Решение уравнений через переход к уравнениям-следствиям может привести к появлению так называемых посторонних корней. В этой статье мы, во-первых, детально разберем, что такое посторонние корни. Во-вторых, поговорим о причинах их возникновения. И в-третьих, на примерах рассмотрим основные способы отсеивания посторонних корней, то есть, проверки корней на предмет наличия среди них посторонних с целью исключения их из ответа.
- Посторонние корни уравнения, определение, примеры
- Причины возможного появления посторонних корней
- Что такое отсеивание посторонних корней?
- Способы отсеивания посторонних корней
- Проверка подстановкой
- По ОДЗ
- По условиям ОДЗ
- Отсеивание посторонних корней, возникающих из-за возведения обеих частей уравнения в четную степень
- Посторонние и потерянные корни. статья по алгебре (9, 10, 11 класс)
- Скачать:
- Предварительный просмотр:
- По теме: методические разработки, презентации и конспекты
- math4school.ru
- Ошибки в уравнениях
- Потеря корней
- Посторонние корни
- Ошибки, связанные с заменой переменной
- Ошибки, связанные с использованием модуля
- Подбор корней без обоснования
- Ошибки в логарифмических и показательных уравнениях
- Ошибки в тригонометрических уравнениях
- 🌟 Видео
Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать
Посторонние корни уравнения, определение, примеры
В школьных учебниках по алгебре не дается определение постороннего корня. Там представление о постороннем корне формируется путем описания следующей ситуации: при помощи некоторых преобразований уравнения осуществляется переход от исходного уравнения к уравнению-следствию, находятся корни полученного уравнения-следствия, и осуществляется проверка найденных корней подстановкой в исходное уравнение, которая показывает, что некоторые из найденных корней не являются корнями исходного уравнения, эти корни называют посторонними корнями для исходного уравнения [1, с. 174-175; 2, с. 202; 3, с. 187-188].
Отталкиваясь от этой базы, для себя можно принять такое определение постороннего корня:
Посторонние корни – это корни полученного в результате проведения преобразований уравнения-следствия, не являющиеся корнями исходного уравнения.
Приведем пример. Рассмотрим уравнение и следствие этого уравнения x·(x−1)=0 , полученное в результате замены выражения тождественно равным ему выражением x·(x−1) . Исходное уравнение имеет единственный корень 1 . Уравнение, полученное в результате проведения преобразования, имеет два корня 0 и 1 . Значит 0 – это посторонний корень для исходного уравнения.
Видео:Посторонние корни иррационального уравненияСкачать
Причины возможного появления посторонних корней
Если для получения уравнения-следствия не использовать никакие «экзотические» преобразования, а использовать только основные преобразования уравнений, то посторонние корни могут возникнуть лишь по двум причинам:
- из-за расширения ОДЗ и
- из-за возведения обеих частей уравнения в одну и ту же четную степень.
Здесь стоит напомнить, что расширение ОДЗ в результате преобразования уравнения в основном происходит
- При сокращении дробей;
- При замене нулем произведения с одним или несколькими нулевыми множителями;
- При замене нулем дроби с нулевым числителем;
- При использовании некоторых свойств степеней, корней, логарифмов;
- При использовании некоторых тригонометрических формул;
- При умножении обеих частей уравнения на одно и то же выражение, обращающееся в нуль на ОДЗ для этого уравнения;
- При освобождении в процессе решения от знаков логарифмов.
Пример из предыдущего пункта статьи иллюстрирует появление постороннего корня из-за расширения ОДЗ, которое имеет место при переходе от уравнения к уравнению-следствию x·(x−1)=0 . ОДЗ для исходного уравнения есть множество всех действительных чисел, за исключением нуля, ОДЗ для полученного уравнения есть множество R, то есть, ОДЗ расширяется числом нуль. Это число в итоге и оказывается посторонним корнем.
Также приведем пример появления постороннего корня из-за возведения обеих частей уравнения в одну и ту же четную степень. Иррациональное уравнение имеет единственный корень 4 , а следствие этого уравнения, полученное из него путем возведения обеих частей уравнения в квадрат, то есть, уравнение , имеет два корня 1 и 4 . Из этого видно, что возведение обеих частей уравнения в квадрат привело к появлению постороннего корня для исходного уравнения.
Заметим, что расширение ОДЗ и возведение обеих частей уравнения в одну и ту же четную степень, не всегда приводит к появлению посторонних корней. Например, при переходе от уравнения к уравнению-следствию x=2 ОДЗ расширяется с множества всех неотрицательных чисел до множества всех действительных чисел, но посторонние корни не появляются. 2 – это единственный корень как первого, так и второго уравнения. Также не происходит появления посторонних корней при переходе от уравнения к уравнению-следствию . Единственным корнем и первого, и второго уравнения является x=16 . Именно поэтому мы говорим не о причинах появления посторонних корней, а о причинах возможного появления посторонних корней.
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Что такое отсеивание посторонних корней?
Термин «отсеивание посторонних корней» лишь с натяжкой можно назвать устоявшимся, он встречается далеко не во всех учебниках алгебры, но является интуитивно понятным, из-за чего обычно и используется. Что понимают под отсеиванием посторонних корней, становится понятно из следующей фразы: «… проверка – обязательный этап решения уравнения, который поможет обнаружить посторонние корни, если они есть, и отбросить их (обычно говорят «отсеять»)» [1, с.176].
Отсеивание посторонних корней – это обнаружение и отбрасывание посторонних корней.
Теперь можно переходить к способам отсеивания посторонних корней.
Видео:Математика 5 класс. Уравнение. Корень уравненияСкачать
Способы отсеивания посторонних корней
Проверка подстановкой
Основной способ отсеивания посторонних корней – это проверка подстановкой. Он позволяет отсеять посторонние корни, которые могли возникнуть и по причине расширения ОДЗ, и по причине возведения обеих частей уравнения в одну и ту же четную степень.
Проверка подстановкой состоит в следующем: найденные корни уравнения-следствия по очереди подставляются в исходное уравнение или в любое равносильное ему уравнение, те из них, которые дают верное числовое равенство, являются корнями исходного уравнения, а те, которые дают неверное числовое равенство или выражение, не имеющее смысла, являются посторонними корнями для исходного уравнения.
Покажем на примере, как проводится отсеивание посторонних корней через подстановку в исходное уравнение.
Решите уравнение
В некоторых случаях отсеивание посторонних корней целесообразнее проводить другими способами. Это относится в основном к тем случаям, когда проверка подстановкой связана со значительными вычислительными трудностями или когда стандартный способ решения уравнений какого-то определенного вида предполагает другой проверки (например, отсеивание посторонних корней при решении дробно-рациональных уравнений проводится по условию не равенства нулю знаменателя дроби). Разберем альтернативные способы отсеивания посторонних корней.
По ОДЗ
В отличие от проверки подстановкой, отсеивание посторонних корней по ОДЗ уместно не всегда. Дело в том, что этот способ позволяет отсеивать лишь посторонние корни, возникающие по причине расширения ОДЗ, и он не гарантирует отсеивание посторонних корней, которые могли возникнуть по другим причинам, например, из-за возведения обеих частей уравнения в одну и ту же четную степень. Более того, не всегда просто отыскать ОДЗ для решаемого уравнения. Тем не менее, способ отсеивания посторонних корней по ОДЗ стоит держать на вооружении, так как часто его использование требует меньших вычислительных работ, чем использование других способов.
Отсеивание посторонних корней по ОДЗ проводится следующим образом: все найденные корни уравнения-следствия проверяются на предмет принадлежности области допустимых значений переменной для исходного уравнения или любого равносильного ему уравнения, те из них, которые принадлежат ОДЗ, являются корнями исходного уравнения, а те из них, которые не принадлежат ОДЗ, являются посторонними корнями для исходного уравнения.
Анализ приведенной информации приводит к выводу, что отсеивание посторонних корней по ОДЗ целесообразно проводить, если единовременно:
- легко находится ОДЗ для исходного уравнения,
- посторонние корни могли возникнуть только по причине расширения ОДЗ,
- проверка подстановкой связана со значительными вычислительными сложностями.
Покажем, как проводится отсеивание посторонних корней, на практике.
Решите логарифмическое уравнение
По условиям ОДЗ
Как мы сказали в предыдущем пункте, если посторонние корни могли возникнуть лишь по причине расширения ОДЗ, то их можно отсеять по ОДЗ для исходного уравнения. Но не всегда просто найти ОДЗ в виде числового множества. В таких случаях можно проводить отсеивание посторонних корней не по ОДЗ, а по условиям, определяющим ОДЗ. Разъясним, как проводится отсеивание посторонних корней по условиям ОДЗ.
Найденные корни по очереди подставляются в условия, определяющие ОДЗ для исходного уравнения или любого равносильного ему уравнения. Те из них, которые удовлетворяют всем условиям, являются корнями уравнения. А те из них, которые не удовлетворяют хотя бы одному условию или дают не имеющее смысла выражение, являются посторонними корнями для исходного уравнения.
Приведем пример отсеивания посторонних корней по условиям ОДЗ.
Решить иррациональное уравнение
Отсеивание посторонних корней, возникающих из-за возведения обеих частей уравнения в четную степень
Понятно, что отсеивание посторонних корней, возникающих из-за возведения обеих частей уравнения в одну и ту же четную степень, можно осуществить путем подстановки в исходное уравнение или в любое равносильное ему уравнение. Но такая проверка может быть связана со значительными вычислительными трудностями. На этот случай стоит знать альтернативный способ отсеивания посторонних корней, о котором мы сейчас и поговорим.
Отсеивание посторонних корней, которые могут возникнуть при возведении в одну и ту же четную степень обеих частей иррациональных уравнений вида , где n – некоторое четное число, можно проводить по условию g(x)≥0 . Это вытекает из определения корня четной степени: корень четной степени n есть неотрицательное число, n -ая степень которого равна подкоренному числу, откуда . Таким образом, озвученный подход представляет собой своего рода симбиоз метода возведения обеих частей уравнения в одну и ту же степень и метода решения иррациональных уравнений по определению корня. То есть, уравнение , где n –четное число, решается методом возведения обеих частей уравнения в одну и ту же четную степень, а отсеивание посторонних корней выполняется по условию g(x)≥0 , взятому из метода решения иррациональных уравнений по определению корня.
Покажем, как на практике отсеиваются посторонние корни указанным способом.
Решите уравнение
В заключение скажем, что рассмотренный подход является частным случаем более общего подхода к отсеиванию посторонних корней, возникающих при возведении обеих частей уравнения в одну и ту же четную степень. Отсеять посторонние корни, которые могут возникнуть при возведении обеих частей уравнения f(x)=g(x) в одну и ту же четную степень, можно по условию . Несомненно, озвученное утверждение нуждается в доказательстве. Оставим это Вам.
Приведем пример отсеивания посторонних корней предложенным способом. Возьмем уравнение , «сделанное» из только что решенного уравнения. Возведение обеих частей этого уравнения в квадрат и некоторые дальнейшие преобразования позволяют найти корни и . Проведем отсеивание посторонних корней по условию , которое в нашем случае таково
Подстановка в неравенство корня дает
Полученное неравенство верное, так как в числителе положительное число, а в знаменателе – отрицательное, поэтому, отношение этих чисел есть отрицательное число. Значит, — корень исходного уравнения.
Подстановка в неравенство корня дает неравенство , которое является неверным, так как отношение двух положительных чисел есть число положительное. Значит, — посторонний корень для решаемого уравнения.
Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Посторонние и потерянные корни.
статья по алгебре (9, 10, 11 класс)
Комплекс уравнений, при решении которых выполняются тождественные преобразования, приводящие к появлению посторонних корней или их потере.
Видео:Посторонние корни рациональных уравненийСкачать
Скачать:
Вложение | Размер |
---|---|
postoronnie_i_poteryannye_korni.doc | 194.5 КБ |
Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать
Предварительный просмотр:
Посторонние и потерянные корни.
при решении которых выполняются тождественные преобразования, приводящие к появлению посторонних корней или их потере.
Рассмотрим несколько конкретных примеров, где некоторые преобразования уравнений приводят к новым уравнениям, неравносильным данному, что ведёт к появлению посторонних корней или их потере.
Дано уравнение 3х(х – 1) = 5(х – 1).
1 способ решения:
Раскроем скобки в данном уравнении, перенесём все члены в левую часть и решим квадратное уравнение.
Корни уравнения х = 1, х = .
2 способ решения:
Сократить обе части уравнения на общий множитель (х – 1), то получится уравнение
3х = 5, которое имеет всего лишь один корень х = .
Таким образом, деление обеих частей уравнения на множитель, содержащий неизвестное, может привести к потере корней.
Дано уравнение 2х -3 = 5 .
Данное уравнение имеет единственный корень х = 4.
Возведём обе части этого уравнения в квадрат, получим (2х – 3)² = 25.
Решая это уравнение, найдём корни: х = -1, х = 4.
Новое уравнение(2х – 3)² = 25 неравносильно исходному уравнению 2х – 3= 5.
Корень х = -1 не является корнем исходного уравнения, следовательно, является посторонним корнем.
Посторонний корень может появиться при возведении обеих частей уравнения в квадрат, вообще в чётную степень .
Сократим дробь, стоящую в левой части уравнения на х и получим уравнение
Решим данное уравнение: х = 0 или х – 1= 0
т.е. корни данного уравнения 0 и 1.
Корнем исходного уравнения 0 не является, так как в исходном уравнении придётся делить на ноль, а так как на 0 делить нельзя, то х = 0 — посторонний корень.
Посторонний корень может появиться при сокращении дроби на выражение, содержащее неизвестное.
Возведём обе части уравнения в квадрат (возведение в чётную степень)
х = 5 – посторонний корень
Так как уравнение f²(х) = g²(х) является уравнением — следствием не только для уравнения
f(х) = g(х), но и для уравнения f(х) = — g(х). Поэтому при возведении в квадрат корни не теряются, но посторонние корни появиться могут. Уравнения не равносильны, но они равносильны на области определения: х 2.
Уравнение исходное можно заменить на равносильную систему
При решении иррациональных уравнений надо делать проверку подстановкой корней в исходное уравнение или использовать ОDЗ в зависимости от того, где вычисления выполняются легче.
Возведём обе части уравнения в квадрат.
2х – 1 — х² + 4х – 4 = 0
1 = — 1 – неверное 3 = 3 – верное
х = 1 – посторонний корень х = 5 – корень
Возведём обе части уравнения в квадрат (возведение в чётную степень).
х = х =
Проверка подстановкой в данном случае будет сопровождаться значительными трудностями при вычислении, поэтому прибегнем к использованию ОDЗ:
Из уравнения = — х — х 0
Подставим в данное неравенство полученные корни.
1) х = Имеем: — · 0 – неверное, т.к. произведение положительного и отрицательного числа отрицательно. Значит, х = — посторонний корень.
2) х = . Имеем: — · 0 – верное, т.к. произведение двух отрицательных чисел положительно. Значит, х = — корень уравнения.
Ответ: .
Посторонние корни могут появиться также при умножении обеих частей уравнения на множитель, содержащий неизвестное, если этот множитель при действительных значениях х обращается в нуль.
+ = |• (х-1).(х-2) 0
Умножим обе части уравнения на наименьший общий знаменатель дробей, не равный нулю.
1 + 3х – 6 = — х ² + 4х -3
Проверку в дробно – рациональных уравнениях делаем по условию неравенства нулю знаменателя, проверяем условие (х-1).(х-2) 0
(-1 – 1)(-1 – 2) 0 (2 -1 )(2 – 2) 0
6 0- верное 0 0 – неверное
х — корень уравнения х — посторонний корень
Причиной изменения множества корней уравнения во время его преобразования является применение равенств, правая и левая части которых имеют разные области определения. Вот некоторые из них:
• log (х·у) = log х + log у
В каждом из этих равенств область определения выражения, стоящего в правой части, является подмножеством области выражения, стоящего в левой части. Поэтому использование этих равенств слева направо может привести к потере корней, а справа налево – к появлению посторонних корней.
log (х – 2) + log (х+3) = 2
По свойству логарифмов имеем:
log (х – 2)(х + 3) = 2
х =6 и х =-7 х = -7 – посторонний корень
Исходное и последнее уравнения неравносильны в ОDЗ
Чтобы исключить посторонний корень надо использовать ОDЗ или уравнение заменить равносильной системой
3sinx + 4 cos x = 5
х = 2arctg + 2 , n
При переходе от уравнения (1) к уравнению(2) могла произойти потеря корней, значит необходимо проверить, являются ли корни уравнения cos =0 корнями данного уравнения.
Если х = , n ,тогда 3sin( ) + 4cos ( ) = 5, х
0 + 4(-1) = 5 – не верно, значит х = , n , не является корнями исходного уравнения.
Ответ: х = 2arctg + 2 , n
Итак, в процессе решения каждое уравнение заменялось на какое-то новое, а у нового уравнения естественно могут быть свои корни. Проследить за изменением корней, не допустить их потери и отбросить лишние корни – это и есть задача правильного решения уравнений.
Видео:Уравнения с корнем. Иррациональные уравнения #shortsСкачать
По теме: методические разработки, презентации и конспекты
Выход из одиночества…Урок внеклассного чтения в 10 классе. (Экзистенциальное восприятие мира в повести А. Камю «Посторонний»)
«Посторонний» – яркий пример экзистенциализма, основным критерием которого является п.
Типичные ошибки в решении задания С1(потеря корней, появление «посторонних» корней)
В презентации для подготовки к ЕГЭ по математике представлены решения двух заданий (тригонометрических уравнений), где подробно рассмотрены возможности появления посторонних корней и потери корн.
Самостоятельная работа на тему «Комплекс уравнений, при решении которых выполняется тождественные преобразования, приводящие к появлению посторонних корней или их потере, с анализом процесса решения»
Вашему вниманию предлагаю самостоятельную работу на тему «Комплекс уравнений, при решении которых выполняется тождественные преобразования, приводящие к появлению посторонних корней или их.
ПРАВИЛА пребывания на территории школы посторонних лиц
Летний оздоровительный лагерь «Зеленая планета», июнь 2017г.
Конспект мероприятия «Конкурс рисунков на асфальте «Добро пожаловать. Или посторонним вход воспрещён», посвящённого Дню солидарности в борьбе с терроризмом.
Занятие рекомендуется проводить с детьми младшего школьного возраста.Занятие проводится в форме доверительной беседы взрослого и детей. При этом взрослый должен не напугать детей, не научить их видеть.
Самостоятельная работа «Комплекс уравнений, при решении которых выполняется тождественные преобразования, приводящие к появлению посторонних корней или их потере, с анализом процесса решения»
Работа в помощь слушателям курсов преподавания алгебры.
Статья «Координаты счастья героев А.Камю (по повести «Посторонний»)»
Что есть счастье? «Чувство и состояние полного, высшего удовлетворения», как диктуется в толковом словаре. Чаще всего оно заметно по сверкающим глазам и искренней улыбке. Но возможно ли сч.
Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
math4school.ru
Видео:ЗАДАНИЕ 21 РЕШИТЕ УРАВНЕНИЕ С КОРНЕМ ОГЭ 2020 МАТЕМАТИКАСкачать
Ошибки в уравнениях
При выполнении контрольных, тестовых и экзаменационных работ по математике учащиеся решают самые разнообразные уравнения, отличающиеся по тематике и по сложности. Разобрать все ошибки, которые при этом допускаются, не представляется возможным. Ниже предлагаются примеры лишь наиболее распространенных ошибок и анализ ситуаций, в которых эти ошибки допускаются.
Потеря корней
При решении уравнений из-за выполнения нетождественных преобразований может произойти либо потеря корней , либо появление посторонних корней .
При выполнении нетождественных преобразований в процессе решения уравнения может произойти сужение области допустимых значений неизвестного , а значит, корни могут оказаться потерянными.
K Упражнение. Решить уравнение lg (x – 10) 2 + lg x 2 = 2lg 24 .
L Неправильное решение.
2lg (x – 10) + 2lg x = 2lg 24,
Произвели проверку и убедились, что все корни удовлетворяют данному уравнению.
Комментарий . Из-за неправильного применения формул произошло сужение области допустимых значений неизвестного.
J Правильное решение.
Ответ: –2; 4; 6 и 12.
При делении обеих частей уравнения на выражение, содержащее неизвестное , могут быть потеряны корни, которые обращают эти выражения в ноль.
K Упражнение 1. Решить уравнение 3 х ( х 2 – 2 х – 3) = 9 ( х 2 – 2 х – 3) .
L Неправильное решение.
Разделим обе части уравнения на квадратный трехчлен, записанный в скобках, и получим:
J Правильное решение.
Перенесем правую часть исходного уравнения влево и вынесем общий множитель за скобки:
K Упражнение 2. Решить уравнение lg 2 x – lg x = 0 .
L Неправильное решение.
Разделим обе части уравнения на lg x и получим:
J Правильное решение.
Необходимо помнить, что обычно легче исключить посторонний корень, чем найти потерянный.
Посторонние корни
При решении уравнений существуют два диаметрально противоположных мнения относительно полученного результата. Одни считают, что проверка должна производиться всегда, другие считают ее необязательной. На самом деле проверка полученных корней в одних случаях является обязательной и является частью решения уравнения, а в других случаях в проверке необходимости нет.
Проверка полученного решения уравнения обычно делается с целью исключения посторонних корней, которые чаще всего появляются в результате нетождественных преобразований, приводящих к расширению области допустимых значений переменного. Рассмотрим далее некоторые случаи появления посторонних корней.
Это может случиться при умножении обеих частей дробного уравнения на выражение, содержащее неизвестную величину .
K Упражнение. Решить уравнение
5 – x | – | 5 + 3х | = 0 . |
x – 1 | x 2 – 1 |
L Неправильное решение.
Умножим все члены уравнения на х 2 – 1 и получим:
Комментарий . Был приобретен посторонний корень х = 1, в чем можно убедиться с помощью проверки .
J Правильный ответ: х = 0.
Появление посторонних корней может быть вызвано сокращением дроби на множитель, содержащий неизвестную величину .
K Упражнение. Решить уравнение
х 2 – 81 |
2 | + х 2 – | 2 | – 4х = 0 . |
3х 2 | 3х 2 |
L Неправильное решение.
После приведения подобных слагаемых получим:
Комментарий . Был приобретен посторонний корень х = 0 .
J Правильный ответ: 4 .
Заметим, что аналогичная ситуация может сложиться и для слагаемых, содержащих переменную под знаком корня или под знаком логарифма.
Очень часто посторонние корни появляются при возведении в четную степень обеих частей уравнения . Рассмотрим следующее иррациональное уравнение и на его примере – процесс появления посторонних корней.
K Упражнение. Решить уравнение √ х + 3 + √ 7 – х = 2 .
L Неправильное решение.
И число –2 , и число 6 содержатся в области допустимых значений переменной х , значит, являются решениями исходного уравнения.
Комментарий . Оба корня посторонние и были приобретены в процессе решения. Как же это произошло? Дело вот в чем. В процессе решения с помощью возведения в квадрат и элементарных преобразований мы перешли от уравнения
Последнему уравнению число –2 удовлетворяет, после подстановки получаем верное равенство 1 = 1 . Предыдущее же уравнение при подстановке –2 дает ложное равенство 1 = –1 , которое стало верным именно в результате возведения в квадрат, ведь 1 2 = (–1) 2 . Число –2 является корнем второго уравнения, для первого – посторонний корень. А вот число 6 не является корнем ни одного из них.
Шестерка выходит на арену при переходе от уравнения
которое уже имеет один корень –2 , к уравнению
Теперь возведение в квадрат превращает ложное равенство 2 = –2 в истинное равенство 4 = 4 , которые соответствуют этим уравнениям для случая х = 6 . Для последнего уравнения 6 – истинный корень, а для предпоследнего – ложный. И вот, путем преобразований мы получаем уравнение
для которого числа –2 и 6 — самые настоящие корни, а для исходного — посторонние. Два раза мы применяли возведение в квадрат и каждый раз приобретали посторонний корень, каждый из которых благополучно преодолел фильтр ОДЗ. В данном случае проверка обязательна.
J Правильный ответ: решений нет.
Необходимо помнить, что если область допустимых значений неизвестного найдена и при решении уравнения получены корни, принадлежащие ей, то проверка корней не нужна, только если при этом в процессе решения все преобразования были тождественными.
Если при решении уравнения используется тот факт, что произведение равно нулю, когда хотя бы один из множителей равен нулю , прежде чем писать ответ, необходимо убедиться, что все найденные корни удовлетворяют условию.
K Упражнение. Решить уравнение ( x – 5) (х + 2) √ х – 3 = 0 .
L Неправильное решение.
Перейдем от данного уравнения у совокупности уравнений:
Комментарий . Число –2 обращает подкоренное выражение х – 3 в отрицательное число, а значит не может быть корнем уравнения.
J Правильный ответ: 5 и 3 .
Часто причиной изменения множества корней уравнения во время его преобразования является применение равенств, правая и левая части которых имеют разные области определения . Таких равенств много, вот некоторые из них:
x = | x · y |
y |
tg ( x + y ) = | tg x + tg y |
1 – tg x · tg y |
sin 2 x = | 2 tg x |
1 + tg 2 x |
В каждом из этих равенств область определения выражения, стоящего в правой части, является подмножеством области выражения, стоящего в левой части. Поэтому использование этих равенств слева направо может привести к потере корней, а справа налево – к появлению посторонних корней .
L Неправильное решение.
так как х ≥ 3 , то |х – 1| = х – 1 и
Комментарий . Применение формулы √ х · y = √ х · √ y привело к потере корня x = 1 . И вот почему. Исходное уравнение имеет область допустимых значений ∪[3; +∞) , а вот уже ОДЗ уравнения (left| x-1right|cdot sqrt=x-1) – только [3; +∞) , что и привело к потере 1 .
Можем порекомендовать возвести обе части исходного уравнения в квадрат. Это может привести к появлению посторонних корней, избавиться от которых проверкой, как правило, проще, чем заниматься поисками потерянных корней.
J Правильное решение.
(left(x-1 right)^2cdot left(x-3 right)=left(x-1 right)^2;)
(left(x-1 right)^2cdot left(x-3 right)-left(x-1 right)^2=0;)
(left(x-1 right)^2cdot left(x-4 right)=0;)
Проверкой убеждаемся, что оба корня действительные.
Ошибки, связанные с заменой переменной
При решении некоторых уравнений достаточно удачным является метод замены переменной . Но применение этого метода учащиеся осуществляют не всегда правильно.
Так необходимо помнить, что при наличии нескольких степеней заменять новой переменной надо ту, у которой показатель наименьший .
K Упражнение. Решить уравнение (5 left(x-3 right)^-6=left(x-3 right)^.)
L Неправильное решение.
Сделав замену ( left(x-3 right)^=t), считают, что ( left(x-3 right)^=t^2) и уравнение переписывают в виде 5t 2 – t – 6 = 0 , после чего, конечно, верный результат уже не получить.
J Правильное решение.
Верный результат можно получить, сделав замену ( left(x-3 right)^=t), тогда ( left(x-3 right)^=t^2) с продолжением:
Правильно сделав замену и верно найдя значение вспомогательной переменной, учащиеся часто допускают ошибку, используя не то равенство, которым вспомогательная переменная вводилась .
K Упражнение. Решить уравнение х + 4 √ x – 5 = 0 .
L Неправильное решение.
Комментарий . После нахождения значений вспомогательной переменной t для нахождения х следовало использовать подстановку √ x = t , а не x = t 2 .
J Правильное решение.
При решении иррациональных уравнений учащиеся чаще всего применяют метод возведения в соответствующую степень. В результате этого решения иррациональных уравнений получаются громоздкими и не всегда доводятся до конца .
K Упражнение. Решить уравнение (x^2-4x-sqrt=6.)
L Неправильное (нерациональное) решение.
Чаще всего данное уравнение начинают решать так:
Нередко продолжения решения не следует, так как с полученным уравнением четвертой степени справится не каждый.
Комментарий . В качестве альтернативы можно предложить способ введения новой переменной.
J Правильное решение.
и исходное уравнение принимает вид:
А дальше все просто:
Комментарий . Числа –2 и 6 не подвергались проверке осознанно. В данном случае после возведения в квадрат не могли появиться посторонние корни, так как и квадратный корень, и подкоренное выражение после возведения в квадрат заведомо равны положительным числам.
Ошибки, связанные с использованием модуля
При решении уравнений, в тех случаях, когда необходимо использовать понятия модуля и арифметического корня , допускаются серьезные ошибки, связанные либо с незнанием, либо с непониманием этих понятий.
K Упражнение 1. Решить уравнение (sqrt=9.)
L Неправильное решение.
J Правильное решение.
K Упражнение 2. Решить уравнение (sqrt=x+3.)
L Неправильное решение.
Ответ: корнем данного уравнения является любое действительное число.
J Правильное решение.
Учитывая, что решение уравнений, содержащих модуль, часто вызывает затруднения, приведем полное и развернутое решение одного из таких уравнений.
K Упражнение. Решить уравнение |x – 3| + |x –4| = 1 .
J Правильное решение.
Находим нули модулей, для |х – 3| это 3 , для |x – 4| это 4 , и разбиваем ими область допустимых значений неизвестного на числовые промежутки:
На каждом из этих промежутков исходное уравнение принимает свой вид.
1) при х ∈ (–∞; 3) исходное уравнение принимает вид:
так как 3 ∉ (–∞; 3 ) , то на этом промежутке решений нет;
2) при х ∈ [3; 4) исходное уравнение принимает вид:
что является истинным тождеством; значит, каждое число рассматриваемого промежутка [3; 4) является решением уравнения;
3) при х ∈ [4; +∞) исходное уравнение принимает вид:
так как 4 ∈ [4; +∞) , то 4 – корень уравнения.
Так как [3; 4)∪ = [3; 4] , то корнями исходного уравнения являются все числа числового промежутка [3; 4] .
Подбор корней без обоснования
К ошибочным решениям можно отнести и верный подбор корня заданного уравнения, иногда просто угадывание, без доказательства его единственности .
K Упражнение. Решить уравнение х (х + 1) (х + 2) (х + 3) = 24 .
L Неправильное решение.
Подбором находят корень х = 1 из разложения 24 = 1 · 2 · 3 · 4.
Комментарий . Был подобран корень х = 1 , но не обнаружен еще один корень х = –4 , который соответствует разложению 24 = –4 · (–3) · (–2) · (–1) . Но даже если и второй корень успешно подобран, но не обосновано отсутствие других корней, то считать такое решение уравнения правильным нельзя.
J Правильное решение.
введем новую переменную x 2 + 3х + 1 = t , тогда
1) x 2 + 3х + 1 = –5, x 2 + 3х + 6 = 0, решений нет;
Наиболее распространенным методом доказательства единственности корня нестандартного уравнения является использование свойства монотонности входящих в уравнение функций . Часто при этом используется производная.
K Упражнение. Решить уравнение x 11 + 5х – 6 = 0 .
L Неправильное решение.
Методом подбора находим корень уравнения х = 1 .
Комментарий . Не приведено обоснование единственности подобранного корня уравнения.
J Правильное решение.
Корень х = 1 легко угадывается, а производная левой части равна 11x 10 + 5 и положительна на всей числовой оси. Отсюда следует монотонность функции у = x 11 + 5х – 6 , что и доказывает единственность подобранного корня.
Ошибки в логарифмических и показательных уравнениях
Для решения логарифмических и показательных уравнений используются специальные приемы, основанные на свойствах логарифмов и степеней. Рассмотрим связанные с применением этих приемов ошибки.
При решении уравнений, которые можно свести к равенству степеней с одинаковыми основаниями или с одинаковыми показателями , не всегда делаются правильные выводы.
K Упражнение 1. Решить уравнение (log7 x) 1 /3 = 1 .
L Неправильное решение.
Так как при одинаковых основаниях показатели не равны, то равенство степеней невозможно, а, значит, корней нет.
Ответ: корней нет.
J Правильное решение.
Возведем в куб обе части уравнения, тогда
K Упражнение 2. Решить уравнение (х + 5) х 2 + х – 2 = 1 .
L Неправильное решение.
Комментарий . Потерян корень х = –4 . Избежать этого можно было и при данном способе решения уравнения, если учесть, что степень равна 1 не только в случае нулевого показателя, но и в случае основания равного 1 при произвольном показателе. И тогда в дополнение к приведенному решению имеем:
J Правильное решение.
Прологарифмируем обе части уравнения по некоторому основанию, например 10, при условии х > 5 , тогда
Необходимо помнить, что:
из равенства степеней, основания которых равны единице, не следует обязательное равенство показателей этих степеней;
степенно–показательное уравнение предпочтительно решать путем логарифмирования.
При решении логарифмических уравнений часто приходится применять свойства логарифмов с одинаковыми основаниями . При применении этих свойств учащиеся часто допускают ошибки.
L Неправильное решение.
Комментарий . В решении допущены две серьезные ошибки: во-первых, произведение логарифмов двух чисел заменено логарифмом произведения этих чисел; во-вторых, при решении уравнения 3х 2 = 81x потерян корень х = 0 (этот корень, конечно, не является корнем исходного уравнения, что не оправдывает его потерю).
J Правильное решение.
K Упражнение 2. Решить уравнение lg x 2 = 4 .
L Неправильное решение.
J Правильное решение 1.
2lg |x| = 4; lg | x| = 2; |x| = 100; x = ±100.
J Правильное решение 2.
lg x 2 = lg 10000; x 2 = 10000; x = ±100.
Большие затруднения у многих учащихся возникают при выполнении действий над логарифмами с разными основаниями , так как учащиеся либо не умеют пользоваться соответствующими формулами, либо не знают их.
Следует помнить, что переход к логарифму с другим основанием может привести как к приобретению посторонних корней, так и к потере корней .
K Упражнение 1. Решить уравнение (left(log_5 +2 right)<log _>^2 ;x=0.)
L Неправильное решение.
(left(1 +2 log _xright)log _x=0;)
Комментарий . Преобразование логарифма с основание х в логарифм с основанием 5 привело к появлению постороннего корня, так как произошло расширение ОДЗ.
J Правильное решение.
Приведенное выше решение следует дополнить указанием области допустимых значений неизвестного в исходном уравнении. Это объединение числовых промежутков (0; 1)∪(1; +∞) . И указанием того факта, что 1 ∉ (0; 1)∪(1; +∞) , а, значит, не является корнем.
K Упражнение 2. Решить уравнение (20log_sqrt+ 7log_x^3-3log _x^2=0.)
L Неправильное решение.
Комментарий . В приведенном решении потерян корень, и вот почему. Был выполнен переход к логарифму с основанием х . Это вызвало изменения в ОДЗ неизвестного. Одно из таких изменений – это х ≠ 1 . Поэтому число 1 , как возможный корень исходного уравнения, следует рассмотреть отдельно.
J Правильное решение.
Приведенное выше решение нужно дополнить лишь проверкой того, не является ли 1 корнем уравнения. Подставляем 1 в исходное уравнение и убеждаемся, что 1 – корень.
Ошибки в тригонометрических уравнениях
Выделение в отдельный подраздел тригонометрических уравнений связано стем, что при их решении применяются не только алгебраические методы. Рассмотрим наиболее типичные ошибки, которые допускают учащиеся при решении тригонометрических уравнений.
Часто можно встретить неправильную запись решения тригонометрического уравнения или лишь частное решение .
🌟 Видео
5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
АЛГЕБРА 7 класс : Уравнение и его корни | ВидеоурокСкачать
Посторонние корни иррационального уравненияСкачать
5 класс. Уравнение. Компоненты уравнения. Корень уравнения и его проверка.Скачать
ЕГЭ по математике. Профильный уровень. Задание 5. Найдите корень уравненияСкачать
Формула корней квадратного уравнения. Алгебра, 8 классСкачать
8 класс, 38 урок, Иррациональные уравненияСкачать
Уравнение с корнем и подвохомСкачать
ОГЭ ЗАДАНИЕ 9 НАЙДИТЕ КОРЕНЬ УРАВНЕНИЯСкачать
РАЗБИРАЕМ ДИСКРИМИНАНТ ЧАСТЬ I #shorts #математика #егэ #огэ #дискриминантСкачать