Что показывает коэффициент c в уравнении функции

Как определить a, b и c по графику параболы

Предположим, вам попался график функции (y=ax^2+bx+c) и нужно по этому графику определить коэффициенты (a), (b) и (c). В этой статье я расскажу 3 простых способа сделать это.

Видео:Задание 10 Квадратичная функция Знаки коэффициентов а и сСкачать

Задание 10 Квадратичная функция Знаки коэффициентов а и с

1 способ – ищем коэффициенты на графике

Данный способ хорош, когда координаты вершины и точка пересечения параболы с осью (y) – целые числа. Если это не так, советую использовать способ 2.

Коэффициент (a) можно найти с помощью следующих фактов:

— Если (a>0), то ветви параболы направленных вверх, если (a 1), то график вытянут вверх в (a) раз по сравнению с «базовым» графиком (у которого (a=1)). Вершина при этом остается на месте. Это наглядно видно по выделенным точкам.

Что показывает коэффициент c в уравнении функции

Ищем 3 точки с целыми координатами, принадлежащие параболе.
Пример:

Что показывает коэффициент c в уравнении функции

Выписываем координаты этих точек и подставляем в формулу квадратичной функции: (y=ax^2+bx+c). Получится система с тремя уравнениями.

Решаем систему.
Пример:

Вычтем из второго уравнения первое:

Подставим (9a) вместо (b):

Первое и второе уравнения совпали (это нормально для точек, симметричных относительно прямой проходящей через вершину – как точки (A) и (B) в нашем случае), но нас это не остановит – мы вычтем из второго уравнение третье:

Подставим в первое уравнение (a):

Получается квадратичная функция: (y=-x^2-9x-15).

Что показывает коэффициент c в уравнении функции

Сразу заметим, что по графику можно сразу определить, что (c=4). Это сильно облегчит нашу систему – нам хватит 2 точек. Выберем их на параболе: (C(-1;8)), (D(1;2)) (на самом деле, если присмотреться, то можно заметить, что эти точки выделены жирно на изначальной картинке – это вам подсказка от авторов задачи).

Что показывает коэффициент c в уравнении функции

Таким образом имеем систему:

Сложим 2 уравнения:

Подставим во второе уравнение:

Теперь найдем точки пересечения двух функций:

Теперь можно найти ординату второй точки пересечения:

Видео:Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать

Всё о квадратичной функции. Парабола | Математика TutorOnline

3 способ – используем преобразование графиков функций

Этот способ быстрее первого и более универсальный, в частности он может пригодится и в задачах на другие функции.

Главный недостаток этого способа — вершина должна иметь целые координаты.

Сам способ базируется на следующих идеях:

График (y=-x^2) симметричен относительно оси (x) графику (y=x^2).

Что показывает коэффициент c в уравнении функции

– Если (a>1) график (y=ax^2) получается растяжением графика (y=x^2) вдоль оси (y) в (a) раз.
– Если (a∈(0;1)) график (y=ax^2) получается сжатием графика (y=x^2) вдоль оси (y) в (a) раз.

Что показывает коэффициент c в уравнении функции

– График (y=a(x+d)^2) получается сдвигом графика (y=ax^2) влево на (d) единиц.
— График (y=a(x-d)^2) получается сдвигом графика (y=ax^2) вправо на (d) единиц.

Что показывает коэффициент c в уравнении функции

График (y=a(x+d)^2+e) получается переносом графика (y=a(x+d)^2) на (e) единиц вверх.
График (y=a(x+d)^2-e) получается переносом графика (y=a(x+d)^2) на (e) единиц вниз.

Что показывает коэффициент c в уравнении функции

У вас наверно остался вопрос — как этим пользоваться? Предположим, мы видим такую параболу:

Что показывает коэффициент c в уравнении функции

Сначала смотрим на её форму и направленность её ветвей. Видим, что форма стандартная, базовая и ветви направлены вверх, поэтому (a=1). То есть она получена перемещениями графика базовой параболы (y=x^2).

Что показывает коэффициент c в уравнении функции

А как надо было перемещать зеленый график чтоб получить оранжевый? Надо сдвинуться вправо на пять единиц и вниз на (4).

Что показывает коэффициент c в уравнении функции

То есть наша функция выглядит так: (y=(x-5)^2-4).
После раскрытия скобок и приведения подобных получаем искомую формулу:

Что показывает коэффициент c в уравнении функции

Чтобы найти (f(6)), надо сначала узнать формулу функции (f(x)). Найдем её:

Парабола растянута на (2) и ветви направлены вниз, поэтому (a=-2). Иными словами, первоначальной, перемещаемой функцией является функция (y=-2x^2).

Что показывает коэффициент c в уравнении функции

Парабола смещена на 2 клеточки вправо, поэтому (y=-2(x-2)^2).

Парабола поднята на 4 клеточки вверх, поэтому (y=-2(x-2)^2+4).

Видео:Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25Скачать

Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25

Квадратичная функция. Построение параболы

Что показывает коэффициент c в уравнении функции

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:СВОЙСТВА КОЭФФИЦИЕНТОВ 😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

СВОЙСТВА КОЭФФИЦИЕНТОВ 😉 #shorts #егэ #огэ #математика #профильныйегэ

Основные понятия

Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию означает определить правило в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ: наглядно.
  • Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.

Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно на курсах по математике в онлайн-школе Skysmart.

Видео:ОГЭ Задание 10 Найти коэффициент a по графику квдратичной функцииСкачать

ОГЭ Задание 10 Найти коэффициент a по графику квдратичной функции

Построение квадратичной функции

Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0. В уравнении существует следующее распределение:

  • a — старший коэффициент, который отвечает за ширину параболы. Большое значение a — парабола узкая, небольшое — парабола широкая.
  • b — второй коэффициент, который отвечает за смещение параболы от центра координат.
  • с — свободный член, который соответствует координате пересечения параболы с осью ординат.

График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 :

Точки, обозначенные зелеными кружками называют базовыми точками. Чтобы найти их координаты для функции y = x 2 , нужно составить таблицу:

x

y

Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов.

График функции y = –x 2 выглядит, как перевернутая парабола:

Зафиксируем координаты базовых точек в таблице:

x

y

Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:

  • Если старший коэффициент больше нуля a > 0, то ветви параболы напрaвлены вверх.
  • Если старший коэффициент меньше нуля a 2 + bx + c, для построения которой нужно решить квадратное уравнение ax 2 + bx + c = 0. В процессе найдем дискриминант D = b 2 — 4ac, который даст нам информацию о количестве корней квадратного уравнения.

Рассмотрим три случая:

  1. Если D 0,то график выглядит так:
  1. Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:
  2. Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:

Если a > 0, то график выглядит как-то так:

0″ height=»671″ src=»https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=»602″>

На основе вышеизложенного ясно, что зная направление ветвей параболы и знак дискриминанта, у нас есть понимание, как будет выглядеть график конкретной функции.

Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:

Что показывает коэффициент c в уравнении функции

Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.

Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).

На изображении отмечены основные параметры графика квадратичной функции:

Видео:Математика без Ху!ни. Уравнение касательной.Скачать

Математика без Ху!ни. Уравнение касательной.

Алгоритм построения параболы

Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.

Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать

10 класс, 43 урок, Уравнение касательной к графику функции

Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.

Разберем общий алгоритм на примере y = 2x 2 + 3x — 5.

Как строим:

  1. Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
  2. Найдем дискриминант квадратного трехчлена 2x 2 + 3x — 5.

D = b 2 — 4ac = 9 — 4 * 2 * (-5) = 49 > 0

В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:

2x 2 + 3x — 5 = 0 2 + 3x — 5 = 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAPoAAAAyCAYAAAB1V8bkAAAJyElEQVR4Ae2c16sUwRLGfdRX/wXFB30QFFQUQUyIKCIGBEEQzCCoKIgB01ExZwVz4JpzztljwJxzzjlnrcuvL33unD2zOzO7OzvuThU0u5N6uuvrr7u6unrKiYpqQDVQ8BooV/A11AqqBlQDokTXRqAaiIEGlOgxAFmrqBpQomsbUA3EQANK9BiArFVUDSjRtQ2oBmKgASV6DEDWKqoGlOjaBlQDMdBAQRH9z58/8vv3b5P+/v2bMXy/fv0S8kxMGWesGRgNpIMXz7jhkg28CxmWgiH69+/f5dSpU7JixQpZtmyZXLx4UX7+/JkUOxoGjSaVTJw4UVatWiUbNmwoSYcPH071iF7zqYGgeNlsT58+LZMnTy7BA2y2bNkib9++tbfor4sGCobogD19+nR5/fq1nDx5Upo0aSLHjh2TZD39x48f5ebNmy4q+d8pRo327dtLo0aNTF6NGzeWevXqCeRXyVwDQfHijXTMmzZtMjiAL6lu3brSuXNnuXfvXuaFKuAcCobojOQDBgwwgD948EAg5ubNm42Z54bfjRs3ZMqUKW6XzDk6jP379wsjD/LmzRtZt26dvHr1KukzesG/BoLiRc5gceXKFZM4/vbtmxw6dEguXbokP3788P/yGN5ZMET/8uWLvHv3Tt6/f2/Muh49esj169eTQupF9MQHIfm1a9cST+txmhoIipfba86fPy9Hjx4VrDOV1BooGKJTTYh++fJlGTt2rCxevNgcJ6t+EKIz3587d26yrPR8mhoIglfiK549e2Y6dHBU8dZA3hH9+PHjYhNmnFO+fv1qTOwDBw5Ily5dhF+nQ47ndu/ebdLChQule/fuJcecp9E477d5d+zYUW7fvm0P9TeABixW/AbBCz+LffbChQtl3rh69WpZsmSJjuZlNON+Iu+IDkGZW+N427Ztm6nVp0+f5MiRI6Zh2Dl1hw4dZOjQoaVGdebc1oM+a9Ys48Sxx/y6zfUePnwoVapUcdeenvXUQLp4LV261OA8bdo0g5nzRR8+fJBhw4YJeav400DeEf3Ro0dmZGD+/fLlS1NLzLjhw4fLmDFjhEaA4DHv16+fGeHdVOHXdKczqVy5slsWes6HBtLF6/HjxwZn/CLPnz8v9aZbt25Jt27dlOiltJL6IO+I7lYdTPY1a9bIjBkz5M6dO7Jjxw5hRN++fXtSb6xfos+ZM0cqVark9trQzrEmXFxc7LnOH1oBQs44HbycRTpz5oy0a9funyA6DkGW/NavX19mauIsc+J/OkCmJliRL168ME7FVM7jxOeDHhcE0ak05KD3P3v2rFkWO3HihHz+/DmpPlh3XbRoUdLr9gL5LF++3B6G+nv//n3ZuHGjDBw4UDp16pS0kwq1EDnKPChezmI9efJEtm7dmnJVxXl/WP8PHjxopoxXr141RG3Tpo0JsPLzPqaaLVq0kDp16kjDhg2lb9++JgbEz7Pp3FMwRKfyBLkwX2fpxivqjbm8Nf1TKY77WK/NhVBuGvGoUaNMHID1N+Ti3VG8IwhezvIR5gwm/EYlrBgMGTJE9u3bZxy4YDV69Gjf/py9e/fKypUrjSVKLEDYqwcFRfSoQM/2e2fOnGmivgqd6NnWWy7zI3CqefPmUlRUVOIXgrzly5cXfEZewr2Y/XTuyaI3vfIIcj1tolM4lpyIBZ83b56MGzdO9uzZY0YjwkSfPn0apBx6r0MDYRBd8XIoOAt/sRiZU0N4az2OHz9eKlSo4MvSgOgs6RKIBYdIYUraRMfsYpkL84m5cc+ePY1DYv78+dKnTx/B2eAlmKldu3b1TISy5luII8s/XnWbNGmSMC9PlDCIrniJcXB6YcJ15s9+JHEkrlq1qixYsMDPowLRcRqzSgSHiOkI0xeUNtHpxXBUIQQ3tGrVKnLniC8N58FNYRBd8QoOPES2Php8Agw2dvR25gZRcaaNHDnSeTrlf/JxdhTsuMQacJ5LmUHAi2kT3b6HyrNBoXXr1uYUBXVThr3f+YuCcGp4JZRsFYAV8K8lt1hremqveuE4RAeJEgbR7Tvigpfb1JG6e2HCde5DCJbCM16rVi2T2D9BiLVT6Agwv3GsgSXPumHqfAZ+sLqCNWfbNQ455ve8MwxJm+gsXeF0YFcXPRlRaAiebD/OCO5l/XDQoEGeCTPHhqZWq1ZN/rVElF2iTJ061bNemHkEhiRKGESPG141atRIVKtZevXT3tjz7kcYgIioZDRmtyM6Zk09sf0zbYIndkBgabFt27ZmeZeYAgQzvmLFimWe9VMOP/ekTXTWMXv37m16uF69esmECRNMZdgDzgcgVIJrwLm8Vr9+fSECjM4wG6J4ZUOL/8+DgQdSwwGccIRkk4jITBRGaZZM8V/ZlRRGdIJlwJzBsX///gKPwpK0iY7HkArSgKgwu8XYMnju3LmkgSr0ZNZUCatCfvLFtKIHtj2sn2dycY8NmCGcF6cQIwXx+dmQfMMLfEj/qjA1Yx29ZcuWpRLmfaLcvXtXBg8eLCNGjChxUoM1mBAdt3btWmP9ZatTT3w/x2kTHcKytAB5EeYmyYiDecpWz9mzZyf9EIRb4cI6Rw/KikGcLI98w4vlWkKYC0Uw5xkEMeGt4A/Akc28P+wBMG2i28L6+WV7IruRmjVrVmK6+HkujHuYL+3atcuUhbm/SlkNRI0Xn/iqWbOmaTNlS5d/ZzDzITOhslFJTohO5Rg98WDaOUoUFabXpBExV2JThBI9OQpR4YX1x3SQb/UxOBSCYO2yA48RPCqJFdGZmxN8w/q/Ej11k4uK6ERXMqflw4+FQvTUms7N1VgRnYgndq2RlOipG1gURCf2myhLpldNmzZVoqeGKNDV2BAdj+bOnTuNcpTo3m0k10THrCVohCAiRInujVGQO2JDdJYA8bQTpIJHt3bt2mZtk1FEpawGck10PrRB4BEf4QQjgqIIK2UbqErmGsgJ0fE2AmL16tWFj/oRwpprYcRgVCcR+URsPkELBCyolNZAFHgRVcZyrcWoQYMGwtd97KfBSpdQj4JqICdEZ3kBkwwQIZZXLHDQSvi9H687G/wJgyREkl+7McdvHnG4L0q8WG9mUOCDnASf4DxVyVwDOSF65sXMXg6QnYbMMh+/fjfgZK8EmlMqDYAPzji7WyyqQSFVGfPxWuyIno8gaZlVA5lqQImeqQb1edVAHmhAiZ4HIGkRVQOZakCJnqkGI3m+WIrKlZOi45G8XF+ahxpQouchaKbIx4uU6PmKXQTlVqJHoPTMX/lM/tOuSIozz0hziIkGlOgxAVqrGW8NKNHjjb/WPiYaUKLHBGitZrw1oESPN/5a+5hoQIkeE6C1mvHWwH8BSUfSiO3XWNEAAAAASUVORK5CYII=»>

  1. Координаты вершины параболы:
  1. Точка пересечения с осью OY находится: (0; -5) и ей симметричная.
  2. Нанести эти точки на координатную плоскость и построить график параболы:
    2 + 3x — 5 = 0″ height=»671″ src=»https://lh6.googleusercontent.com/TYyA5dFfh0ZKINaPSps3Y_X1mCv8Mhv_8bNG3_dPbZud1AEsvo7UBFmVQNm1GcR1CQFo6HE1lNjYaAgepQUTQiK_ay_Fnuv7LEsB53woHkFO66W0R1PP8QfGsFcYzaR_h4AJdLxC» width=»602″>

Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

Уравнение квадратичной функции имеет вид y = a * (x — x₀) 2 + y₀

Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x 2 + 3x — 5 при а = 1, то второй коэффициент является четным числом.

Рассмотрим пример: y = 2 * (x — 1) 2 + 4.

Как строим:

  1. Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
  • построить y = x 2 ,
  • умножить ординаты всех точек графика на 2,
  • сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • сдвинуть его вдоль оси OY на 4 единицы вверх.
  1. Построить график параболы для каждого случая. 2 + y₀» height=»431″ src=»https://lh5.googleusercontent.com/_zgF-CXWf4Yy0p2OnBYSJkUm0zO-mNetq5feU6LIPEbIgSrO9kdr2ti_tr7Gg3yTMOlJVnuZgG0HleAFfAzG7yr7ELHT6KSMqMrRHkHqt-VcgIiSZx80cVj0zlPMBzEM0wAWQ-L6″ width=»602″>

Видео:Как найти все коэффициенты параболы по графику? Большой ответ на этот вопрос.Скачать

Как найти все коэффициенты параболы по графику? Большой ответ на этот вопрос.

Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)

Рассмотрим следующий пример: y = (x − 2) × (x + 1).

Как строим:

Данный вид уравнения позволяет быстро найти нули функции:

(x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.

Определим координаты вершины параболы:

Что показывает коэффициент c в уравнении функции

Найти точку пересечения с осью OY:

с = ab = (−2) × (1) = −2 и ей симметричная.

Отметим эти точки на координатной плоскости и соединим плавной прямой.

Видео:Графики функций. Задание №11 | Математика ОГЭ 2023 | УмскулСкачать

Графики функций. Задание №11 | Математика ОГЭ 2023 | Умскул

Квадратичная функция и ее график

В этой статье мы поговорим о том, что такое квадратичная функция, научимся строить ее график и определять вид графика в зависимости от знака дискриминанта и знака старшего коэффициента.
Итак.

Функция вида Что показывает коэффициент c в уравнении функции, где Что показывает коэффициент c в уравнении функции0″ title=»a0″/> Что показывает коэффициент c в уравнении функцииназывается квадратичной функцией.

В уравнении квадратичной функции:

aстарший коэффициент

bвторой коэффициент

ссвободный член.

Графиком квадратичной функции является квадратичная парабола, которая для функции Что показывает коэффициент c в уравнении функцииимеет вид:

Что показывает коэффициент c в уравнении функции

Обратите внимание на точки, обозначенные зелеными кружками — это, так называемые «базовые точки». Чтобы найти координаты этих точек для функции Что показывает коэффициент c в уравнении функции, составим таблицу:

Что показывает коэффициент c в уравнении функции

Внимание! Если в уравнении квадратичной функции старший коэффициент Что показывает коэффициент c в уравнении функции, то график квадратичной функции имеет ровно такую же форму, как график функции Что показывает коэффициент c в уравнении функциипри любых значениях остальных коэффициентов.

График функции Что показывает коэффициент c в уравнении функцииимеет вид:

Что показывает коэффициент c в уравнении функции

Для нахождения координат базовых точек составим таблицу:

Что показывает коэффициент c в уравнении функции

Обратите внимание, что график функции Что показывает коэффициент c в уравнении функциисимметричен графику функции Что показывает коэффициент c в уравнении функцииотносительно оси ОХ.

Итак, мы заметили:

Если старший коэффициент a>0 , то ветви параболы напрaвлены вверх .

Если старший коэффициент a , то ветви параболы напрaвлены вниз .

Второй параметр для построения графика функции — значения х, в которых функция равна нулю, или нули функции. На графике нули функции Что показывает коэффициент c в уравнении функции— это точки пересечения графика функции Что показывает коэффициент c в уравнении функциис осью ОХ.

Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты точек пересечения графика функции Что показывает коэффициент c в уравнении функциис осью ОХ, нужно решить уравнение Что показывает коэффициент c в уравнении функции.

В случае квадратичной функции Что показывает коэффициент c в уравнении функциинужно решить квадратное уравнение Что показывает коэффициент c в уравнении функции.

В процессе решения квадратного уравнения мы находим дискриминант: Что показывает коэффициент c в уравнении функции, который определяет число корней квадратного уравнения.

И здесь возможны три случая:

1. Если Что показывает коэффициент c в уравнении функцииЧто показывает коэффициент c в уравнении функции,то уравнение Что показывает коэффициент c в уравнении функциине имеет решений, и, следовательно, квадратичная парабола Что показывает коэффициент c в уравнении функциине имеет точек пересечения с осью ОХ. Если Что показывает коэффициент c в уравнении функции0″ title=»a>0″/>Что показывает коэффициент c в уравнении функции,то график функции выглядит как-то так:

Что показывает коэффициент c в уравнении функции

2. Если Что показывает коэффициент c в уравнении функцииЧто показывает коэффициент c в уравнении функции,то уравнение Что показывает коэффициент c в уравнении функцииимеет одно решение, и, следовательно, квадратичная парабола Что показывает коэффициент c в уравнении функцииимеет одну точку пересечения с осью ОХ. Если Что показывает коэффициент c в уравнении функции0″ title=»a>0″/>Что показывает коэффициент c в уравнении функции,то график функции выглядит примерно так:

Что показывает коэффициент c в уравнении функции

3 . Если Что показывает коэффициент c в уравнении функции0″ title=»D>0″/>Что показывает коэффициент c в уравнении функции,то уравнение Что показывает коэффициент c в уравнении функцииимеет два решения, и, следовательно, квадратичная парабола Что показывает коэффициент c в уравнении функцииимеет две точки пересечения с осью ОХ:

Что показывает коэффициент c в уравнении функции, Что показывает коэффициент c в уравнении функции

Если Что показывает коэффициент c в уравнении функции0″ title=»a>0″/>Что показывает коэффициент c в уравнении функции,то график функции выглядит примерно так:

Что показывает коэффициент c в уравнении функции

Следовательно, зная направление ветвей параболы и знак дискриминанта, мы уже можем в общих чертах определить, как выглядит график нашей функции.

Что показывает коэффициент c в уравнении функции

Следующий важный параметр графика квадратичной функции — координаты вершины параболы:

Что показывает коэффициент c в уравнении функции

Что показывает коэффициент c в уравнении функции

Что показывает коэффициент c в уравнении функции

Прямая, проходящая через вершину параболы параллельно оси OY является осью симметрии параболы.

И еще один параметр, полезный при построении графика функции — точка пересечения параболы Что показывает коэффициент c в уравнении функциис осью OY.

Поскольку абсцисса любой точки, лежащей на оси OY равна нулю, чтобы найти точку пересечения параболы Что показывает коэффициент c в уравнении функциис осью OY, нужно в уравнение параболы вместо х подставить ноль: Что показывает коэффициент c в уравнении функции.

То есть точка пересечения параболы с осью OY имеет координаты (0;c).

Итак, основные параметры графика квадратичной функции показаны на рисунке:

Что показывает коэффициент c в уравнении функции

Рассмотрим несколько способов построения квадратичной параболы. В зависимости от того, каким образом задана квадратичная функция, можно выбрать наиболее удобный.

1. Функция задана формулой Что показывает коэффициент c в уравнении функции.

Рассмотрим общий алгоритм построения графика квадратичной параболы на примере построения графика функции Что показывает коэффициент c в уравнении функции

1. Направление ветвей параболы.

Так как Что показывает коэффициент c в уравнении функции0″ title=»a=2>0″/>Что показывает коэффициент c в уравнении функции,ветви параболы направлены вверх.

2. Найдем дискриминант квадратного трехчлена Что показывает коэффициент c в уравнении функции

Что показывает коэффициент c в уравнении функции0″ title=»D=b^2-4ac=9-4*2*(-5)=49>0″/> Что показывает коэффициент c в уравнении функцииЧто показывает коэффициент c в уравнении функции

Дискриминант квадратного трехчлена больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ.

Для того, чтобы найти их координаты, решим уравнение: Что показывает коэффициент c в уравнении функции

Что показывает коэффициент c в уравнении функции, Что показывает коэффициент c в уравнении функции

3. Координаты вершины параболы:

Что показывает коэффициент c в уравнении функции

Что показывает коэффициент c в уравнении функции

4. Точка пересечения параболы с осью OY: (0;-5),и ей симметричная относительно оси симметрии параболы.

Нанесем эти точки на координатную плоскость, и соединим их плавной кривой:

Что показывает коэффициент c в уравнении функции

Этот способ можно несколько упростить.

1. Найдем координаты вершины параболы.

2. Найдем координаты точек, стоящих справа и слева от вершины.

Воспользуемся результатами построения графика функции

Что показывает коэффициент c в уравнении функции

Кррдинаты вершины параболы

Что показывает коэффициент c в уравнении функции

Что показывает коэффициент c в уравнении функции

Ближайшие к вершине точки, расположенные слева от вершины имеют абсциссы соответственно -1;-2;-3

Ближайшие к вершине точки, расположенные справа имеют абсциссы соответственно 0;1;2

Подставим значения х в уравнение функции, найдем ординаты этих точек и занесем их в таблицу:

Что показывает коэффициент c в уравнении функции

Нанесем эти точки на координатную плоскость и соединим плавной линией:

Что показывает коэффициент c в уравнении функции

2 . Уравнение квадратичной функции имеет вид Что показывает коэффициент c в уравнении функции— в этом уравнении Что показывает коэффициент c в уравнении функции— координаты вершины параболы

или в уравнении квадратичной функции Что показывает коэффициент c в уравнении функцииЧто показывает коэффициент c в уравнении функции, и второй коэффициент — четное число.

Построим для примера график функции Что показывает коэффициент c в уравнении функции.

Вспомним линейные преобразования графиков функций. Чтобы построить график функции Что показывает коэффициент c в уравнении функции, нужно

  • сначала построить график функции Что показывает коэффициент c в уравнении функции,
  • затем одинаты всех точек графика умножить на 2,
  • затем сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • а затем вдоль оси OY на 4 единицы вверх:

Что показывает коэффициент c в уравнении функции

Теперь рассмотрим построение графика функции Что показывает коэффициент c в уравнении функции. В уравнении этой функции Что показывает коэффициент c в уравнении функции, и второй коэффициент — четное число.

Выделим в уравнении функции полный квадрат: Что показывает коэффициент c в уравнении функции

Следовательно, координаты вершины параболы: Что показывает коэффициент c в уравнении функции. Старший коэффициент равен 1, поэтому построим по шаблону параболу с вершиной в точке (-2;1):

Что показывает коэффициент c в уравнении функции

3 . Уравнение квадратичной функции имеет вид y=(x+a)(x+b)

Построим для примера график функции y=(x-2)(x+1)

1. Вид уравнения функции позволяет легко найти нули функции — точки пересечения графика функции с осью ОХ:

(х-2)(х+1)=0, отсюда Что показывает коэффициент c в уравнении функции

2. Координаты вершины параболы: Что показывает коэффициент c в уравнении функции

Что показывает коэффициент c в уравнении функции

3. Точка пересечения с осью OY: с=ab=(-2)(1)=-2 и ей симметричная.

Нанесем эти точки на координатную плоскость и построим график:

Что показывает коэффициент c в уравнении функции

График квадратичной функции.

Перед вами график квадратичной функции вида Что показывает коэффициент c в уравнении функции.

Кликните по чертежу.
Подвигайте движки.
Исследуйте зависимость
— ширины графика функции Что показывает коэффициент c в уравнении функцииот значения коэффициента Что показывает коэффициент c в уравнении функции,
— сдвига графика функции Что показывает коэффициент c в уравнении функциивдоль оси Что показывает коэффициент c в уравнении функцииот значения Что показывает коэффициент c в уравнении функции,

— сдвига графика функции Что показывает коэффициент c в уравнении функциивдоль оси Что показывает коэффициент c в уравнении функцииот значения Что показывает коэффициент c в уравнении функции
— направления ветвей параболы от знака коэффициента Что показывает коэффициент c в уравнении функции
— координат вершины параболы Что показывает коэффициент c в уравнении функцииот значений Что показывает коэффициент c в уравнении функциии Что показывает коэффициент c в уравнении функции:

И.В. Фельдман, репетитор по математике.Что показывает коэффициент c в уравнении функции

🔥 Видео

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график Парабола

Как легко составить уравнение параболы из графикаСкачать

Как легко составить уравнение параболы из графика

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

ОГЭ. Задание 10. Графики. Парабола. Определить знаки коэффициентов.Скачать

ОГЭ. Задание 10. Графики. Парабола. Определить знаки коэффициентов.

Квадратичная функция и ее график. 8 класс.Скачать

Квадратичная функция и ее график. 8 класс.

ОГЭ 2022. Математика. Задание 11. Подробный разбор. Квадратичная функция Как отличать.Скачать

ОГЭ 2022. Математика. Задание 11. Подробный разбор.  Квадратичная функция Как отличать.

Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.

ОГЭ. Задание 11. ГрафикиСкачать

ОГЭ. Задание 11. Графики

Парабола / квадратичная функция / влияние коэффициентовСкачать

Парабола / квадратичная функция / влияние коэффициентов

ОГЭ по математике. Задание 5. Уравнение параболы. Коэффициент c.Скачать

ОГЭ по математике. Задание 5. Уравнение параболы. Коэффициент c.
Поделиться или сохранить к себе: