Что обозначают прямые скобки в уравнении

Содержание
  1. Скобки в математике, их виды и предназначение.
  2. Основные виды скобок, обозначения, терминология
  3. Скобки для указания порядка выполнения действий
  4. Отрицательные числа в скобках
  5. Скобки для выражений, с которыми выполняются действия
  6. Скобки в выражениях со степенями
  7. Скобки в выражениях с корнями
  8. Скобки в выражениях с тригонометрическими функциями
  9. Скобки в выражениях с логарифмами
  10. Скобки в пределах
  11. Скобки и производная
  12. Подынтегральные выражения в скобках
  13. Скобки, отделяющие аргумент функции
  14. Скобки в периодических десятичных дробях
  15. Скобки для обозначения числовых промежутков
  16. Обозначения систем и совокупностей уравнений и неравенств
  17. Фигурная скобка для обозначения кусочной функции
  18. Скобки для указания координат точки
  19. Скобки для перечисления элементов множества
  20. Скобки и координаты векторов
  21. Скобки для указания элементов матриц
  22. Скобки в математике
  23. Использование круглых скобок в математике
  24. Готовые работы на аналогичную тему
  25. Квадратные скобки в математике
  26. Фигурная скобка в математике
  27. Треугольные скобки
  28. Решение простых линейных уравнений
  29. Понятие уравнения
  30. Какие бывают виды уравнений
  31. Как решать простые уравнения
  32. Примеры линейных уравнений

Видео:что означают квадратные скобки в математике???#матем #скобкиСкачать

что означают квадратные скобки в математике???#матем #скобки

Скобки в математике, их виды и предназначение.

В этой статье мы поговорим про скобки в математике, разберемся, какие их виды используются, и для чего они применяются. Сначала мы перечислим основные виды скобок, введем их обозначения и термины, которыми мы будем пользоваться при описании материала. После этого перейдем к конкретике, и будем на примерах разбираться, где и какие скобки применяются.

Навигация по странице.

Видео:Точки выколотые, точки темные. Скобки круглые, скобки квадратные. Алгебра 8 классСкачать

Точки выколотые, точки темные. Скобки круглые, скобки квадратные. Алгебра 8 класс

Основные виды скобок, обозначения, терминология

В математике нашли применение несколько видов скобок, и они, конечно же, обрели свой математический смысл. В основном в математике используются три вида скобок: круглые скобки, которым отвечают знаки ( и ) , квадратные [ и ] , а также фигурные скобки . Однако встречаются и скобки другого вида, например, обратные квадратные ] и [ , или скобки в виде уголка и > .

Скобки в математике в большинстве случаев используются парами: открывающая круглая скобка ( с соответствующей ей закрывающей круглой скобкой ) , открывающая квадратная скобка [ с закрывающей квадратной скобкой ] , наконец, открывающая фигурная скобка . Но встречаются и другие их комбинации, например, ( и ] или [ и ) . Парные скобки заключают в себя некоторое математическое выражение, и заставляют рассматривать его как некую структурную единицу, или как часть какого-то более крупного математического выражения.

Итак, с обозначениями и названиями скобок определились, можно переходить к вариантам их применения.

Видео:Раскрытие скобок. 6 класс.Скачать

Раскрытие скобок. 6 класс.

Скобки для указания порядка выполнения действий

Одно из предназначений скобок в математике заключается в указании порядка выполнения действий или в изменении принятого порядка действий. Для этих целей в основном используются в паре круглые скобки, в которые заключается выражение, являющееся частью исходного выражения. При этом сначала следует выполнить действия в скобках согласно принятому порядку (сначала умножение и деление, а затем сложение и вычитание), после чего выполнить все остальные действия.

Приведем пример, поясняющий как с помощью скобок явно указать на то, какие действия нужно выполнять в первую очередь. Выражение без скобок 5+3−2 подразумевает, что сначала 5 складывается с 3 , после чего от полученной суммы вычитается 2 . Если в исходном выражении поставить круглые скобки так (5+3)−2 , то в порядке выполнения действий ничего не изменится. А если скобки будут поставлены следующим образом 5+(3−2) , то сначала следует вычислить разность в скобках, после чего сложить 5 и полученную разность.

А теперь приведем пример постановки скобок, которые позволяют изменить принятый порядок выполнения действий. Например, выражение 5+2·4 подразумевает, что сначала будет выполнено умножение 2 на 4 , а уже затем будет выполнено сложение 5 с полученным произведением 2 и 4 . Абсолютно те же действия предполагает и выражение со скобками 5+(2·4) . Однако, если скобки поставить так (5+2)·4 , то сначала уже нужно будет вычислить сумму чисел 5 и 2 , после чего полученный результат умножать на 4 .

Следует отметить, что в выражениях могут присутствовать несколько пар скобок, указывающих порядок выполнения действий, например, (4+5·2)−0,5:(7−2):(2+1+12) . В записанном выражении сначала выполняются действия в первой паре скобок, затем во второй, затем в третьей, после чего все остальные действия согласно принятого порядка.

Более того, могут быть скобки в скобках, скобки в скобках в скобках и так далее, например, Что обозначают прямые скобки в уравнениии Что обозначают прямые скобки в уравнении. В этих случаях действия выполняются сначала во внутренних скобках, затем в скобках, содержащих внутренние скобки, и так далее. Иными словами действия выполняются, начиная со внутренних скобок, постепенно продвигаясь к внешним скобкам. Так выражение Что обозначают прямые скобки в уравненииподразумевает, что сначала будут выполнены действий во внутренних скобках, то есть, от 6 будет отнято число 3 , затем 4 будет умножено на вычисленную разность и к результату будет прибавлено число 8 , так будет получен результат во внешних скобках, и, наконец, полученный результат будет разделен на 2 .

На письме часто используют скобки разного размера, это делается для того, чтобы наглядно отличать внутренние скобки от внешних. При этом обычно используют внутренние скобки меньшего размера, чем внешние, например, Что обозначают прямые скобки в уравнении. Для этих же целей иногда пары скобок выделяют разными цветами, к примеру, (2+2· ( 2+ ( 5·4−4 ) ) )·(6:2−3·7)·(5−3) . А иногда, преследуя те же цели, наряду с круглыми скобками, используют квадратные, а при необходимости и фигурные скобки, например, [3+5·(3−1)]·7 или :[3+5+6:(5−2−1)] .

В заключение этого пункта хочется сказать, что очень важно перед выполнением действий в выражении правильно разобрать по парам скобки, указывающие порядок выполнения действий. Для этого следует вооружиться цветными карандашами, и начать перебирать скобки слева направо, помечая их парами согласно следующему правилу.

Как только будет найдена первая закрывающая скобка, то ее и ближайшую к ней слева открывающую скобку следует пометить каким-нибудь цветом. После этого нужно продолжить движение вправо до следующей непомеченной закрывающей скобки. Как только она будет найдена, то следует пометить ее и ближайшую к ней непомеченную открывающую скобку другим цветом. И так дальше продолжать движение вправо, пока не будут помечены все скобки. К этому правилу лишь следует добавить, что если в выражении есть дроби, то указанное правило нужно применять сначала для выражения в числителе, потом для выражения в знаменателе, после чего двигаться дальше.

Видео:Две скобки в математикеСкачать

Две скобки в математике

Отрицательные числа в скобках

Другое назначение круглых скобок открывается при появлении отрицательных чисел и необходимости записи выражений с ними. Отрицательные числа в выражениях заключают в круглые скобки.

Приведем примеры записей с отрицательными числами в скобках: 5+(−3)+(−2)·(−1) , Что обозначают прямые скобки в уравнении.

В качестве исключения отрицательное число не заключается в скобки, когда оно идет первым слева числом в выражении, а также первым слева числом в числителе или знаменателе дроби. Например, в выражении −5·4+(−4):2 первое отрицательное число −5 записано без скобок; в знаменателе дроби Что обозначают прямые скобки в уравнениипервое слева число −2,2 также не заключено в скобки. Допустимы и записи со скобками вида (−5)·4+(−4):2 и Что обозначают прямые скобки в уравнении. Здесь следует отметить, что записи со скобками являются более строгими, так как выражения без скобок иногда допускают различные трактовки, например, −5·4+(−4):2 можно понимать как (−5)·4+(−4):2 или как −(5·4)+(−4):2 . Так что при составлении выражений не стоит «стремиться к минимализму» и не заключать в скобки идущее слева отрицательное число.

Все сказанное в этом пункте выше относится и к переменным, степеням, корням, дробям, выражениям в скобках и функциям, перед которыми стоит знак минус – они также заключаются в круглые скобки. Вот примеры таких записей: 5·(−x) , 12:(−2 2 ) , Что обозначают прямые скобки в уравнении, Что обозначают прямые скобки в уравнении.

Видео:КАК РАСКРЫТЬ СКОБКИ?Скачать

КАК РАСКРЫТЬ СКОБКИ?

Скобки для выражений, с которыми выполняются действия

Круглые скобки также используются для указания выражений, с которыми проводятся какие-либо действия, будь то возведение в степень, взятие производной и т.п. Поговорим об этом подробнее.

Скобки в выражениях со степенями

Выражение, являющееся показателем степени, не обязательно брать в скобки. Это объясняется надстрочной записью показателя. Например, из записи 2 x+3 понятно, что 2 является основанием, а выражение x+3 – показателем степени. Однако, если степень обозначается при помощи знака ^ , то выражение, относящееся к показателю степени, придется взять в скобки. В этих обозначениях последнее выражение запишется как 2^(x+3) . Если бы мы не поставили скобки, записав 2^x+3 , это бы означало 2 x +3 .

Немного иначе обстоит дело с основанием степени. Понятно, что не имеет смысла брать в скобки основание степени, когда оно является нулем, натуральным числом или какой-либо переменной, так как в любом случае будет ясно, что показатель степени относится именно к этому основанию. Например, 0 3 , 5 x 2 +5 , y 0,5 .

Но когда основанием степени является дробное число, отрицательное число или некоторое выражение, то его нужно заключать в круглые скобки. Приведем примеры: (0,75) 2 , Что обозначают прямые скобки в уравнении, Что обозначают прямые скобки в уравнении, Что обозначают прямые скобки в уравнении.

Если не взять в скобки выражение, которое является основанием степени, то останется лишь догадываться, что показатель относится ко всему выражению, а не к отдельному его числу или переменной. Для пояснения этой мысли возьмем степень, основанием которой является сумма x 2 +y , а показателем число -2 , этой степени соответствует выражение (x 2 +y) -2 . Если бы мы не взяли в скобки основание, то выражение выглядело бы так x 2 +y -2 , откуда видно, что степень -2 относится к переменной y , а не к выражению x 2 +y .

В заключение этого пункта заметим, что для степеней, основаниями которых являются тригонометрические функции или логарифмы, а показателем является целое число, принята особая форма записи – показатель записывается после sin , cos , tg , ctg , arcsin , arccos , arctg , arcctg , log , ln или lg . Для примера приведем следующие выражения sin 2 x , arccos 3 y , ln 5 e и Что обозначают прямые скобки в уравнении. Эти записи фактически означают (sin x) 2 , (arccos y) 3 , (lne) 5 и Что обозначают прямые скобки в уравнении. Кстати, последние записи с заключенными в скобки основаниями тоже допустимы и могут использоваться наравне с указанными ранее.

Скобки в выражениях с корнями

Не нужно заключать в скобки выражения под знаком радикала (корня), так как его верхняя черта выполняет их роль. Так выражение Что обозначают прямые скобки в уравнениипо сути означает Что обозначают прямые скобки в уравнении.

Скобки в выражениях с тригонометрическими функциями

Отрицательные числа и выражения, относящиеся к синусу, косинусу, тангенсу, котангенсу или арксинусу, арккосинусу, арктангенсу, арккотангенсу, часто приходится заключать в круглые скобки, чтобы было понятно, что функция применяется именно к этому выражению, а не к чему-нибудь еще. Приведем примеры записей: sin(−5) , cos(x+2) , Что обозначают прямые скобки в уравнении.

Существует одна особенность: после sin , cos , tg , ctg , arcsin , arccos , arctg и arcctg не принято записывать в скобки числа и выражения, если понятно, что функции применяются именно к ним, и не возникает двусмысленностей. Так не обязательно заключать в скобки одиночные неотрицательные числа, например, sin 1 , arccos 0,3 , переменные, например, sin x , arctg z , дроби, например, Что обозначают прямые скобки в уравнении, корни и степени, например, Что обозначают прямые скобки в уравнениии т.п.

И еще в тригонометрии особняком стоят кратные углы x, 2·x, 3·x, … , которые почему-то тоже не принято записывать в скобках, например, sin 2x , ctg 7x , cos 3α и т.п. Хотя не будет ошибкой, а порой и предпочтительнее, указанные выражения писать со скобками, чтобы избежать возможных двусмысленностей. К примеру, что означает запись sin2·x:2 ? Согласитесь, запись sin(2·x):2 намного понятнее: отчетливо видно, что два икс относятся к синусу, и синус двух икс делится на 2 .

Скобки в выражениях с логарифмами

Числовые выражения и выражения с переменными, с которыми проводится логарифмирование, при записи заключаются в круглые скобки, к примеру, ln(e −1 +e 1 ) , log3(x 2 +3·x+7) , lg((x+1)·(x−2)) .

Скобки можно не ставить, когда однозначно понятно, к какому выражению или числу применен логарифм. То есть, скобки необязательно ставить, когда под знаком логарифма находится положительное число, дробь, степень, корень, какая-нибудь функция и т.п. Вот примеры таких записей: log2x 5 , Что обозначают прямые скобки в уравнении, Что обозначают прямые скобки в уравнении.

Скобки в пределах

Скобки используются и при работе с пределами. Под знаком предела нужно записывать в круглых скобках выражения, представляющие собой суммы, разности, произведения или частные. Приведем примеры: Что обозначают прямые скобки в уравнениии Что обозначают прямые скобки в уравнении.

Скобки можно не ставить, если понятно, к какому выражению относится знак предела lim , например, Что обозначают прямые скобки в уравнениии Что обозначают прямые скобки в уравнении.

Скобки и производная

Круглые скобки нашли свое применение при описании процесса нахождения производной. Так в скобки берется выражение, за которым следует знак производной. Например, (x+1)’ или Что обозначают прямые скобки в уравнении.

Подынтегральные выражения в скобках

Круглые скобки получили применение при интегрировании. В круглые скобки берется подынтегральное выражение, представляющее собой некоторую сумму или разность. Приведем примеры: Что обозначают прямые скобки в уравнении.

Видео:Порядок выполнения действий со скобкамиСкачать

Порядок выполнения действий со скобками

Скобки, отделяющие аргумент функции

Круглые скобки в математике заняли свое место в обозначении функций со своими аргументами. Так функция f переменной x записывается как f(x) . Аналогично в скобках перечисляются и аргументы функций нескольких переменных, например, F(x, y , z, t) – функция F четырех переменных x , y , z и t .

Видео:Алгебра 7 класс. 19 сентября. Числовые промежуткиСкачать

Алгебра 7 класс. 19 сентября. Числовые промежутки

Скобки в периодических десятичных дробях

Для обозначения периода в периодических десятичных дробях принято использовать круглые скобки. Приведем пару примеров.

В периодической десятичной дроби 0,232323… период составляют две цифры 2 и 3 , период заключается в круглые скобки, и записывается один раз с момента его появления: так получаем запись 0,(23) . Вот еще пример периодической десятичной дроби: 5,35(127) .

Видео:Квадратные скобки - что они значат в юриспруденции?Скачать

Квадратные скобки - что они значат в юриспруденции?

Скобки для обозначения числовых промежутков

Для обозначения числовых промежутков используются пары скобок четырех видов: ( ) , ( ] , [ ) и [ ] . Внутри этих скобок через точку с запятой или через запятую указываются два числа – сначала меньшее, затем большее, ограничивающие числовой промежуток. Круглая скобка, прилегающая к числу, означает, что это число не включено в промежуток, а квадратная – что число включено. Если промежуток связан с бесконечностью, то с символом бесконечности ставят круглую скобку.

Для пояснения приведем примеры числовых промежутков со всеми видами скобок в их обозначении: (0, 5) , [−0,5, 12) , Что обозначают прямые скобки в уравнении, [5, 700] , (−∞, −4] , (−3, +∞) , (−∞, +∞) .

В некоторых книгах можно встретить обозначения числовых промежутков, в которых вместо круглой скобки ( используется обратная квадратная скобка ] , а вместо скобки ) – скобка [ . В этих обозначениях запись ]0, 1[ эквивалентна записи (0, 1) . Аналогично [0, 1[ — это тоже самое, что [0, 1) , а записи ]0, 1] отвечает запись (0, 1] .

Видео:Решение неравенства методом интерваловСкачать

Решение неравенства методом интервалов

Обозначения систем и совокупностей уравнений и неравенств

Покажем на примерах, как используется фигурная скобка для обозначения систем. Например, Что обозначают прямые скобки в уравнении— система двух уравнений с одной переменной, Что обозначают прямые скобки в уравнении— система двух неравенств с двумя переменными, а Что обозначают прямые скобки в уравнении— система двух уравнений и одного неравенства.

Фигурная скобка системы означает на языке множеств пересечение. Так система уравнений по сути есть пересечение решений этих уравнений, то есть, все общие решения. А для обозначения объединения используется знак совокупности в виде не фигурной, а квадратной скобки.

Итак, совокупности уравнений и неравенств обозначаются аналогично системам, только вместо фигурной скобки записывается квадратная [ . Приведем пару примеров записи совокупностей: Что обозначают прямые скобки в уравнениии Что обозначают прямые скобки в уравнении.

Частенько системы и совокупности можно увидеть в одном выражении, например, Что обозначают прямые скобки в уравнении.

Видео:Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать

Решение квадратных уравнений. Метод разложения на множители. 8 класс.

Фигурная скобка для обозначения кусочной функции

В обозначении кусочной функции используется одиночная фигурная скобка, эта скобка содержит определяющие функцию формулы с указанием соответствующих числовых промежутков. В качестве примера, иллюстрирующего как записывается фигурная скобка в обозначении кусочной функции, можно привести функцию модуля: Что обозначают прямые скобки в уравнении.

Видео:17. Показать что прямые пересекаются и составить уравнение плоскости в которой они расположеныСкачать

17. Показать что прямые пересекаются и составить уравнение плоскости в которой они расположены

Скобки для указания координат точки

Круглые скобки нашли применение и при обозначении координат точки. В круглых скобках записываются координаты точек на координатном луче и координатной прямой, в прямоугольной системе координат на плоскости и в трехмерном пространстве, а также координаты точек в n-мерном пространстве.

Например, запись А(1) означает, что точка А имеет координату 1 , а запись Q(x, y, z) – что точка Q имеет координаты x , y и z .

Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Скобки для перечисления элементов множества

Одним из способов описания множества является перечисление его элементов. При этом элементы множества записывают в фигурных скобках через запятую. Для примера приведем множество А= , из приведенной записи можно сказать, что оно состоит из трех элементов, которыми являются числа 1 , 2,3 и 4 .

Видео:Как решать уравнения со скобками.Как правильно раскрывать скобки.Скачать

Как решать уравнения со скобками.Как правильно раскрывать скобки.

Скобки и координаты векторов

Когда векторы начинают рассматривать в некоторой системе координат, то возникает понятие координат вектора. Один из способов их обозначения подразумевает перечисление координат вектора по очереди в скобках.

В учебниках для учащихся школ можно встретить два варианта обозначения координат векторов, отличаются они тем, что в одном используются фигурные скобки, а в другом – круглые. Вот примеры обозначения векторов на плоскости: Что обозначают прямые скобки в уравненииили Что обозначают прямые скобки в уравнении, эти записи означают, что вектор a имеет координаты 0 , −3 . В трехмерном пространстве векторы имеют три координаты, которые и указываются в скобках рядом с названием вектора, к примеру, Что обозначают прямые скобки в уравненииили Что обозначают прямые скобки в уравнении.

В высших учебных заведениях более распространено другое обозначение координат вектора: над названием вектора часто не ставится стрелочка или черточка, после названия появляется знак равно, после чего в круглых скобках по очереди через запятую записываются координаты. Например, запись a=(2, 4, −2, 6, 1/2) является обозначением вектора в пятимерном пространстве. А иногда координаты вектора записываются в скобках и в столбик, для примера приведем вектор в двумерном пространстве Что обозначают прямые скобки в уравнении.

Видео:Ошибки при раскрытии скобок со степенью.Скачать

Ошибки при раскрытии скобок со степенью.

Скобки для указания элементов матриц

Скобки нашли свое применение и при перечислении элементов матриц. Элементы матриц наиболее часто записываются внутри парных круглых скобок. Для наглядности приведем пример: Что обозначают прямые скобки в уравнении. Однако иногда вместо круглых скобок используются квадратные. Только что записанная матрица A в этих обозначениях примет следующий вид: Что обозначают прямые скобки в уравнении.

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Скобки в математике

Вы будете перенаправлены на Автор24

Скобки в математике играют очень важную роль: с помощью них задаётся порядок действий с выражением, обозначаются границы промежутков и необходимость выполнения какого-либо действия над выражением. Также с помощью скобок обозначаются вектора и матрицы и действия с множествами.

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Использование круглых скобок в математике

Круглые скобки в математике встречаются наиболее часто, и они используются для множества целей.

Первое применение.

С помощью круглых скобок устанавливается порядок действий для вычисления алгебраического выражения. Выражение, которое стоит в скобках, вычисляется первым, за ним следует вычисление всех остальных.

Например, выражение $2+3cdot 2$ не равносильно выражению $(2+3)cdot 2$. Для первого выражения сначала вычисляется произведение, а затем сумма, для второго же выражения сначала вычисляется сумма, так как она стоит в скобках, и лишь затем произведение.

В случае же если в выражении скобок много и одна находится внутри другой — первыми вычисляются скобки с максимальной глубиной вложенности.

Второе применение.

Скобками выделяют отрицательные числа в выражениях для того чтобы избежать путаницы. Например, выражение $(-5) cdot 2 + (3 cdot 12)$. Однако, если отрицательное число стоит в выражении на первом месте, оно может и не выделяться скобками.

Третье применение.

Круглые скобки также используются для обозначения действий, которые необходимо совершить над всем выражением, стоящим в скобках. Под действием здесь имеются в виду возведение в степень, взятие производной или вычисление подинтегрального выражения.

$(x+2)^2; int_1^5 (x^2+5x)dx; f’(x)= (5x^2 + 1)’$

Четвёртое применение.

Круглыми скобками обозначаются отрезки, границы которых не включены интервал. Интервал с круглыми скобками вида $(-a;+a)$ можно иначе записать как строгое неравенство вида $-a$

Пятое применение.

Скобки также используются при необходимости записи зависимости какой- либо функции от аргумента, например, $f(x)=5x+3$.

Готовые работы на аналогичную тему

Пятое применение.

С помощью скобок записываются координаты точек, например, , запись «точка, с координатами $(1; 2)$» обозначает, что по оси абсцисс координата точки равна единице, а по оси ординат — двум.

Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Квадратные скобки в математике

Что же означают квадратные скобки в математике и для чего они используются?

Квадратные скобки в математике встречаются реже чем круглые, но всё же их можно встретить довольно часто.

Первое применение.

Квадратные скобки иногда используются при записи выражений наряду с круглыми для того, чтобы было проще различить скобки и, соответственно, задаваемый ими порядок действий. Часто с такой целью квадратные скобки используются для записи формул физики и других технических наук.

Здесь первым действием вычисляется выражение $(5+2)$, затем результат умножается на $2$ и а после вычисляется часть выражения в скобках $(25-3+(-5))$. В конце результат, полученный в квадратных скобках умножается на то, что получилось после вычисления выражения $(25-3+(-5))$.

Второе применение.

Другим распространённым применением квадратных скобок является обозначение нестрогих интервалов. Например, интервал вида $[-a;+a]$ иначе можно записать в виде нестрогого неравенства $-a≤x≤a$, что иными словами значит, что $x$ может находиться на промежутке от $-a$ включительно, до $a$ включительно. Иногда можно встретить одновременное использование в математике круглых и прямых скобок, это значит, что на конце отрезка, рядом с которым стоит круглая скобка, равенство строгое, а на том, где скобка квадратная — равенство нестрогое. Например, интервал вида $(-5;5]$ иначе можно записать в виде неравенства $5

Третье применение.

С помощью квадратной скобки записывают совокупности. Совокупности — это системы уравнений, для которых справедливы все множества решений для каждого уравнения, входящего в совокупность.

$left [ begin x +32=2y \ y^2-12=0 \ endright.$

Видео:СЛОЖИТЕ ДВА КОРНЯСкачать

СЛОЖИТЕ ДВА КОРНЯ

Фигурная скобка в математике

Первое применение.

С помощью символа фигурной скобки обозначают систему уравнений, решением которой являются корни, подходящие для всех уравнений, включённых в систему.

Второе применение.

Очень часто с помощью знака фигурных скобок обозначают координаты векторов, например: $vec=$.

Третье применение.

В фигурные скобки заключаются множества, например, $$ обозначает множетво, которому принадлежат элементы $a,b$ и $c$.

Треугольные скобки

Треугольные скобки — это обозначение, использующееся в таком математическом разделе математики, как теория групп. Например, запись вида $langle a rangle !,_n$ обозначает циклическую группу порядка $n$, порождённую элементом $a$.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 06 03 2021

Видео:Квадратные скобкиСкачать

Квадратные скобки

Решение простых линейных уравнений

Что обозначают прямые скобки в уравнении

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Что обозначают прямые скобки в уравнении

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Что обозначают прямые скобки в уравнении

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить: Что обозначают прямые скобки в уравнении

  1. Что обозначают прямые скобки в уравнении
  2. 3(3х — 4) = 4 · 7х + 24
  3. 9х — 12 = 28х + 24
  4. 9х — 28х = 24 + 12
  5. -19х = 36
  6. х = 36 : (-19)
  7. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Поделиться или сохранить к себе: