решить. Нужно прибегать к правилам решения уравнений. Рассмотрим правила решения уравнений ниже, которые объяснят нам как решать уравнения.
Видео:Как решают уравнения в России и США!?Скачать
Правила уменьшения или увеличения уравнения на определенное число.
Чтобы понять правило рассмотрим подробно простой пример:
Решите уравнение x+2=7
Решение:
Чтобы решить данное уравнение нужно левую и правую часть уменьшить на 2. Это нужно сделать для того, чтобы переменная x осталась слева, а известные (т.е. числа) справа. Что значит уменьшить на 2? Это значит отнять от левой части двойку и одновременно от правой части отнять двойку. Если мы делаем какое-то действие, например, вычитание применяя его одновременно к левой части уравнения и к правой, то уравнение не меняет смысл.
Нужно остановиться на этом моменте подробно. Другими словами, мы +2 перенесли с левой части на правую и знак поменяли стало число -2.
Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение.
Проверка:
Вместо переменной x подставим 5.
x+2=7
5+2=7
Получили верное равенство, значит уравнение решено верно.
Ответ: 5.
Разберем следующий пример:
Решите уравнение x-4=12.
Решение:
Чтобы решить данное уравнение нужно увеличить левую и правую часть уравнения на 4, чтобы переменная x осталось в левой стороне, а известные (т.е. числа) в правой стороне. Прибавим к левой и правой части число 4. Получим:
Другими словами, мы -4 перенесли из левой части уравнения в правую и получили +4. При переносе через равно знаки меняются на противоположные.
Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16.
x-4=12
16-4=12
Ответ: 16
Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения.
Рассмотрим пример:
Решите уравнение 4+3x=2x-5
Решение:
Чтобы решить уравнение необходимо неизвестные перенести в одну сторону, а известные в другую. То есть переменные с x будут в левой части, а числа в правой части.
Сначала перенесем 2x с правой стороны в левую сторону уравнения и получим -2x.
4+3x= 2x -5
4+3x -2x =-5
Далее 4 с левой стороны уравнения перенесем на правую сторону и получим -4
4 +3x-2x=-5
3x-2x=-5 -4
Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их.
(3-2)x=-9
1x=-9 или x=-9
Сделаем проверку, правильно ли решено уравнение? Для этого вместо переменной x в уравнение подставим -9.
4+3x=2x-5
4+3⋅ (-9) =2⋅ (-9) -5
4-27=-18-5
-23=-23
Получилось верное равенство, уравнение решено верно.
Ответ: корень уравнения x=-9.
Видео:Сложные уравнения. Как решить сложное уравнение?Скачать
Правила уменьшения или увеличения уравнения в несколько раз.
Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения.
Рассмотрим пример:
Решите уравнение 5x=20.
Решение:
В данном уравнение не нужно переносить переменные и числа, все компоненты уравнения стоят на месте. Но нам мешает коэффициент 5 который стоит перед переменной x. Мы не можем его просто взять и перенести в правую сторону уравнения, потому что между число 5 и переменно x стоит умножение 5⋅х. Если бы между переменной и числом стоял знак плюс или минус, мы могли бы 5 перенести вправо. Но мы так поступить не можем. За то мы можем все уравнение уменьшить в 5 раз или поделить на 5. Обязательно делим правую и левую сторону одновременно.
5x=20
5x :5 =20 :5
5:5x=4
1x=4 или x=4
Делаем проверку уравнения. Вместо переменной x подставляем 4.
5x=20
5⋅ 4 =20
20=20 получили верное равенство, корень уравнение найден правильно.
Ответ: x=4.
Рассмотрим следующий пример:
Найдите корни уравнения .
Решение:
Так как перед переменной x стоит коэффициент необходимо от него избавиться. Надо все уравнение увеличить в 3 раза или умножить на 3, обязательно умножаем левую часть уравнения и правую часть.
Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21.
7=7 получено верное равенство.
Ответ: корень уравнения равен x=21.
Следующий пример:
Найдите корни уравнения
Решение:
Сначала перенесем -1 в правую сторону уравнения относительно знака равно, а в левую сторону и знаки у них поменяются на противоположные.
Теперь нужно все уравнение умножить на 5, чтобы в коэффициенте перед переменной x убрать из знаменателя 5.
Далее делим все уравнение на 3.
3x :3 =45 :3
(3:3)x=15
Сделаем проверку. Подставим в уравнение найденный корень.
Видео:Простые уравнения. Как решать простые уравнения?Скачать
Как решать уравнения? Алгоритм действий.
Подведем итог разобранной теме уравнений, рассмотрим общие правила решения уравнений:
- Перенести неизвестные в одну сторону, а известные в другую сторону уравнения относительно равно.
- Преобразовать и посчитать подобные в уравнении, то есть переменные с переменными, а числа с числами.
- Избавиться от коэффициента при переменной если нужно.
- В итоге всех действий получаем корень уравнение. Выполняем проверку.
Эти правила действуют на любой вид уравнения (линейный, квадратный, логарифмический, тригонометрический, рациональные, иррациональные, показательные и другие виды). Поэтому важно понять эти простые правила и научиться ими пользоваться.
📸 Видео
Решение уравнений - математика 6 классСкачать
Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать
Решение уравнений с одним неизвестным, сводящихся к линейным. Алгебра. 7 класс.Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Решение уравнений, 6 классСкачать
Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Как решать уравнения с дробью? #shortsСкачать
Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Как решить уравнение #россия #сша #америка #уравненияСкачать
РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать
Дробно-рациональные уравнения. 8 класс.Скачать