Тема «Целое и части» — одна из важных в математике 1 классе.
Познакомить с этими понятиями очень легко на самом простом примере: возьмите яблоко.
Что можно рассказать о нем? (На самом деле ответов очень много – это цвет, размер, форма).
Что мы видим теперь? Сколько кусков получилось?
Кусок в математике называется – частью.
Сколько получилось частей? А можно по-другому разрезать?
Что больше: целое или его часть?
Если мы соединим эти части, то получим целое яблоко.
Часть всегда меньше целого, а целое всегда больше части.
Целое равно сумме частей.
Чтобы найти часть, надо из целого вычесть другую часть.
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 5 / 5. Количество оценок: 67
- Решение уравнений с опорой на отношение «части и целое»
- Описание презентации по отдельным слайдам:
- Охрана труда
- Пожарная безопасность
- Охрана труда
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- Алгебра
- Целое уравнение и его степень
- Решение уравнений методом подбора корня
- Решение уравнений с помощью разложения многочлена на множители
- Графический метод решения уравнений
- Решение дробно-рациональных уравнений
- 🔍 Видео
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Решение уравнений с опорой на отношение «части и целое»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Рабочие листы и материалы для учителей и воспитателей
Более 2 500 дидактических материалов для школьного и домашнего обучения
Описание презентации по отдельным слайдам:
Урок математики в 1 классе
УМК «Классическая программа»
Решение уравнений с опорой на отношение «части и целое»
Автор: Шишкалова Нина Петровна
учитель начальных классов
МБОУ «СОШ№6»
Г. Сосновый Бор
Цель:
учить решать уравнения, используя графические модели (схемы) и отношение «части и целое».
Подготовительный этап к восприятию нового материала.
Задание 1. У данных фигур покажите части и целое.
Задание 2. Найдите лишнюю фигуру.
а)
б)
в)
г)
д)
е)
Задание 2. По данной модели составьте из частей целое. Запишите формулу, применяя правило.
А
М
В
К
А = _____________
Если сложить части, то получится целое.
М
В
К
По этой же модели запишите формулы, как из целого найти части.
А
М = ____________
В = _____________
К = _____________
Если из целого вычесть часть, то останется другая часть.
К = А – М – В
Проверьте правильность выполненного вами задания.
А = М + В + К
М = А – В – К
В = А – М – К
Задание 3. (выполняется устно)
— Вычислить целое по его частям.
+
=
5 и 2 4 и 5
3 и 7 8 и 1
6 и 2 9 и 2
— Вычислить часть по целому и другой части.
=
—
8 и 2 5 и 4
7 и 1 6 и 2
7 и 4 3 и 2
Задание 4.
Обозначьте задуманное число буквой Х, У или Z. Запишите предложения формулами.
К задуманному числу прибавили 2 и получили 4.
Из задуманного числа вычли 3 и получили 2.
Из числа 7 вычли задуманное число и получили 6.
Равенства имеют вид: (проверка)
Х + 2 =4 У – 3 = 2 7 – Z = 6
Равенство, в котором есть неизвестная величина, называется уравнением.
Чтобы решить уравнение, нужно определить, что неизвестно — часть или целое. В этом помогут модели и схемы.
Задание 5.
— Обозначьте в каждом уравнении части и целое и найдите неизвестное число.
Х + 2 = 4 У – 3 = 2 7 – Z = 6
Х = У = Z =
Алгоритм.
Определите, частью или целым является неизвестная величина.
Примените правило и выберите действие.
Проверка выполненного задания.
x + 2 = 4 y — 3 = 2
x = 4 — 2 y = 3 + 2
7 — z = 6
z = 7 — 6
Проблемные и практические задачи по теме.
Задание 1.
Найдите и прочитайте те выражения, которые являются уравнениями.
c = a – b 5 = 6 – x
7 + x = 10 6 + 2 = 9
6 = 4 + 2 x – 4 = 3
Задание 2.
Составьте модели к найденным уравнениям и найдите неизвестное число.
Проверка выполненного задания.
7 + x = 10 5 = 6 — x
10
7
X
6
5
X
x – 4 = 3
x
4
3
Задание 3.
Составьте всевозможные уравнения по данной схеме.
x
c
a
Возможные варианты ответов.
x + c = a
a – x = c
c + x = a
a – c = x
Задание 4. Дано уравнение. x = d – a
— Определите, по какой из схем составлено уравнение.
Задание 5.
Решите задачу, используя модели или схему.
Мама испекла 16 пирожков. Когда несколько пирожков съели, их осталось 10. Сколько пирожков съели?
Проверьте схему и объясните свой выбор решения.
?
10
16
16
?
10
Выводы по теме.
Уравнение – это равенство с одним неизвестным.
Если неизвестна часть, то от целого отнимают другую часть.
Если неизвестно целое, то части складывают.
Уравнение – один из способов решения задачи.
Курс повышения квалификации
Охрана труда
- Сейчас обучается 135 человек из 48 регионов
Курс профессиональной переподготовки
Пожарная безопасность
- Сейчас обучается 131 человек из 45 регионов
Курс профессиональной переподготовки
Охрана труда
- Сейчас обучается 255 человек из 56 регионов
«Мотивация здорового образа жизни. Организация секций»
Свидетельство и скидка на обучение каждому участнику
- Для всех учеников 1-11 классов
и дошкольников - Интересные задания
по 16 предметам
«Как закрыть гештальт: практики и упражнения»
Свидетельство и скидка на обучение каждому участнику
Видео:РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать
Дистанционные курсы для педагогов
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 846 257 материалов в базе
Ищем педагогов в команду «Инфоурок»
Другие материалы
- 27.12.2020
- 1586
- 48
- 27.12.2020
- 1693
- 6
- 27.12.2020
- 616
- 4
- 27.12.2020
- 495
- 0
- 27.12.2020
- 469
- 0
- 27.12.2020
- 378
- 1
- 27.12.2020
- 527
- 3
- 27.12.2020
- 200
- 0
«Учись, играя: эффективное обучение иностранным языкам дошкольников»
Свидетельство и скидка на обучение
каждому участнику
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 03.06.2020 699
- PPTX 148 кбайт
- 6 скачиваний
- Оцените материал:
Настоящий материал опубликован пользователем Софронова Ольга Владимировна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 1 год и 4 месяца
- Подписчики: 0
- Всего просмотров: 27578
- Всего материалов: 234
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:РЕШЕНИЕ УРАВНЕНИЙ ЛЕГКО ! 1 КЛАСС МАТЕМАТИКА УРАВНЕНИЯ - ПЕТЕРСОН / ОБЪЯСНЕНИЕ КАК РЕШАТЬ УРАВНЕНИЯСкачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Минобрнауки отменило плановые и внеплановые проверки вузов в 2022 году
Время чтения: 1 минута
Эвакуированные в Россию из ДНР и ЛНР дети смогут поступить в вузы по квоте
Время чтения: 1 минута
Путин объявил 2022-2031 годы Десятилетием науки и технологий
Время чтения: 1 минута
С 1 сентября в российских школах будут исполнять гимн России
Время чтения: 1 минута
Минпросвещения рекомендует школьникам сдавать телефоны перед входом в школу
Время чтения: 1 минута
Роспотребнадзор сообщил об опасности размещения вышек сотовой связи на территории школ
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Видео:Решение биквадратных уравнений. 8 класс.Скачать
Алгебра
Помощь студентам в решении контрольных и курсовых работ
Подготовка к дипломной, повышение уникальности
Помощь студентам в решении контрольных и курсовых работ
Консультация, сбор материала, повышение уникальности
Помощь в подготовке дипломной. Сопровождение до защиты!
План урока:
Видео:Целое и части. Математика 1 класс.Скачать
Целое уравнение и его степень
Ранее мы уже изучали понятие целого выражения. Так называют любое выражение с переменной, в котором могут использоваться любые арифметические операции, а также возведение в степень. Однако есть важное ограничение – в целом выражении переменная НЕ может находиться в знаменателе какой-нибудь дроби или быть частью делителя. Также переменная не может находиться под знаком корня. Для наглядности приведем примеры целых выражений:
(n 3 + 7)/5 (в знаменателе находится только число, без переменной);
А вот примеры нецелых выражений:
Отличительной особенностью целых выражений является то, что в них переменная может принимать любое значение. В нецелых же выражениях возникают ограничения на значения переменной, ведь знаменатель дроби не должен равняться нулю, в выражение под знаком корня не должно быть отрицательным.
Введем понятие целого уравнения.
Приведем примеры целых ур-ний:
0,75х 7 + 0,53х 6 – 45х = 18
Напомним, что в математике существует понятие равносильных уравнений.
Когда мы решаем ур-ния, мы в каждой новой строчке записываем ур-ние, равносильное предыдущему. Для этого используются равносильные преобразования (перенос слагаемых через знак «=» с противоположным знаком, деление обоих частей равенства на одинаковые числа и т. д.).
Можно доказать (мы этого делать не будем), что любое целое ур-ние можно возможно преобразовать так, чтобы получилось иное, равносильное ему ур-ние, где в левой части будет находиться многочлен, а справа – ноль. Для этого надо лишь раскрыть скобки и умножить ур-ние на какое-нибудь число, чтобы избавиться от дробей.
Пример. Преобразуйте целое ур-ние
так, чтобы слева стоял многочлен, а справа – ноль.
Решение. В ур-нии есть дроби со знаменателями 5 и 4. Если умножить обе части на 20 (это наименьшее общее кратное чисел 5 и 4), то дроби исчезнут:
Теперь раскроем скобки:
4(5х 3 – 3х 4 + 45х – 27х 2 ) – 40 = 10х 2 + 5х + 35
20х 3 – 12х 4 + 180х – 108х 2 – 40 = 10х 2 + 5х + 35
Осталось перенести все слагаемые влево и привести подобные слагаемые:
20х 3 – 12х 4 + 180х – 108х 2 – 40 – 10х 2 – 5х – 35 = 0
– 12х 4 + 20х 3 – 118х 2 + 175х – 75 = 0
Получили ур-ние в той форме, которую и надо было найти по условию.
Ответ:– 12х 4 + 20х 3 – 118х 2 + 175х – 75 = 0
В математике любой полином можно обозначить как Р(х). Если ур-ние привели к тому виду, когда в одной части многочлен, а в другой ноль, то говорят, что получили ур-ние вида Р(х) = 0.
Получается, что решение целого уравнения всегда можно свести к решению равносильного ему ур-ния Р(х) = 0. Именно поэтому многочлены играют такую большую роль в математике
Напомним, что степенью многочлена называется максимальная степень входящего в его состав одночлена. Это же число является и степенью целого уравнения Р(х) = 0, а также степенью любого равносильного ему целого ур-ния.
Пример. Определите степень ур-ния
(х 3 – 5)(2х + 7) = 2х 4 + 9
Решение. Приведем ур-ние к виду Р(х) = 0. Для этого раскроем скобки:
(х 3 – 5)(2х + 7) = 2х 4 + 9
2х 4 + 7х 3 – 10х – 35 = 2х 4 + 9
Перенесем все слагаемые влево и приведем подобные слагаемые:
2х 4 + 7х 3 – 10х – 35 – 2х 4 – 9 = 0
7х 3 – 10х – 44 = 0
Получили в левой части многочлен 3-ей степени. Следовательно, и исходное ур-ние имело такую же степень
Приведем примеры ур-ний первой степени:
5,4568у + 0,0002145 = 0
Все они являются линейными ур-ниями, метод их решения изучался ранее. Они имеют 1 корень.
Приведем примеры ур-ний второй степени:
6t 2 + 98t – 52 = 0
Это квадратные ур-ния. У них не более двух действительных корней. Для их нахождения в общем случае надо вычислить дискриминант и использовать формулу
Квадратные и линейные ур-ния умели решать ещё в Древнем Вавилоне 4 тысячи лет назад! А вот с ур-ния 3-ей степени (их ещё называют кубическими уравнениями) оказались значительно сложнее. Приведем их примеры:
2х 3 + 4х 2 – 19х + 17 = 0
Лишь в 1545 году итальянец Джералимо Кардано опубликовал книгу, в которой описывался общий алгоритм решения кубических ур-ний. Он достаточно сложный и не входит в школьный курс математики. Его ученик, Лодовико Феррари, предложил метод решения ур-ний четвертой степени. В качестве примера такого ур-ния можно привести:
5х 4 + 6х 3 – 2х 2 – 10х + 1 = 0
Лишь в XIX веке было доказано, что для ур-ний более высоких степеней (5-ой, 6-ой и т. д.) не существует универсальных формул, с помощью которых можно было бы найти их корни.
Отметим, что если степень целого ур-ния равна n, то у него не более n корней (но их число может быть и меньше). Так, количество корней кубического уравнения не превышает трех, а у ур-ния 4-ой степени их не более 4.
Чтобы доказать это утверждение, сначала покажем способ составления уравнения Р(х) = 0, имеющего заранее заданные корни. Пусть требуется составить ур-ние, имеющее корни k1, k2,k3,…kn. Приравняем к нулю следующее произведение скобок:
Составленное ур-ние имеет все требуемые корни и никаких других корней. Действительно, произведение множителей может равняться нулю только в случае, если хотя бы один из множителей нулевой. Поэтому для решения ур-ния
надо каждую скобку приравнять к нулю:
х – k1 = 0 или х – k2 = 0 или х – k3 = 0 или…х – kn = 0
Перенесем второе слагаемое вправо в каждом равенстве и получим:
Чтобы вместо произведения скобок слева стоял многочлен, надо просто раскрыть скобки.
Пример. Составьте уравнение в виде Р(х) = 0, имеющее корни 1, 2, 3 и 4.
Запишем целое ур-ние, имеющее требуемые корни:
(х – 1)(х – 2)(х – 3)(х – 4) = 0
Будем поочередно раскрывать скобки, умножая 1-ую скобку на 2-ую, полученный результат на 3-ю и т.д.:
(х 2 – 3х + 2)(х – 3)(х – 4) = 0
(х 3 – 6х 2 + 11х – 6)(х – 4) = 0
х 4 – 10х 3 + 35х 2 – 50х +24 = 0
Получили ур-ние вида Р(х) = 0. Для проверки вычислений можно подставить в него числа 1, 2, 3 и 4 и убедиться, что они обращают ур-ние в верное равенство.
Ответ: х 4 – 10х 3 + 35х 2 – 50х +24 = 0
Заметим, что в рассмотренном примере, когда мы перемножали многочлены, мы получали новый полином, чья степень увеличивалась на единицу. Мы перемножили 4 скобки (х – k1), а потому получили полином 4 степени. Если бы мы перемножали, скажем, 10 таких скобок, то и многочлен бы получился 10-ой степени. Именно поэтому ур-ние n-ой степени не более n корней.
Действительно, предположим, что какое-то ур-ние n-ой степени имеет хотя бы (n + 1) корень. Обозначим эти корни как k1, k2,k3,…kn, kn+1 и запишем уравнение:
Оно, по определению, равносильно исходному ур-нию, ведь оно имеет тот же набор корней. Слева записаны (n + 1) скобок, поэтому при их раскрытии мы получим полином степени (n + 1). Значит, и исходное ур-ние на самом деле имеет степень n + 1, а не n. Получили противоречие, которое означает, что на самом деле у уравнения n-ой степени не более n корней.
Особо акцентируем внимание на том факте, что если корнями уравнения являются некоторые числа k1, k2,k3,…kn, то этому ур-нию равносильна запись (х – k1)(х – k2)(х – k3)…(х – kn) = 0
Этот факт будет использован далее при решении ур-ний.
Видео:Как найти ЦЕЛОЕ? Целое и части. Математика 1 класс.Скачать
Решение уравнений методом подбора корня
Необязательно преобразовывать ур-ние, чтобы найти его корни. Одним из приемов решения целых уравнений является метод подбора корня. Ведь если надо доказать, что какое-то число – это корень ур-ния, достаточно просто подставить это число в ур-ние и получить справедливое равенство!
Пример. Докажите, что корнями ур-ния
х 3 – 2х 2 – х + 2 = 0
являются только числа (– 1), 1 и 2.
Решение. Подставим в ур-ние каждую из предполагаемых корней и получим справедливое равенство. При х = – 1 имеем:
(– 1) 3 – 2(– 1) 2 – (– 1) + 2 = 0
При х = 1 получаем:
1 3 – 2•1 2 – 1 + 2 = 0
Наконец, рассмотрим случай, когда х = 2
2 3 – 2•2 2 – 2 + 2 = 0
Исходное ур-ние имеет 3-ю степень, поэтому у него не более 3 корней. То есть других корней, кроме (– 1), 1 и 2 , у него нет.
Конечно, просто так подобрать корни довольно тяжело. Однако есть некоторые правила, которые помогают в этом. Для начала введем понятие коэффициентов уравнения.
Понятно, что ур-ние Р(х) = 0 в общем виде можно записать так:
Числа а0, а1, а2,…аnи называют коэффициентами уравнений.
Например, для уравнения
5х 4 – 7х 3 + 9х 2 – х + 12 = 0
Если одна из слагаемых «пропущено» в уравнении, то считают, что коэффициент перед ним равен нулю. Например, в ур-нии
нет слагаемого с буквенной частью х 2 . Можно считать, что ур-ние равносильно записи
х 3 + 0х 2 + 2х – 15 = 0
где слагаемое х 2 есть, но перед ним стоит ноль. Тогда коэффициент а1 = 0.
Для обозначения первого коэффициента а0 может использоваться термин старший коэффициент, а для последнего коэффициента аn – термин «свободный член» или «свободный коэффициент».
Изучение коэффициентов ур-ния помогает быстрее подобрать корень. Существует следующая теорема:
Докажем это утверждение. Пусть m – это целый корень уравнения с целыми коэффициентами
Тогда можно подставить туда число m и получить верное равенство:
Поделим обе его части на m и получим
Справа – целое число (ноль), значит, и сумма чисел слева также целая. Все числа а0m n –1 , a1m n –2 , аn–1, очевидно, целые (так как и целыми являются и m, и все коэффициенты). Значит, и число аn/m должно быть целым. Но это возможно лишь в том случае, если m является делителем числа аn.
Из доказанной теоремы следует, что при подборе корней ур-ния достаточно рассматривать только те из них, которые являются делителями свободного члена. При этом следует учитывать и отрицательные делители.
Пример. Найдите целые корни уравнения
2х 4 – х 3 – 9х 2 + 4х + 4 = 0
Решение. Все коэффициенты ур-ния – целые, а потому целый корень должен быть делителем свободного члена, то есть числа 4. Делителями четверки являются 1 и (– 1), 2 и (– 2), 4 и (– 4). Подставляя каждое из этих чисел в ур-ние, получим верные равенства только для чисел 1, 2 и (– 2):
2•1 4 – 1 3 – 9•1 2 + 4•1 + 4 = 2 – 1 – 9 + 4 + 4 = 0
2•2 4 – 2 3 – 9•2 2 + 4•2 + 4 = 32 – 8 – 36 + 8 + 4 = 0
2•(– 2) 4 – (– 2) 3 – 9•(– 2) 2 + 4(– 2) + 4 = 32 + 8 – 36 – 8 + 4 = 0
Таким образом, только эти числа и могут быть целыми корнями ур-ния. Так как мы рассматриваем ур-ние 4 степени, то, возможно, у него помимо 3 целых корней есть ещё один дробный.
Пример. Решите ур-ние
0,5х 3 + 0,5х + 5 = 0
Решение. У ур-ния дробные коэффициенты. Умножим обе части равенства на 2 и получим ур-ние с целыми коэффициентами:
0,5х 3 + 0,5х + 5 = 0
(0,5х 3 + 0,5х + 5)•2 = 0•2
Попытаемся подобрать целый корень ур-ния. Он должен быть делителем свободного члена, то есть десятки. Возможными кандидатами являются числа 1 и (– 1), 2 и (– 2), 5 и (– 5), 10 и (– 10). Подходит только корень х = – 2:
(– 2) 3 + (– 2) + 10 = – 8 – 2 + 10 = 0
Обратим внимание, что в левой части ур-ния стоит сумма функций, возрастающих на всей числовой прямой: у = х 3 и у = х + 10. Значит, и вся левая часть х 3 + х + 10 монотонно возрастает. Это значит, что у ур-ния есть только один корень, и мы его нашли ранее подбором.
Ещё быстрее можно узнать, является ли единица корнем уравнения.
Докажем это. Подставим в ур-ние
значение х = 1. Так как единица в любой степени равна самой единице, то получим:
Получили равенство, в котором слева стоит сумма коэффициентов, в справа – ноль. Если сумма коэффициентов действительно равна нулю, то равенство верное, а, значит, единица является корнем ур-ния.
Пример. Укажите хотя бы 1 корень ур-ния
499х 10 – 9990х 7 + 501х 6 – 10х 5 + 10000х 4 – 1000 = 0
Решение. Заметим, что при сложении коэффициентов ур-ния получается 0:
499 – 9990 + 501 – 10 + 10000 – 1000 = (499 + 501 – 1000) + (10000 – 9990 – 10) = 0 + 0 = 0
Следовательно, единица является его корнем.
Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Решение уравнений с помощью разложения многочлена на множители
Если в уравнении вида P(x) = 0в левой части удается выполнить разложение многочлена на множители, то дальше каждый из множителей можно отдельно приравнять к нулю.
Пример. Решите ур-ние
Решение. Степень х 4 можно представить как (х 2 ) 2 , а 16 – как 4 2 . Получается, что слева стоит разность квадратов, которую можно разложить на множители по известной формуле:
(х 2 – 4)(х 2 + 4) = 0
Приравняем каждую скобку к нулю и получим два квадратных ур-ния:
х 2 – 4 = 0 или х 2 + 4 = 0
х 2 = 4 или х 2 = – 4
Первое ур-ние имеет два противоположных корня: 2 и (– 2). Второе ур-ние корней не имеет.
Предположим, что у ур-ния 3-ей степени есть 3 корня, и подбором мы нашли один из них. Как найти оставшиеся корни? Здесь помогает процедура, известная как «деление многочленов в столбик». Продемонстрируем ее на примере. Пусть надо решить ур-ние
100х 3 – 210х 2 + 134х – 24 = 0
Можно заметить, сумма всех коэффициентов ур-ния равна нулю:
100 – 210 + 134 – 24 = 0
Следовательно, первый корень – это 1.
Предположим, что у исходного ур-нияР(х) = 0 есть 3 корня, k1, k2и k3. Тогда ему равносильно другое ур-ние
Мы нашли, что первый корень k1 = 1, то есть
Обозначим как P1(x) = 0 ещё одно ур-ние, корнями которого будут только числа k2 и k3. Очевидно, что корнями ур-ния
Будут числа 1, k2 и k3. Его корни совпадают с корнями исходного ур-ния, а потому запишем
(х – 1)•P1(x) = 100х 3 – 210х 2 + 134х – 24
Поделим обе части на (х – 1):
Итак, если «поделить» исходное ур-ние на х – 1, то получим какой-то многочлен Р1(х), причем решением уравнения P1(x) = 0 будут оставшиеся два корня, k2и k3. Деление можно выполнить в столбик. Для этого сначала запишем «делимое» и «делитель», как и при делении чисел:
Смотрим на первое слагаемое делимого. Это 100х 3 . На какой одночлен нужно умножить делитель (х – 1), чтобы получился полином со слагаемым 100х 3 ? Это 100х 2 . Действительно, (х – 1)100х 2 = 100х 3 – 100х 2 . Запишем слагаемое 100х 2 в результат деления, а результат его умножения на делитель, то есть 100х 3 – 100х 2 , вычтем из делимого:
Теперь вычтем из делимого то выражение, которое мы записали под ним. Слагаемые 100х 3 , естественно, сократятся:
(100х 3 – 210х 2 ) – (100х 3 – 100х 2 ) = 100х 3 – 210х 2 – 100х 3 + 100х 2 = – 110х 2
Далее снесем слагаемое 134х вниз:
На какое слагаемое нужно умножить (х – 1), что получился полином со слагаемым (– 110х 2 ). Очевидно, на (– 110х):
(х – 1)(– 110х 2 ) = –110х 2 + 110х
Запишем в поле «ответа» слагаемое (– 110х 2 ), а под делимый многочлен – результат его умножения на (х – 1):
При вычитании из (–110х 2 + 134х) полинома (–110х 2 + 110х) остается 24х. Далее сносим последнее слагаемое делимого многочлена вниз:
Выражение х – 1 нужно умножить на 24, чтобы получить 24х – 24. Запишем в поле «ответа» число 24, а в столбике произведение 24(х –1) = 24х – 24:
В результате в остатке получился ноль. Значит, всё сделано правильно. С помощью деления столбиком мы смогли разложить полином 100х 3 – 210х 2 + 134х – 24 на множители:
100х 3 – 210х 2 + 134х – 24 = (х – 1)(100х 2 – 110х + 24)
Теперь перепишем исходное ур-ние с учетом этого разложения:
100х 3 – 210х 2 + 134х – 24 = 0
(х – 1)(100х 2 – 110х + 24) = 0
Теперь каждую отдельную скобку можно приравнять нулю. Получим ур-ние х – 1 = 0, корень которого, равный единице, мы уже нашли подбором. Приравняв к нулю вторую скобку, получим квадратное ур-ние:
100х 2 – 110х + 24 = 0
D =b 2 – 4ас = (– 110) 2 – 4•100•24 = 12100 – 9600 = 2500
Итак, мы нашли три корня ур-ния: 1; 0,3 и 0,8.
В данном случае мы воспользовались следующим правилом:
Пример. Решите уравнение
2х 3 – 8х 2 + 16 = 0
Решение. Все коэффициенты целые, а потому, если у уравнения есть целый корень, то он должен быть делителем 16. Перечислим эти делители: 1, – 1, 2, – 2, 4, – 4, 8, – 8, 16, – 16. Из всех них подходит только двойка:
2•2 3 – 8•2 2 + 16 = 16 – 32 + 16 = 0
Итак, первый корень равен 2. Это значит, что исходный многочлен можно разложить на множители, один из которых – это (х – 2). Второй множитель найдем делением в столбик. Так как в многочлене 2х 3 – 8х 2 + 16 нет слагаемого с буквенной часть х, то искусственно добавим её:
2х 3 – 8х 2 + 16 = 2х 3 – 8х 2 + 0х + 16
Теперь возможно деление:
Получили, что 2х 3 – 8х 2 + 16 = (х – 2)(2х – 4х – 8)
С учетом этого перепишем исходное ур-ние:
2х 3 – 8х 2 + 16 = 0
(х – 2)(2х – 4х – 8) = 0
х – 2 = 0 или 2х – 4х – 8 = 0
Решим квадратное ур-ние
D =b 2 – 4ас = (– 4) 2 – 4•2•(– 8) = 16 + 64 = 80
В 8 классе мы узнали, что если у квадратного ур-ния ах 2 + bx + c = 0 есть два корня, то многочлен ах 2 + bx + c можно разложить на множители по формуле
где k1 и k2– корни квадратного ур-ния. Оказывается, такое же действие можно выполнять с многочленами и более высоких степеней. В частности, если у кубического ур-ния есть 3 корня k1, k2 и k3, то его можно разложить на множители по формуле
Пример. Разложите на множители многочлен 2х 3 – 4х 2 – 2х + 4.
Решение. Целые корни этого многочлена (если они есть), должны быть делителем четверки. Из всех таких делителей подходят три: 1, (– 1) и 2:
2•1 3 – 4•1 2 – 2•1 + 4 = 2 – 4 – 2 + 4 = 0
2•(– 1) 3 – 4•(– 1) 2 – 2•(– 1) + 4 = – 2 – 4 + 2 + 4 = 0
2•2 3 – 4•2 2 – 2•2 + 4 = 16 – 16 – 4 + 4 = 0
Значит, многочлен можно разложить на множители:
2х 3 – 4х 2 – 2х + 4 = 2(х + 1)(х – 1)(х – 2)
Возникает вопрос – почему перед скобками нужна двойка? Попробуем сначала перемножить скобки без ее использования:
(х + 1)(х – 1)(х – 2) = (х 2 – 1)(х – 2) = х 3 – 2х 2 – х + 2
Получили не тот многочлен, который стоит в условии. Однако ур-ние
х 3 – 2х 2 – х + 2 = 0
имеет те же корни (1, 2 и (– 1)), что и ур-ние
2х 3 – 4х 2 – 2х + 4 = 0
Дело в том, что это равносильные ур-ния, причем второе получено умножением первого на два:
2•(х 3 – 2х 2 – х + 2) = 2х 3 – 4х 2 – 2х + 4
Надо понимать, что хотя ур-ния 2х 3 – 4х 2 – 2х + 4 = 0 и х 3 – 2х 2 – х + 2 = 0, по сути, одинаковы, многочлены в их левой части различны. Заметим, что при перемножении скобок (х – k1), (х – k2), (х – k3) и т.д. всегда будет получаться полином, у которого старший коэффициент равен единице. Поэтому, чтобы учесть этот самый коэффициент, надо домножить произведение скобок на него:
2х 3 – 4х 2 – 2х + 4= 2•(х 3 – 2х 2 – х + 2) = 2(х + 1)(х – 1)(х – 2)
Ответ: 2(х + 1)(х – 1)(х – 2).
Видео:Как решать уравнения просто с помощью целого и части, развивающее обучениеСкачать
Графический метод решения уравнений
Любое ур-ние с одной переменной можно представить в виде равенства
где у(х) и g(x) – некоторые функции от аргумента х.
Построив графики этих функций, можно примерно найти точки их пересечений. Они и будут соответствовать корням уравнения.
Пример. Решите графически уравнение
Решение. Строить график уравнения х 3 – х 2 – 1 = 0 довольно сложно, поэтому перенесем слагаемое (– х 2 – 1) вправо:
Построим графики у = х 3 и у = х 2 + 1 (второй можно получить переносом параболы у = х 2 на единицу вверх):
Видно, они пересекаются в точке, примерно соответствующей значению х ≈ 1,4. Если построить графики уравнения более точно (с помощью компьютера), то можно найти, что х ≈ 1,46557.
Ответ: х ≈ 1,46557
Конечно, графический метод решения уравнений не является абсолютно точным, однако он помогает быстро найти примерное положение корня. Также с его помощью можно определить количество корней уравнения. В рассмотренном примере был только 1 корень.
Пример. Определите количество корней уравнений
б) х 3 – 2х + 0,5 = 0
Решение. Перенесем два последних слагаемых вправо в каждом ур-нии:
Построим графики функций у = х 3 , у = х + 3 и у = 2х – 0,5:
Видно, что прямая у = х + 3 пересекает график у = х 3 в одной точке, поэтому у первого ур-ния будет 1 решение.Прямая у = 2х – 0,5 пересекает кубическую параболу в трех точках, а потому у второго ур-ния 3 корня.
Ответ: а) один корень; б) три корня.
Видео:Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)Скачать
Решение дробно-рациональных уравнений
До этого мы рассматривали только целые ур-ния, где переменная НЕ находится в знаменателе какого-нибудь выражения. Однако, если в ур-нии есть выр-ние, содержащее переменную в знаменателе, или присутствует деление на выр-ние с переменной, то его называют дробно-рациональным уравнением.
Приведем несколько примеров ур-ний, считающихся дробно-рациональными:
С помощью равносильных преобразований любое дробно-рациональное ур-ние возможно записать в виде отношения двух полиномов:
Дробь равна нулю лишь тогда, когда ее числитель равен нулю, а знаменатель – не равен. Таким образом, нужно сначала решить ур-ние Р(х) = 0 и потом проверить, что полученные корни не обращают полином Q(x) в ноль.
Обычно для решения дробно-рациональных уравнений используют такой алгоритм:
1) Приводят все дроби к единому знаменателю, умножают на него ур-ние и получают целое ур-ние.
2) Решают полученное целое ур-ние.
3) Исключают из числа корней те, которые обращают знаменатель хотя бы одной из дробей в ноль.
Пример. Решите ур-ние
Умножим обе части равенства на знаменатель 1-ой дроби:
2х 2 – 3х – 2 = х 2 (х – 2)
Раскроем скобки и перенесем все слагаемые в одну сторону:
2х 2 – 3х – 2 = х 3 – 2х 2
х 3 – 2х 2 – 2х 2 + 3х + 2 = 0
х 3 – 4х 2 + 3х + 2 = 0
У ур-ния могут быть только те целые корни, которые являются делителями двойки. Из кандидатов 1, – 1, 2 и – 2 подходит только двойка:
2 3 – 4•2 2 + 3•2 + 2 = 8 – 16 + 6 + 2 = 0
Нашли один корень, а потому исходный многочлен можно поделить в столбик на (х – 2):
Получили, что х 3 – 4х 2 + 3х + 2 = (х – 2)(х 2 – 2х – 1)
Тогда ур-ние примет вид:
(х – 2)(х 2 – 2х – 1) = 0
х – 2 = 0 или х 2 – 2х – 1 = 0
Решим квадратное ур-ние:
D =b 2 – 4ас = (– 2) 2 – 4•1•(– 1) = 4 + 4 = 8
Мы нашли все 3 корня кубического ур-ния. Теперь надо проверить, не обращают ли какие-нибудь из них знаменатели дроби в исходном ур-нии
в ноль. Очевидно, что при х = 2 знаменатель (х – 2) превратится в ноль:
Это значит, что этот корень надо исключить из списка решений. Такой корень называют посторонним корнем ур-ния.
Также ясно, что два остальных корня не обращают знаменатель в ноль, а потому они НЕ должны быть исключены из ответа:
Пример. Найдите все корни ур-ния
Решение. Если сразу привести выражение слева к общему знаменателю 4(х 2 + х – 2)(х 2 + х – 20), то получится очень длинное и неудобное выражение. Однако знаменатели довольно схожи, поэтому можно провести замену. Обозначим х 2 + х как у:
Тогда уравнение примет вид
Приведем дроби к общему знаменателю 4(у – 2)(у – 20):
Знаменатель должен равняться нулю:
4(у – 20) + 28(у – 2) + (у – 2)(у – 20) = 0
4у – 80 + 28у – 56 + у 2 – 20у – 2у + 40 = 0
у 2 + 10у – 96 = 0
Решаем квадратное ур-ние:
D =b 2 – 4ас = (10) 2 – 4•1•(– 96) = 100 + 384 = 484
Получили, что у1 = – 16, а у2 = 6. Произведем обратную замену:
х 2 + х = – 16 или х 2 + х = 6
х 2 + х + 16 = 0 или х 2 + х – 6 = 0
Дискриминант 1-ого ур-ния отрицателен:
D =b 2 – 4ас = (1) 2 – 4•1•(16) = 1– 64 = – 63
А потому оно не имеет решений. Решим 2-ое ур-ние:
D = b 2 – 4ас = (1) 2 – 4•1•(– 6) = 1+ 24 = 25
Нашли два корня: 2 и (– 3). Осталось проверить, не обращают ли они знаменатели дробей в ур-нии
в ноль. Подстановкой можно убедиться, что не обращают.
При решении дробно-рациональных ур-ний может использоваться и графический метод.
Пример. Сколько корней имеет уравнение
Решение. Построим графики функций у = х 2 – 4 и у = 2/х:
Видно, что графики пересекаются в 3 точках, поэтому ур-ние имеет 3 корня.
🔍 Видео
Алгебра 9 класс (Урок№16 - Целое уравнение и его корни.)Скачать
Дробно-рациональные уравнения. 8 класс.Скачать
Целое уравнение и его корни. Алгебра, 9 классСкачать
КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать
АЛГЕБРА 9 класс: Целое уравнение и его корни | ВидеоурокСкачать
Целое уравнение и его корниСкачать
Математика 1 класс. Уравнения Решение уравнений вида а + х = bСкачать
Как решать дробно-рациональные уравнения? | МатематикаСкачать
Целые уравнения.Скачать
Математика 5 класс (Урок№16 - Задачи «на части».)Скачать
Как решают уравнения в России и СШАСкачать