Системы уравнений и неравенств входили в состав выпускных и вступительных экзаменов по математике во все времена. Даже если в экзаменационном варианте нет прямого задания на решение системы, то существует достаточно высокая вероятность ее появления процессе решения других задач. Репетитор по математике обязан это учитывать. Привести к системам могут задачи на модули, на логарифмы, на графики и даже на синусы с косинусы. Несмотря на то, что подготовка к ЕГЭ по математике нередко сводится к натаскиванию на решение однотипных номеров части «В», не стоит полностью отказываться от тренировки навыков поиска пересечения (объединения) ответов разных объектов. Хотя бы на элементарном уровне. Какими приемами репетитор по математике обеспечивает оптимальную работу ученика с системами? Какая техника оформления систем была бы самой удобной и продуктивной?
К сожалению, школьные учителя и даже некоторые профессиональные репетиторы требуют от детей (уже в 8 классе) оформление систем по принципу «все в одном», упаковывая содержащиеся в них неравенства в единый объект согласно строгим правилам проведения равносильных преобразований. Широко применяются квадратные и фигурные скобки, причем часто в весьма сложном сочетании. Мой опыт репетиторской работы свидетельствует о том, что дети с огромнейшим трудом воспринимают, казалось бы, несложные для математиков логические конструкции с конъюнкциями и дизъюнкциями. Примерно 60-70% всех школьников с трудом припоминают (или не знают вообще) чем отличается квадратная скобка от линейной. А среди тех, кто приходит к репетитору по математике, этот процент повышается в среднем до 90-95%.
Но, тем не менее, для обозначения объединения, некоторые школьные преподаватели все равно используют квадратные скобки. Видимо по привычке. При таком раскладе репетитор по математике оказывается в крайне сложном положении, ибо уровень ученика часто не позволяет осознать сложные логические сочетания. Я не сторонник любой ценой следовать школьным стандартам и часто полностью отказываюсь от постановки квадратных скобок. Без них проще. Особенно когда на носу подготовка к ЕГЭ. Если все же репетитор математики вынужден принимать школьные правила, он мог бы это сделать следующим образом:
- Когда репетитор по математике вводит квадратную скобку?
- Может ли репетитор по математике обойтись без квадратной скобки
- Скобки в математике: их виды и предназначение
- Основные виды скобок, обозначения, терминология
- Скобки для указания порядка выполнения действий
- Отрицательные числа в скобках
- Скобки для выражений, с которыми выполняются действия
- Скобки в выражениях со степенями
- Скобки в выражениях с корнями
- Скобки в выражениях с тригонометрическими функциями
- Скобки в выражениях с логарифмами
- Скобки в пределах
- Скобки и производная
- Подынтегральные выражения в скобках
- Скобки, отделяющие аргумент функции
- Скобки в периодических десятичных дробях
- Скобки для обозначения числовых промежутков
- Обозначения систем и совокупностей уравнений и неравенств
- Фигурная скобка для обозначения кусочной функции
- Скобки для указания координат точки
- Скобки для перечисления элементов множества
- Скобки и координаты векторов
- Скобки для указания элементов матриц
- Скобки в математике, их виды и предназначение.
- Основные виды скобок, обозначения, терминология
- Скобки для указания порядка выполнения действий
- Отрицательные числа в скобках
- Скобки для выражений, с которыми выполняются действия
- Скобки в выражениях со степенями
- Скобки в выражениях с корнями
- Скобки в выражениях с тригонометрическими функциями
- Скобки в выражениях с логарифмами
- Скобки в пределах
- Скобки и производная
- Подынтегральные выражения в скобках
- Скобки, отделяющие аргумент функции
- Скобки в периодических десятичных дробях
- Скобки для обозначения числовых промежутков
- Обозначения систем и совокупностей уравнений и неравенств
- Фигурная скобка для обозначения кусочной функции
- Скобки для указания координат точки
- Скобки для перечисления элементов множества
- Скобки и координаты векторов
- Скобки для указания элементов матриц
Когда репетитор по математике вводит квадратную скобку?
К пониманию разницы между скобками лучше всего подводить ученика постепенно, начиная с 8 класса, когда изучается тема «неравенства». В решении самих неравенств восьмиклассники используют понятие «пересечение ответов» . Почему бы репетитору по математике не показать что такое «объединение ответов»? Задачи на объединение присутствуют в учебнике Макарычева, но они ограничиваются операцияями с уже сформированными промежутками. Это не совсем то, что нужно. Вот пример, на котором репетитор по математике мог бы объяснить назначение квадратной скобки:
Как видите, используется самое простое сочетание. Скобку лучше всего ввести после того, как ученик поймет суть задания. А она заключается в том, чтобы подобрать числа, обеспечивающие выполнение хотя бы одного неравенства (я употребляю общий термин: «условие»). Фразу «хотя бы одного» репетитор по математике сразу же меняет на фразу «или одно или другое». Процент учеников, правильно нашедших репетитору ответ, оказывается не таким и уж низким. Половина детей схватывают суть задания сразу же. Другим нужно показывать, как проверяется наугад взятое число (главное не объяснять только словами).
Данный номер рассматривается репетитором сразу после примера на совокупность, то есть на поиск числа, обеспечивающего выполнение каждого условия:
К сожалению, родители редко приглашают репетитора по математике в 8 классе и подготовкой к ЕГЭ занимаются только с 10 или с 11 класса. В этом случае репетитору приходится объяснять оформление объединения по формальному признаку фигурной скобки: если для проверки произвольно взятого числа достаточно проверить верность одного из нескольких условий (неравенств, уравнений или их систем), то проверяемые объекты можно заключить в квадратную скобку. Корректируя общую формулировку, репетитор по математике вставляет в нее союз «или». Например, для того, чтобы число x было корнем уравнения необходимо чтобы или первый множитель равнялся нулю, или второй. Преподаватель отдельно акцентирует внимание ученика на участии «или» и в случае его уместного употребления разрешает заключить объекты в квадратную скобку.
Если репетитор математики примет строгое оформление, он усложнит ученику одновременно и понимание и практическую работу. Школьные учителя берут за образец оформление систем в задачниках, в которых решения излагаются кратко. Из-за пропусков некоторых его частей удается компактно расписать все равносильные переходы, сохраняя целостность объекта. Репетитору по математике данная методика не подходит категорически. Почему? Ученики начинают вырывать по отдельности неравенства из огромной системы через весьма приличные промежутки времени. Переключение внимания на частные операции сбивает школьников с главного направления. Они забывают что именно им надо пересекать, а что объединять. Путаница возникает страшная. Хорошо, если репетитор по математике рядом и сможет подсказать. А что делать на ЕГЭ? Вряд ли стоит рисковать. Техника действий должна быть максимально прозрачной и удобной в практическом смысле.
Принимая квадратную скобку, репетитор по математике усложняет еще и сортировку решенного. Приходится оформлять отдельные неравенства в колонку (одно под другим) и запоминать какое именно решено, а какое еще нет. Если сами решения длинные, то ученику может не хватить страницы и придется ее переворачивать. Рассеивание внимания при этом гарантировано.
Может ли репетитор по математике обойтись без квадратной скобки
Да, вполне. Для этого применяются стрелочный эквивалент. Например:
Чаще всего в объединение попадают две системы (если больше — лучше использовать иные методы изначально). В нашем случае одна из систем решается в левой части тетрадного листа, а другая в правой. Репетитор по математике разделяет квадратную скобку на две совокупности отдельных систем. На мой взгляд, это самая удобная форма для практической работы ученика. Почему? Те ответы, которые нужно пересечь, распределены по колонкам, при этом операции в левой и в правой колонке проводятся локально и не перемешиваются. Слева — свое пересечение, справа — свое. Очень удобно. Под каждой системой – решение. Системы не нужно вырывать из «квадратной скобки», не нужно переписывать. Финальные ответы, которые репетитор по математике и ученик получают слева и справа «сваливаются в общий ответ» без какой-либо коррекции и пересечения.
Исключение составляют случаи, когда промежутки имеют общую часть. Однако практика показывает, что даже если репетитор по математике забудет напомнить о «склеивании частей», то большинство учеников догадаются до него сами.
Преимущество стрелок для запоминания:
Когда ученик разделяет тетрадный лист на две части, то находясь на любом этапе решения по левой колонке, он помнит о том, что предстоит еще заполнить и правую часть. Это очень важно. Если вы репетитр, то наверняка знаете, что школьники часто забывают разобрать какой-нибуь случай или решить какое-нибдуь неравенство из системы.
Сложность работы с объединением и пересечением носит часто чисто технический характер и связана с проблемой механики решений, то есть запоминанием и сортировкой обрабатываемой информации. При подготовке к ЕГЭ по математике важно получить навык автоматического выполнения операций. Поэтому репетитору по математике крайне необходимо использовать в работе простые и удобные методы, каким является прием стрелочного разделения. Если потребуется объединить три или более системы, репетитор по математике может взять лист формата А4, развернуть его в длину и аккуратно решить задание распределяя системы по нескольким колонкам. Такой подход к оформлению позволит ученику четко разделить и запомнить логическую структуру объекта.
Репетитор по математике, Колпаков А.Н. Москва.
Видео:что означают квадратные скобки в математике???#матем #скобкиСкачать
Скобки в математике: их виды и предназначение
В данной статье рассказывается о скобках в математике и рассматриваются виды и применения, термины и методы использования при решении или для описания материала. В заключение будут решены подобные примеры с подробными комментариями.
Видео:Точки выколотые, точки темные. Скобки круглые, скобки квадратные. Алгебра 8 классСкачать
Основные виды скобок, обозначения, терминология
Для решения заданий в математике используются три вида скобок: ( ) , [ ] , . Реже встречаются скобки такого вида ] и [ , называемые обратными, или и > , то есть в виде уголка. Их применение всегда парное, то есть имеется открывающаяся и закрывающаяся скобка в любом выражении, тогда оно имеет смысл . скобки позволяют разграничить и определить последовательность действий.
Видео:Две скобки в математикеСкачать
Скобки для указания порядка выполнения действий
Основное предназначение скобок – указание порядка выполняемых действий. Тогда выражение может иметь одну или несколько пар круглых скобок. По правилу всегда выполняется первым действие в скобках, после чего умножение и деление, а позже сложение и вычитание.
Рассмотрим на примере заданное выражение. Если дан пример вида 5 + 3 — 2 , тогда очевидно, что действия выполняются последовательно. Когда это же выражение записывается со скобками, тогда их последовательность меняется. То есть при ( 5 + 3 ) — 2 первое действие выполняется в скобках. В данном случае изменений не будет. Если выражение будет записано в виде 5 + ( 3 — 2 ) , тогда в начале производятся вычисления в скобках, после чего сложение с числом 5 . На исходное значение в этом случае оно не повлияет.
Рассмотрим пример, который покажет, как при изменении положения скобок может измениться результат. Если дано выражение 5 + 2 · 4 , видно, что вначале выполняется умножение, после чего сложение. Когда выражение будет иметь вид ( 5 + 2 ) · 4 , то вначале выполнится действие в скобках, после чего произведется умножение. Результаты выражений будут отличаться.
Выражения могут содержать несколько пар скобок, тогда выполнения действий начинаются с первой. В выражении вида ( 4 + 5 · 2 ) − 0 , 5 : ( 7 − 2 ) : ( 2 + 1 + 12 ) видно, что первым делом выполняются действия в скобках, после чего деления, а в конце вычитание.
Существуют примеры, где имеются вложенные сложные скобки вида 4 · 6 — 3 + 8 : 2 и 5 · ( 1 + ( 8 — 2 · 3 + 5 ) — 2 ) ) — 4 . Тогда начинается выполнение действий с внутренних скобок. Далее производится продвижение к внешним.
Если имеется выражение 4 · 6 — 3 + 8 : 2 , тогда очевидно, что в первую очередь выполняются действия в скобках. Значит, следует отнять 3 от 6 , умножить на 4 и прибавить 8 . В конце следует разделить на 2 . Только так можно получить верный ответ.
На письме могут быть использованы скобки разных размеров. Это делается для удобства и возможности отличия одной пары от другой. Внешние скобки всегда большего размера, чем внутренние. То есть получаем выражение вида 5 — 1 : 2 + 1 2 + 3 — 1 3 · 2 · 3 — 4 . Редко встречается применение выделенных скобок ( 2 + 2 · ( 2 + ( 5 · 4 − 4 ) ) ) · ( 6 : 2 − 3 · 7 ) · ( 5 − 3 ) или применяют квадратные, например, [ 3 + 5 · ( 3 − 1 ) ] · 7 или фигурные : [ 3 + 5 + 6 : ( 5 − 2 − 1 ) ] .
Перед тем, как приступить к решению, важно правильно определить порядок действий и разобрать все необходимые пары скобок. Для этого следует добавлять разные виды скобок или менять их цвет. Пометка скобки другим цветом удобна для решения, но занимает много времени, поэтому на практике чаще всего применяют круглые, фигурные и квадратные скобки.
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Отрицательные числа в скобках
Если необходимо изобразить отрицательные числа, тогда применяют круглые скобки в выражении. Такая запись, как 5 + ( − 3 ) + ( − 2 ) · ( − 1 ) , 5 + — 2 3 , 2 5 7 — 5 + — 6 7 3 · ( — 2 ) · — 3 , 5 предназначена для того, чтобы упорядочить отрицательные числа в выражении.
Скобки не ставятся для отрицательного числа того, когда оно располагается в начале любого выражения или дроби. Если имеем пример вида − 5 · 4 + ( − 4 ) : 2 , то очевидно, что знак минуса перед 5 можно не заключать в скобки, а при 3 — 0 , 4 — 2 , 2 · 3 + 7 + 3 — 1 : 2 число 2 , 2 записано вначале, значит скобки также не нужны. Со скобками можно записать выражение ( − 5 ) · 4 + ( − 4 ) : 2 или 3 — 0 , 4 — 2 , 2 · 3 + 7 + 3 — 1 : 2 . Запись, где имеются скобки, считается более строгой.
Знак минуса может находиться не только перед числом, но и перед переменными, степенями, корнями, дробями, функциями, тогда их следует заключить в скобки. Это такие записи, как 5 · ( − x ) , 12 : ( − 22 ) , 5 · — 3 + 7 — 1 + 7 : — x 2 + 1 3 , 4 3 4 — — x + 2 x — 1 , 2 · ( — ( 3 + 2 · 4 ) , 5 · ( — log 3 2 ) — ( — 2 x 2 + 4 ) , sin x · ( — cos 2 x ) + 1
Видео:Раскрытие скобок. 6 класс.Скачать
Скобки для выражений, с которыми выполняются действия
Использование круглых скобок связано с указанием в выражении действий, где имеется возведение в степень, взятие производной, функции. Они позволяют упорядочивать выражения для удобства дальнейшего решения.
Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать
Скобки в выражениях со степенями
Выражение со степенью не всегда следует заключать в скобки, так как степень располагается надстрочно. Если имеется запись вида 2 x + 3 , то очевидно, что х + 3 – это показатель степени. Когда степень записывается в виде знака ^, тогда остальное выражение следует записывать с добавлением скобок, то есть 2 ^ ( x + 3 ) . Если записать это же выражение без скобок, то получится совсем другое выражение. При 2 ^ x + 3 на выходе получим 2 x + 3 .
Основание степени не нуждается в скобках. Поэтому запись принимает вид 0 3 , 5 x 2 + 5 , y 0 , 5 . Если в основании имеется дробное число, тогда можно использовать круглые скобки. Получаем выражения вида ( 0 , 75 ) 2 , 2 2 3 32 + 1 , ( 3 · x + 2 · y ) — 3 , log 2 x — 2 — 1 2 x — 1 .
Если выражение основания степени не взять в скобки, тогда показатель может относиться ко всему выражению, что повлечет за собой неправильное решение. Когда имеется выражение вида x 2 + y , а — 2 – это его степень, то запись примет вид ( x 2 + y ) — 2 . При отсутствии скобок выражение приняло бы вид x 2 + y — 2 , что является совершенно другим выражением.
Если основанием степени является логарифм или тригонометрическая функция с целым показателем, тогда запись приобретает вид sin , cos , t g , c t g , a r c sin , a r c cos , a r c t g , a r c c t g , log , ln или l g . При записи выражения вида sin 2 x , a r c cos 3 y , ln 5 e и log 5 2 x видим, что скобки перед функциями не меняют значения всего выражения, то есть они равноценны. Получаем записи вида ( sin x ) 2 , ( a r c cos y ) 3 , ( ln e ) 5 и log 5 x 2 . Допустимо опущение скобок.
Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Скобки в выражениях с корнями
Использование скобок в подкоренном выражении бессмысленно, так как выражение вида x + 1 и x + 1 являются равнозначными. Скобки не дадут изменений при решении.
Видео:Алгебра 7 класс. 19 сентября. Числовые промежуткиСкачать
Скобки в выражениях с тригонометрическими функциями
Если имеются отрицательные выражения у функций типа синус, косинус, тангенс, котангенс, арксинус, арккосинус, арктангенс, арккотангенс, тогда необходимо использовать круглые скобки. Это позволит правильно определить принадлежность выражения к имеющейся функции. То есть получим записи вида sin ( − 5 ) , cos ( x + 2 ) , a r c t g 1 x — 2 2 3 .
При записи sin , cos , t g , c t g , a r c sin , a r c cos , a r c t g и a r c c t g при имеющемся числе скобки не используют. Когда в записи присутствует выражение, тогда имеет смысл их поставить. То есть sin π 3 , t g x + π 2 , a r c sin x 2 , a r c t g 3 3 с корнями и степенями, cos x 2 — 1 , a r c t g 3 2 , c t g x + 1 — 3 и подобные выражения.
Если в выражении содержатся кратные углы типа х , 2 х , 3 х и так далее, скобки опускаются. Разрешено записывать в виде sin 2 x , c t g 7 x , cos 3 α . Во избежание двусмысленности скобки можно добавить в выражение. Тогда получаем запись вида sin ( 2 · x ) : 2 вместо sin 2 · x : 2 .
Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать
Скобки в выражениях с логарифмами
Чаще всего все выражения логарифмической функции заключаются в скобки для дальнейшего правильного решения. То есть получаем ln ( e − 1 + e 1 ) , log 3 ( x 2 + 3 · x + 7 ) , l g ( ( x + 1 ) · ( x − 2 ) ) . Опущение скобок разрешено в том случае, когда однозначно понятно, к какому выражению относится сам логарифм. Если есть дробь, корень или функция можно записывать выражения в виде log 2 x 5 , l g x — 5 , ln 5 · x — 5 3 — 5 .
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Скобки в пределах
При имеющихся пределах используют скобки для представления выражения самого предела. То есть при суммах, произведениях, частных или разностях принято записывать выражения в скобках. Получаем, что lim n → 5 1 n + n — 2 и lim x → 0 x + 5 · x — 3 x — 1 x + x + 1 : x + 2 x 2 + 3 . Опущение скобок предполагается, когда имеется простая дробь или очевидно, к какому выражению относится знак. Например, lim x → ∞ 1 x или lim x → 0 ( 1 + x ) 1 x .
Видео:Быстрый способ решения квадратного уравненияСкачать
Скобки и производная
При нахождении производной часто можно встретить применение круглых скобок. Если имеется сложное выражение, тогда вся запись берется в скобки . Например, ( x + 1 ) ‘ или sin x x — x + 1 .
Видео:МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать
Подынтегральные выражения в скобках
Если необходимо проинтегрировать выражение, то следует записать его в круглых скобках. Тогда пример примет вид ∫ ( x 2 + 3 x ) d x , ∫ — 1 1 ( sin 2 x — 3 ) d x , ∭ V ( 3 x y + z ) d x d y d z .
Видео:Решение систем уравнений второго порядка. 8 класс.Скачать
Скобки, отделяющие аргумент функции
При наличии функции чаще всего применяются круглые скобки для их обозначения. Когда дана функция f с переменной х , тогда запись принимает вид f ( x ) . Если имеются несколько аргументов функций, то такая функция получит вид F ( x , y , z , t ) .
Видео:Решение систем уравнений методом подстановкиСкачать
Скобки в периодических десятичных дробях
Использование периода обусловлено применением скобок при записи. Сам период десятичной дроби заключается в скобки. Если дана десятинная дробь вида 0 , 232323 … тогда очевидно, что 2 и 3 мы заключаем в круглые скобки. Запись приобретает вид 0 , ( 23 ) . Это характерно для любой записи периодической дроби.
Видео:СЛОЖИТЕ ДВА КОРНЯСкачать
Скобки для обозначения числовых промежутков
Для того, чтобы изобразить числовые промежутки применяют скобки четырех видов: ( ) , ( ] , [ ) и [ ] . В скобках прописываются промежутки, в каких функция существует, то есть имеет решение. Круглая скобка означает, что число не входит в область определения, квадратная – входит. При наличии бесконечности принято изображать круглую скобку.
То есть при изображении промежутков получим, что ( 0 , 5 ) , [ − 0 , 5 , 12 ) , — 10 1 2 , — 5 2 3 , [ 5 , 700 ] , ( − ∞ , − 4 ] , ( − 3 , + ∞ ) , ( − ∞ , + ∞ ) . Не вся литература одинаково использует скобки. Есть случаи, когда можно увидеть запись такого вида ] 0 , 1 [ , что означает ( 0 , 1 ) или [ 0 , 1 [ , что значит [ 0 , 1 ) , причем смысл выражения не меняется.
Видео:Математика| Разложение квадратного трехчлена на множители.Скачать
Обозначения систем и совокупностей уравнений и неравенств
Системы уравнений, неравенств принято записывать при помощи фигурной скобки вида 0 3 x + 2 y ≤ 3 , cos x 1 2 x + π 3 = 0 2 x 2 — 4 ≥ 5 -система, состоящая из двух уравнений и одного неравенства.
Использование фигурных скобок относится к изображению пересечения множеств. При решении системы с фигурной скобкой фактически приходим к пересечению заданных уравнений. Квадратная скобка служит для объединения.
Уравнения и неравенства обозначаются [ скобкой в том случае, если необходимо изобразить совокупность. Тогда получаем примеры вида ( x — 1 ) ( x + 7 ) = 0 x — 2 = 12 + x 2 — x + 3 и x > 2 x — 5 y = 7 2 x + 3 y ≥ 1
Можно встретить выражения, где имеются и система и совокупность:
x ≥ 5 x 3 x > 4 , 5
Видео:Числовые промежутки. Часть 1 (Луч). Точка выколотая, точка закрашенная. Круглые и квадратные скобки.Скачать
Фигурная скобка для обозначения кусочной функции
Кусочная функция изображается при помощи одиночной фигурной скобки, где имеются формулы, определяющие функцию, содержащие необходимые промежутки. Посмотрим на примере формулы с содержанием промежутков типа x = x , x ≥ 0 — x , x 0 , где имеется кусочная функция.
Видео:Сложные уравнения. Как решить сложное уравнение?Скачать
Скобки для указания координат точки
Для того, чтобы изобразить координатные точки в виде промежутков, используют круглые скобки. Они могут быть расположены как на координатной прямой, так и в прямоугольной системе координат или n-мерном пространстве.
Когда координата записывается как А ( 1 ) , то означает, что точка А имеет координату со значением 1 , тогда Q ( x , y , z ) говорит о том, что точка Q содержит координаты x , y , z .
Видео:Решение биквадратных уравнений. 8 класс.Скачать
Скобки для перечисления элементов множества
Множества задаются при помощи перечисления элементов, входящих в его область. Это выполняется при помощи фигурных скобок, где сами элементы прописываются через запятую. Запись выглядит таким образом А = . Видно, что множество состоит из значений, перечисленных в скобках.
Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Скобки и координаты векторов
При рассмотрении векторов в системе координат используется понятие координат вектора. То есть при обозначении используют координаты, которые записаны в виде перечисления в скобках.
Учебники предлагают два вида обозначения: a → 0 ; — 3 или a → 0 ; — 3 . Обе записи равнозначны и имеют значение координат 0 , — 3 . При изображении в трехмерном пространстве добавляется еще одна координата. Тогда запись выглядит так: A B → 0 , — 3 , 2 3 или A B → 0 , — 3 , 2 3 .
Обозначение координат может быть как со значком вектора на самом векторе, так и без. Но запись координат производится через запятую в виде перечисления. Запись принимает вид a = ( 2 , 4 , − 2 , 6 , 1 2 ) , где вектор обозначается в пятимерном пространстве. Реже можно увидеть обозначение двумерного пространства в виде a = 3 — 7
Скобки для указания элементов матриц
Частое применение скобок предусмотрено в матрицах. Все элементы фиксируются при помощи круглых скобок вида A = 4 2 3 — 3 0 0 12 .
Реже можно увидеть использование квадратных скобок.
Тогда матрица приобретает вид A = 4 2 3 — 3 0 0 12 .
Скобки в математике, их виды и предназначение.
В этой статье мы поговорим про скобки в математике, разберемся, какие их виды используются, и для чего они применяются. Сначала мы перечислим основные виды скобок, введем их обозначения и термины, которыми мы будем пользоваться при описании материала. После этого перейдем к конкретике, и будем на примерах разбираться, где и какие скобки применяются.
Навигация по странице.
Основные виды скобок, обозначения, терминология
В математике нашли применение несколько видов скобок, и они, конечно же, обрели свой математический смысл. В основном в математике используются три вида скобок: круглые скобки, которым отвечают знаки ( и ) , квадратные [ и ] , а также фигурные скобки . Однако встречаются и скобки другого вида, например, обратные квадратные ] и [ , или скобки в виде уголка и > .
Скобки в математике в большинстве случаев используются парами: открывающая круглая скобка ( с соответствующей ей закрывающей круглой скобкой ) , открывающая квадратная скобка [ с закрывающей квадратной скобкой ] , наконец, открывающая фигурная скобка . Но встречаются и другие их комбинации, например, ( и ] или [ и ) . Парные скобки заключают в себя некоторое математическое выражение, и заставляют рассматривать его как некую структурную единицу, или как часть какого-то более крупного математического выражения.
Итак, с обозначениями и названиями скобок определились, можно переходить к вариантам их применения.
Скобки для указания порядка выполнения действий
Одно из предназначений скобок в математике заключается в указании порядка выполнения действий или в изменении принятого порядка действий. Для этих целей в основном используются в паре круглые скобки, в которые заключается выражение, являющееся частью исходного выражения. При этом сначала следует выполнить действия в скобках согласно принятому порядку (сначала умножение и деление, а затем сложение и вычитание), после чего выполнить все остальные действия.
Приведем пример, поясняющий как с помощью скобок явно указать на то, какие действия нужно выполнять в первую очередь. Выражение без скобок 5+3−2 подразумевает, что сначала 5 складывается с 3 , после чего от полученной суммы вычитается 2 . Если в исходном выражении поставить круглые скобки так (5+3)−2 , то в порядке выполнения действий ничего не изменится. А если скобки будут поставлены следующим образом 5+(3−2) , то сначала следует вычислить разность в скобках, после чего сложить 5 и полученную разность.
А теперь приведем пример постановки скобок, которые позволяют изменить принятый порядок выполнения действий. Например, выражение 5+2·4 подразумевает, что сначала будет выполнено умножение 2 на 4 , а уже затем будет выполнено сложение 5 с полученным произведением 2 и 4 . Абсолютно те же действия предполагает и выражение со скобками 5+(2·4) . Однако, если скобки поставить так (5+2)·4 , то сначала уже нужно будет вычислить сумму чисел 5 и 2 , после чего полученный результат умножать на 4 .
Следует отметить, что в выражениях могут присутствовать несколько пар скобок, указывающих порядок выполнения действий, например, (4+5·2)−0,5:(7−2):(2+1+12) . В записанном выражении сначала выполняются действия в первой паре скобок, затем во второй, затем в третьей, после чего все остальные действия согласно принятого порядка.
Более того, могут быть скобки в скобках, скобки в скобках в скобках и так далее, например, и . В этих случаях действия выполняются сначала во внутренних скобках, затем в скобках, содержащих внутренние скобки, и так далее. Иными словами действия выполняются, начиная со внутренних скобок, постепенно продвигаясь к внешним скобкам. Так выражение подразумевает, что сначала будут выполнены действий во внутренних скобках, то есть, от 6 будет отнято число 3 , затем 4 будет умножено на вычисленную разность и к результату будет прибавлено число 8 , так будет получен результат во внешних скобках, и, наконец, полученный результат будет разделен на 2 .
На письме часто используют скобки разного размера, это делается для того, чтобы наглядно отличать внутренние скобки от внешних. При этом обычно используют внутренние скобки меньшего размера, чем внешние, например, . Для этих же целей иногда пары скобок выделяют разными цветами, к примеру, (2+2· ( 2+ ( 5·4−4 ) ) )·(6:2−3·7)·(5−3) . А иногда, преследуя те же цели, наряду с круглыми скобками, используют квадратные, а при необходимости и фигурные скобки, например, [3+5·(3−1)]·7 или :[3+5+6:(5−2−1)] .
В заключение этого пункта хочется сказать, что очень важно перед выполнением действий в выражении правильно разобрать по парам скобки, указывающие порядок выполнения действий. Для этого следует вооружиться цветными карандашами, и начать перебирать скобки слева направо, помечая их парами согласно следующему правилу.
Как только будет найдена первая закрывающая скобка, то ее и ближайшую к ней слева открывающую скобку следует пометить каким-нибудь цветом. После этого нужно продолжить движение вправо до следующей непомеченной закрывающей скобки. Как только она будет найдена, то следует пометить ее и ближайшую к ней непомеченную открывающую скобку другим цветом. И так дальше продолжать движение вправо, пока не будут помечены все скобки. К этому правилу лишь следует добавить, что если в выражении есть дроби, то указанное правило нужно применять сначала для выражения в числителе, потом для выражения в знаменателе, после чего двигаться дальше.
Отрицательные числа в скобках
Другое назначение круглых скобок открывается при появлении отрицательных чисел и необходимости записи выражений с ними. Отрицательные числа в выражениях заключают в круглые скобки.
Приведем примеры записей с отрицательными числами в скобках: 5+(−3)+(−2)·(−1) , .
В качестве исключения отрицательное число не заключается в скобки, когда оно идет первым слева числом в выражении, а также первым слева числом в числителе или знаменателе дроби. Например, в выражении −5·4+(−4):2 первое отрицательное число −5 записано без скобок; в знаменателе дроби первое слева число −2,2 также не заключено в скобки. Допустимы и записи со скобками вида (−5)·4+(−4):2 и . Здесь следует отметить, что записи со скобками являются более строгими, так как выражения без скобок иногда допускают различные трактовки, например, −5·4+(−4):2 можно понимать как (−5)·4+(−4):2 или как −(5·4)+(−4):2 . Так что при составлении выражений не стоит «стремиться к минимализму» и не заключать в скобки идущее слева отрицательное число.
Все сказанное в этом пункте выше относится и к переменным, степеням, корням, дробям, выражениям в скобках и функциям, перед которыми стоит знак минус – они также заключаются в круглые скобки. Вот примеры таких записей: 5·(−x) , 12:(−2 2 ) , , .
Скобки для выражений, с которыми выполняются действия
Круглые скобки также используются для указания выражений, с которыми проводятся какие-либо действия, будь то возведение в степень, взятие производной и т.п. Поговорим об этом подробнее.
Скобки в выражениях со степенями
Выражение, являющееся показателем степени, не обязательно брать в скобки. Это объясняется надстрочной записью показателя. Например, из записи 2 x+3 понятно, что 2 является основанием, а выражение x+3 – показателем степени. Однако, если степень обозначается при помощи знака ^ , то выражение, относящееся к показателю степени, придется взять в скобки. В этих обозначениях последнее выражение запишется как 2^(x+3) . Если бы мы не поставили скобки, записав 2^x+3 , это бы означало 2 x +3 .
Немного иначе обстоит дело с основанием степени. Понятно, что не имеет смысла брать в скобки основание степени, когда оно является нулем, натуральным числом или какой-либо переменной, так как в любом случае будет ясно, что показатель степени относится именно к этому основанию. Например, 0 3 , 5 x 2 +5 , y 0,5 .
Но когда основанием степени является дробное число, отрицательное число или некоторое выражение, то его нужно заключать в круглые скобки. Приведем примеры: (0,75) 2 , , , .
Если не взять в скобки выражение, которое является основанием степени, то останется лишь догадываться, что показатель относится ко всему выражению, а не к отдельному его числу или переменной. Для пояснения этой мысли возьмем степень, основанием которой является сумма x 2 +y , а показателем число -2 , этой степени соответствует выражение (x 2 +y) -2 . Если бы мы не взяли в скобки основание, то выражение выглядело бы так x 2 +y -2 , откуда видно, что степень -2 относится к переменной y , а не к выражению x 2 +y .
В заключение этого пункта заметим, что для степеней, основаниями которых являются тригонометрические функции или логарифмы, а показателем является целое число, принята особая форма записи – показатель записывается после sin , cos , tg , ctg , arcsin , arccos , arctg , arcctg , log , ln или lg . Для примера приведем следующие выражения sin 2 x , arccos 3 y , ln 5 e и . Эти записи фактически означают (sin x) 2 , (arccos y) 3 , (lne) 5 и . Кстати, последние записи с заключенными в скобки основаниями тоже допустимы и могут использоваться наравне с указанными ранее.
Скобки в выражениях с корнями
Не нужно заключать в скобки выражения под знаком радикала (корня), так как его верхняя черта выполняет их роль. Так выражение по сути означает .
Скобки в выражениях с тригонометрическими функциями
Отрицательные числа и выражения, относящиеся к синусу, косинусу, тангенсу, котангенсу или арксинусу, арккосинусу, арктангенсу, арккотангенсу, часто приходится заключать в круглые скобки, чтобы было понятно, что функция применяется именно к этому выражению, а не к чему-нибудь еще. Приведем примеры записей: sin(−5) , cos(x+2) , .
Существует одна особенность: после sin , cos , tg , ctg , arcsin , arccos , arctg и arcctg не принято записывать в скобки числа и выражения, если понятно, что функции применяются именно к ним, и не возникает двусмысленностей. Так не обязательно заключать в скобки одиночные неотрицательные числа, например, sin 1 , arccos 0,3 , переменные, например, sin x , arctg z , дроби, например, , корни и степени, например, и т.п.
И еще в тригонометрии особняком стоят кратные углы x, 2·x, 3·x, … , которые почему-то тоже не принято записывать в скобках, например, sin 2x , ctg 7x , cos 3α и т.п. Хотя не будет ошибкой, а порой и предпочтительнее, указанные выражения писать со скобками, чтобы избежать возможных двусмысленностей. К примеру, что означает запись sin2·x:2 ? Согласитесь, запись sin(2·x):2 намного понятнее: отчетливо видно, что два икс относятся к синусу, и синус двух икс делится на 2 .
Скобки в выражениях с логарифмами
Числовые выражения и выражения с переменными, с которыми проводится логарифмирование, при записи заключаются в круглые скобки, к примеру, ln(e −1 +e 1 ) , log3(x 2 +3·x+7) , lg((x+1)·(x−2)) .
Скобки можно не ставить, когда однозначно понятно, к какому выражению или числу применен логарифм. То есть, скобки необязательно ставить, когда под знаком логарифма находится положительное число, дробь, степень, корень, какая-нибудь функция и т.п. Вот примеры таких записей: log2x 5 , , .
Скобки в пределах
Скобки используются и при работе с пределами. Под знаком предела нужно записывать в круглых скобках выражения, представляющие собой суммы, разности, произведения или частные. Приведем примеры: и .
Скобки можно не ставить, если понятно, к какому выражению относится знак предела lim , например, и .
Скобки и производная
Круглые скобки нашли свое применение при описании процесса нахождения производной. Так в скобки берется выражение, за которым следует знак производной. Например, (x+1)’ или .
Подынтегральные выражения в скобках
Круглые скобки получили применение при интегрировании. В круглые скобки берется подынтегральное выражение, представляющее собой некоторую сумму или разность. Приведем примеры: .
Скобки, отделяющие аргумент функции
Круглые скобки в математике заняли свое место в обозначении функций со своими аргументами. Так функция f переменной x записывается как f(x) . Аналогично в скобках перечисляются и аргументы функций нескольких переменных, например, F(x, y , z, t) – функция F четырех переменных x , y , z и t .
Скобки в периодических десятичных дробях
Для обозначения периода в периодических десятичных дробях принято использовать круглые скобки. Приведем пару примеров.
В периодической десятичной дроби 0,232323… период составляют две цифры 2 и 3 , период заключается в круглые скобки, и записывается один раз с момента его появления: так получаем запись 0,(23) . Вот еще пример периодической десятичной дроби: 5,35(127) .
Скобки для обозначения числовых промежутков
Для обозначения числовых промежутков используются пары скобок четырех видов: ( ) , ( ] , [ ) и [ ] . Внутри этих скобок через точку с запятой или через запятую указываются два числа – сначала меньшее, затем большее, ограничивающие числовой промежуток. Круглая скобка, прилегающая к числу, означает, что это число не включено в промежуток, а квадратная – что число включено. Если промежуток связан с бесконечностью, то с символом бесконечности ставят круглую скобку.
Для пояснения приведем примеры числовых промежутков со всеми видами скобок в их обозначении: (0, 5) , [−0,5, 12) , , [5, 700] , (−∞, −4] , (−3, +∞) , (−∞, +∞) .
В некоторых книгах можно встретить обозначения числовых промежутков, в которых вместо круглой скобки ( используется обратная квадратная скобка ] , а вместо скобки ) – скобка [ . В этих обозначениях запись ]0, 1[ эквивалентна записи (0, 1) . Аналогично [0, 1[ — это тоже самое, что [0, 1) , а записи ]0, 1] отвечает запись (0, 1] .
Обозначения систем и совокупностей уравнений и неравенств
Покажем на примерах, как используется фигурная скобка для обозначения систем. Например, — система двух уравнений с одной переменной, — система двух неравенств с двумя переменными, а — система двух уравнений и одного неравенства.
Фигурная скобка системы означает на языке множеств пересечение. Так система уравнений по сути есть пересечение решений этих уравнений, то есть, все общие решения. А для обозначения объединения используется знак совокупности в виде не фигурной, а квадратной скобки.
Итак, совокупности уравнений и неравенств обозначаются аналогично системам, только вместо фигурной скобки записывается квадратная [ . Приведем пару примеров записи совокупностей: и .
Частенько системы и совокупности можно увидеть в одном выражении, например, .
Фигурная скобка для обозначения кусочной функции
В обозначении кусочной функции используется одиночная фигурная скобка, эта скобка содержит определяющие функцию формулы с указанием соответствующих числовых промежутков. В качестве примера, иллюстрирующего как записывается фигурная скобка в обозначении кусочной функции, можно привести функцию модуля: .
Скобки для указания координат точки
Круглые скобки нашли применение и при обозначении координат точки. В круглых скобках записываются координаты точек на координатном луче и координатной прямой, в прямоугольной системе координат на плоскости и в трехмерном пространстве, а также координаты точек в n-мерном пространстве.
Например, запись А(1) означает, что точка А имеет координату 1 , а запись Q(x, y, z) – что точка Q имеет координаты x , y и z .
Скобки для перечисления элементов множества
Одним из способов описания множества является перечисление его элементов. При этом элементы множества записывают в фигурных скобках через запятую. Для примера приведем множество А= , из приведенной записи можно сказать, что оно состоит из трех элементов, которыми являются числа 1 , 2,3 и 4 .
Скобки и координаты векторов
Когда векторы начинают рассматривать в некоторой системе координат, то возникает понятие координат вектора. Один из способов их обозначения подразумевает перечисление координат вектора по очереди в скобках.
В учебниках для учащихся школ можно встретить два варианта обозначения координат векторов, отличаются они тем, что в одном используются фигурные скобки, а в другом – круглые. Вот примеры обозначения векторов на плоскости: или , эти записи означают, что вектор a имеет координаты 0 , −3 . В трехмерном пространстве векторы имеют три координаты, которые и указываются в скобках рядом с названием вектора, к примеру, или .
В высших учебных заведениях более распространено другое обозначение координат вектора: над названием вектора часто не ставится стрелочка или черточка, после названия появляется знак равно, после чего в круглых скобках по очереди через запятую записываются координаты. Например, запись a=(2, 4, −2, 6, 1/2) является обозначением вектора в пятимерном пространстве. А иногда координаты вектора записываются в скобках и в столбик, для примера приведем вектор в двумерном пространстве .
Скобки для указания элементов матриц
Скобки нашли свое применение и при перечислении элементов матриц. Элементы матриц наиболее часто записываются внутри парных круглых скобок. Для наглядности приведем пример: . Однако иногда вместо круглых скобок используются квадратные. Только что записанная матрица A в этих обозначениях примет следующий вид: .