Что означает коэффициент b в линейном уравнении

Линейная функция

Функция называется линейной, если ее можно записать в виде (y=kx+b), где (k) и (b) -некоторые числа.

Функция не всегда сразу задана в виде (y=kx+b), иногда такой вид получится только после преобразований. Например, (y=6(x-1)+10x) — это линейная функция, потому что если раскрыть скобки и привести подобные слагаемые мы получим (y=16x-6).

График линейной функции всегда представляет собой прямую линию – отсюда и название: «линейная функция».

Чтобы в этом убедиться построим графики функций (y=2x), (y=fracx-5), (y=8).
Что означает коэффициент b в линейном уравнении Что означает коэффициент b в линейном уравнении Что означает коэффициент b в линейном уравнении

Если вы вдруг забыли, как строить графики, можете прочитать об этом здесь.

Видео:Занятие 1. График линейной функции y=kx+bСкачать

Занятие 1. График линейной функции y=kx+b

Как меняется график при разных (k)?

Чтобы определить, как влияет на график коэффициент (k), построим несколько функций разными (k): (frac),(-frac),(2),(-2) и (0). При этом во всех функциях сделаем (b) одинаковым (равным нулю), чтобы убрать его влияние.
То есть, построим графики для функций: (y=fracx), (y=-fracx), (y=2x), (y=-2x), (y=0).

Что означает коэффициент b в линейном уравнении

Заметьте, что при (k=2) и (frac) — функция возрастает, а при (k=-2) и (-frac) — убывает. На самом деле:

При любом (k>0) функция возрастает и при любом (k модуль (k), тем «круче» график.

Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

Как по графику определить коэффициент k?

  1. Сначала определим, возрастает или убывает функция. Если возрастает – знак коэффициента (k) плюс, если убывает – минус.
  2. Дальше надо построить на прямой прямоугольный треугольник, так чтобы гипотенуза лежала на графике функции, а вершины треугольника совпадали с вершинами клеточек. Примерно вот так:

Что означает коэффициент b в линейном уравненииЧто означает коэффициент b в линейном уравнении

Чтобы определить значение (k) по модулю (то есть, без учета знака), надо вертикальную сторону треугольника поделить на горизонтальную. Можно использовать правило для запоминания: «стоячий бьет лежачего». В данных случаях (|k|=frac). То есть на первом графике (k=2),а на втором (k=-frac).

Видео:Задание 5 Знаки коэффициентов k и b в формуле линейной функции y=kx+bСкачать

Задание 5  Знаки коэффициентов k и b в формуле линейной функции y=kx+b

Как меняется график при разных значениях (b)?

Чтобы определить, как (b) влияет на график, построим несколько функций с разными (b): (6), (2), (0), (-3) и (-8). При этом (k) пусть во всех функциях будет равен (2).

Что означает коэффициент b в линейном уравнении

Не сложно заметить, что прямая либо поднимается на (b) (если (b>0)) либо опускается на (|b|) если
((b 0),(b>0)2) (k 0)3) (k 0), (b 0). Подходит вариант под цифрой 2).

B. — функция возрастает — (k>0). Точка пересечения оси (y) и прямой находится выше нуля, значит (b>0). Подходит вариант под цифрой 1).

Отмечаем точку (b) на оси игреков.

От неё идем вправо на количество клеточек равное знаменателю (k), и вверх на количество клеточек равное числителю (k) (если (k>0)) или вниз на тоже количество (если (k 0). Поэтому идем вправо на единицу и вверх на (3). Ставим точку.

Проводим через эти две точки прямую.

Что означает коэффициент b в линейном уравнении

Что означает коэффициент b в линейном уравнении Что означает коэффициент b в линейном уравнении

Пример: Построить график функции (y=-frac x-3).

(b=-3) отмечаем точку с этим значением на оси (y).

(k=-frac), (k

Присоединяйтесь к нашей группе ВКонтакте

Смотрите нас в YouTube

Видео:Линейное уравнение. Что это?Скачать

Линейное уравнение. Что это?

Коэффициенты k и b

Содержание

Положение прямой на графике зависит от величины коэффициентов $k$ и $b$

Коэффициент $k$ называют угловым, так как он показывает угол наклона линейной функции на графике относительно оси $Ox$

Что означает коэффициент b в линейном уравнении

При $k > 0$ угол между графиком и осью $Ox$ меньше $90 degree$ (острый)

Что означает коэффициент b в линейном уравнении

При $k Что означает коэффициент b в линейном уравнении

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Коэффициент b

Коэффициент $b$ называют свободным. На графике он показывает длину отрезка, который отсекает линия функции по оси ординат относительно начала координат.

Другими словами, коэффициент $b$ показывает, насколько график сдвинут вдоль оси $Oy$. Если $b > 0$, то график будет сдвинут вверх, и если $b Что означает коэффициент b в линейном уравнении

Так на нашем графике функции из примера про копилку видно, что прямая пересекает ось $Oy$ выше начала координат на $500$ единиц (этому числу и равен коэффициент $b$).

Что означает коэффициент b в линейном уравненииГрафик функции $y=50x + 500$ Что означает коэффициент b в линейном уравнении

Видео:Линейная функция y=k*x+b. Значение коэффициентов k и b в линейной функции.Скачать

Линейная функция y=k*x+b. Значение коэффициентов k и b в линейной функции.

Частные случаи. b = 0

В случае, когда коэффициент $b = 0$, а функция прямо пропорциональна, ее график будет проходить через начало координат $O(0;0)$. Ведь при подставлении в формулу $x = 0$ получим и $y = 0$.

Для построения графика такой функции достаточно найти одну точку, вторая – начало координат $О(0;0)$.

Что означает коэффициент b в линейном уравнении

Важно: график в виде вертикальной прямой, параллельной оси $Oy$, не является графиком функции. В таком случае одному значению аргумента соответствует множество значений $y$. Это не наш случай, потому что он не соответствует самому определению функции.

При этом прямой, параллельной оси $Ox$, график функции может быть. Это возможно, когда коэффициент $k = 0$. Угол наклона также будет равен $0$. Формула принимает вид $y = b$.

Видео:Задание 5 Знаки коэффициентов k и b в формуле линейной функции y=kx+bСкачать

Задание 5  Знаки коэффициентов k и b в формуле линейной функции y=kx+b

График линейной функции, его свойства и формулы

Что означает коэффициент b в линейном уравнении

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:7 класс - Алгебра - Определение углового коэффициентаСкачать

7 класс - Алгебра - Определение углового коэффициента

Понятие функции

Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

Видео:Задание 5 Знаки коэффициентов k и b в формуле линейной функции y=kx+bСкачать

Задание 5  Знаки коэффициентов k и b в формуле линейной функции y=kx+b

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

  • если х = 0, то у = -2;
  • если х = 2, то у = -1;
  • если х = 4, то у = 0;
  • и т. д.

Для удобства результаты можно оформлять в виде таблицы:

х024
y-2-10

Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

Что означает коэффициент b в линейном уравнении

Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».

ФункцияКоэффициент «k»Коэффициент «b»
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».

Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!

Видео:Вариант 51, № 7. Нахождение k и b линейной функции y=kx+b. Пример 1Скачать

Вариант 51, № 7. Нахождение k и b линейной функции y=kx+b. Пример 1

Свойства линейной функции

  1. Область определения функции — множество всех действительных чисел.
  2. Множеством значений функции является множество всех действительных чисел.
  3. График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
    Что означает коэффициент b в линейном уравнении
  4. Функция не имеет ни наибольшего, ни наименьшего значений.
  5. Четность и нечетность линейной функции зависят от значений коэффициентов k и b:
    b ≠ 0, k = 0, значит y = b — четная;
    b = 0, k ≠ 0, значит y = kx — нечетная;
    b ≠ 0, k ≠ 0, значит y = kx + b — функция общего вида;
    b = 0, k = 0, значит y = 0 — как четная, так и нечетная функция.
  6. Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.
  7. График функции пересекает оси координат:
    ось абсцисс ОХ — в точке (-b/k, 0);
    ось ординат OY — в точке (0; b).
  8. x=-b/k — является нулем функции.
  9. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.
    Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.
  10. Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0: функция принимает отрицательные значения на промежутке (-∞, — b /k) и положительные значения на промежутке (- b /k, +∞)
    При k b /k, +∞) и положительные значения на промежутке (-∞, — b /k).
  11. Коэффициент k характеризует угол, который образует прямая с положительным направлением Ох. Поэтому k называют угловым коэффициентом.
    Если k > 0, то этот угол острый, если k

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

Что означает коэффициент b в линейном уравнении

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

  • если k > 0, то график наклонен вправо;
  • если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
  • если b 1 /2x + 3, y = x + 3.

Что означает коэффициент b в линейном уравнении

Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.

В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).

Теперь рассмотрим графики функций y = -2x + 3, y = — 1 /2x + 3, y = -x + 3.

Что означает коэффициент b в линейном уравнении

В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.

Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).

Рассмотрим графики функций y = 2x + 3, y = 2x, y = 2x — 2.

Что означает коэффициент b в линейном уравнении

Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.

При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

  • график функции y = 2x + 3 (b = 3) пересекает ось OY в точке (0; 3);
  • график функции y = 2x (b = 0) пересекает ось OY в точке начала координат (0; 0);
  • график функции y = 2x — 2 (b = -2) пересекает ось OY в точке (0; -2).

Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.

Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.

Если k 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Точки пересечения графика функции y = kx + b с осями координат:

  • С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
    Координаты точки пересечения с осью OY: (0; b).
  • С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = — b /k.
    Координаты точки пересечения с осью OX: (- b /k; 0)

Что означает коэффициент b в линейном уравнении

Видео:Задание 5. Знаки коэффициентов k и b в формуле линейной функции y=kx+bСкачать

Задание 5.  Знаки коэффициентов k и b в формуле линейной функции y=kx+b

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

  • В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
    Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
    Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
    2 = -4(-3) + b
    b = -10
  • Таким образом, нам надо построить график функции y = -4x — 10
    Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
    Поставим эти точки в координатной плоскости и соединим прямой:

Что означает коэффициент b в линейном уравнении

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

  1. Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
    Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.
  2. Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений. Что означает коэффициент b в линейном уравнении
  3. Вычтем из второго уравнения системы первое, и получим k = 3.
    Подставим значение k в первое уравнение системы, и получим b = -2.

🌟 Видео

7 класс. Алгебра. Линейная функция. Возрастающая и убывающая. Коэффициент k.Скачать

7 класс. Алгебра. Линейная функция. Возрастающая и убывающая. Коэффициент k.

Метод наименьших квадратов. Линейная аппроксимацияСкачать

Метод наименьших квадратов. Линейная аппроксимация

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25Скачать

Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25

Построить график ЛИНЕЙНОЙ функции и найти:Скачать

Построить график  ЛИНЕЙНОЙ функции и найти:

Нахождение коэффициентов k и b в уравнении прямойСкачать

Нахождение коэффициентов k и b в уравнении прямой

Линейная функция и ее график. 7 класс.Скачать

Линейная функция и ее график. 7 класс.

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ
Поделиться или сохранить к себе: