Что называют дискриминантом квадратного уравнения сколько корней может иметь

Как найти дискриминант квадратного уравнения

Что называют дискриминантом квадратного уравнения сколько корней может иметь

О чем эта статья:

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, содержащее переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим:

13 = 12 — противоречие.

Значит, х = 5 не является корнем уравнения.

Если же х = 4, то при подстановке в уравнение мы получим:

12 = 12 — верное равенство.

Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Если все коэффициенты в уравнении отличны от нуля, то уравнение называется полным.

Такое уравнение можно решить с помощью формулы дискриминанта.

Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Понятие дискриминанта

Дискриминант квадратного уравнения — это выражение, равное b 2 − 4ac. Дискриминант в переводе с латинского означает «отличающий» или «различающий» и обозначается буквой D.

Дискриминант — отличный помощник, чтобы понять, сколько в уравнении корней.

Что называют дискриминантом квадратного уравнения сколько корней может иметь

Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Как решать квадратные уравнения через дискриминант

Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

Определим, чему равны коэффициенты a, b, c.

Вычислим значение дискриминанта по формуле D = b2 − 4ac.

Если дискриминант D 0, то у уравнения две корня, равные

Чтобы запомнить алгоритм решения полных квадратных уравнений и с легкостью его использовать, сохраните себе шпаргалку:

Что называют дискриминантом квадратного уравнения сколько корней может иметь

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Примеры решения квадратных уравнений с помощью дискриминанта

Пример 1. Решить уравнение: 3x 2 — 4x + 2 = 0.

  1. Определим коэффициенты: a = 3, b = -4, c = 2.
  2. Найдем дискриминант: D = b 2 — 4ac = (-4) 2 — 4 * 3 * 2 = 16 — 24 = -8.

Ответ: D 2 — 6x + 9 = 0.

  1. Определим коэффициенты: a = 1, b = -6, c = 9.
  2. Найдем дискриминант: D = b 2 — 4ac = (-6) 2 — 4 * 1 * 9 = 36 — 36 = 0.

D = 0, значит уравнение имеет один корень:

Что называют дискриминантом квадратного уравнения сколько корней может иметь

Ответ: корень уравнения 3.

Пример 3. Решить уравнение: x 2 — 4x — 5 = 0.

  1. Определим коэффициенты: a = 1, b = -4, c = -5.
  2. Найдем дискриминант: D = b 2 — 4ac = (-4) 2 — 4 * 1 * (-5) = 16 + 20 = 36.

D > 0, значит уравнение имеет два корня:

Что называют дискриминантом квадратного уравнения сколько корней может иметь

Ответ: два корня x1 = 5, x2 = -1.

Разобраться в решении квадратных уравнений на практике с классным преподавателем можно на курсах по математике в Skysmart.

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Квадратное уравнение. Дискриминант. Теорема Виета.

теория по математике 📈 уравнения

Уравнение вида ax 2 +bx+c=0, где a,b,c – любые числа, причем a≠0, называют квадратным уравнением. Числа a,b,c принято называть коэффициентами, при этом a – первый коэффициент, b – второй коэффициент, c – свободный член.

Квадратное уравнение может иметь не более двух корней. Решить такое уравнение – это значит найти все его корни или доказать, что их нет.

Видео:Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные УравненияСкачать

Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные Уравнения

Дискриминант

Количество корней квадратного уравнения зависит от такого элемента, как дискриминант (обозначают его буквой D).

Нахождение корней квадратного уравнения

Дискриминант – это такой математический инструмент, который позволяет нам определять количество корней. Он выражается определенной формулой:

D=b 2 –4ac

    Если D>0, то уравнение имеет два различных

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Пример №1. Решить уравнение х 2 –2х–3=0. Определяем коэффициенты: а=1, b=–2, c=–3. Находим дискриминант: D=b 2 –4ac=(–2) 2 –41(–3)=4+12=16. Видим, что дискриминант положительный, значит, уравнение имеет два различных корня, находим их:

Что называют дискриминантом квадратного уравнения сколько корней может иметьПример №2. Решить уравнение 5х 2 +2х+1=0. Определяем коэффициенты: а=5, b=2, c=1. D=b 2 –4ac=2 2 –4=4–20=–16, D 2 –6х+9=0. Определяем коэффициенты: а=1, b=–6, c=9.

D=b 2 –4ac=(–6) 2 –4=36–36=0, D=0, 1

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Что называют дискриминантом квадратного уравнения сколько корней может иметь

Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Теорема Виета

Среди квадратных уравнений встречаются такие, у которых первый коэффициент равен 1 (обратим внимание на пример 1 и 3), такие уравнения называются приведенными.

Приведенные квадратные уравнения можно решать не только с помощью дискриминанта, но и с помощью теоремы Виета.

Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком; произведение корней равно третьему коэффициенту.

Корни с помощью данной теоремы находятся устно способом подбора. Рассмотрим это на примерах.

Пример №4. Решить уравнение х 2 –10х+21=0. Выпишем коэффициенты: а=1, b=–10, c=21. Применим теорему Виета:

Начинаем с произведения корней, которое является положительным числом, значит оба корня либо отрицательные, либо положительные. Предполагаем, что это могут быть либо 3 и 7, либо противоположные им числа. Теперь смотрим на сумму, она является положительным числом, поэтому нам подходит пара чисел 3 и 7. Проверяем: 3+7=10, 37=21. Значит, корнями данного уравнения являются числа 3 и 7.

Пример №5. Решить уравнение: х 2 +5х+4=0. Выпишем коэффициенты: а=1, b=5, c=4. По теореме Виета:

Видим, что произведение корней равно 4, значит оба корня либо отрицательные, либо положительные. Видим, что сумма отрицательная, значит, будем брать два отрицательных числа, нам подходят –1 и –4. Проверим:

Данное уравнение является квадратным. Но в его условии присутствует квадратный корень, что усложняет нам задачу для нахождения его корней, в том плане, что необходимо увидеть, какие же ограничения на переменную х здесь будут.

Записываем обязательно в начале решения, что подкоренное выражение может быть только равным нулю или положительным числом (правило извлечения квадратного корня): ограничение на х: 5 − х ≥ 0

Решаем полученное неравенство: − х ≥ − 5 , отсюда х ≤ 5 . Следовательно, для ответа мы будем выбирать значения, которые меньше или равны 5.

Решаем наше квадратное уравнение, перенося все слагаемые из правой части в левую, изменяя при этом знаки на противоположные и приводя подобные слагаемые (выражения с квадратным корнем взаимоуничтожаются):

х 2 − 2 х + √ 5 − х − √ 5 − х − 24 = 0

Получим приведенное квадратное уравнение, корни которого можно найти подбором по теореме Виета:

х 2 − 2 х − 24 = 0

Итак, корнями уравнения х 2 − 2 х − 24 = 0 будут числа -4 и 6.

Теперь выбираем корень, обращая внимание на наше ограничение на х, т.е. корень должен быть меньше или равен 5. Таким образом, запишем, что 6 – это посторонний корень, так как 6 н е ≤ 5 , а число минус 4 записываем в ответ нашего уравнения, так как − 4 ≤ 5 .

pазбирался: Даниил Романович | обсудить разбор | оценить

Видео:Быстрый способ решения квадратного уравненияСкачать

Быстрый способ решения квадратного уравнения

Нахождение дискриминанта, формула, сравнение с нулём

Дискриминант — многозначный термин. В данной статье речь пойдёт о дискриминанте многочлена, который позволяет определить, есть ли у данного многочлена действительные решения. Формула для квадратного многочлена встречается в школьном курсе алгебры и анализа. Как найти дискриминант? Что нужно для решения уравнения?

Видео:Общая формула корней квадратного уравненияСкачать

Общая формула корней квадратного уравнения

Квадратный многочлен, как искать его корни

Квадратным многочленом или уравнением второй степени называется i * w ^ 2 + j * w + k равный 0, где «i» и «j» — первый и второй коэффициент соответственно, «k» — константа, которую иногда именуют «свободным членом», а «w» — переменная. Его корнями окажутся все значения переменной, при которых оно превращается в тождество. Такое равенство допустимо переписать, как произведение i, (w — w1) и (w — w2) равное 0. В этом случае очевидно, что если коэффициент «i» не обращается в ноль, то функция в левой части станет нулевой только в случае, если x принимает значение w1 или w2. Эти значения являются результатом приравнивания многочлена к нулю.

Для нахождения значения переменной, при котором квадратный многочлен обращается в ноль, используется вспомогательная конструкция, построенная на его коэффициентах и названная дискриминантом. Эта конструкция рассчитывается согласно формуле D равняется j * j — 4 * i * k. Зачем она используется?

  1. Она говорит, имеются ли действительные результаты.
  2. Она помогает их высчитать.

Как это значение показывает наличие вещественных корней:

  • Если оно положительное, то можно найти два корня в области действительных чисел.
  • Если дискриминант равен нулю, то оба решения совпадают. Можно сказать, что есть всего одно решение, и оно из области вещественных чисел.
  • Если дискриминант меньше нуля, то у многочлена отсутствуют вещественные корни.

Варианты расчётов для закрепления материала

Для суммы равной 0 рассчитываем D по формуле 3 * 3 — 4 * 7 * 1 = 9 — 28 получаем -19. Значение дискриминанта ниже нуля говорит об отсутствии результатов на действительной прямой.

Если рассмотреть 2 * w ^ 2 — 3 * w + 1 эквивалентный 0, то D рассчитывается как (-3) в квадрате за вычетом произведения чисел и равняется 9 — 8, то есть 1. Положительное значение говорит о двух результатах на вещественной прямой.

Что называют дискриминантом квадратного уравнения сколько корней может иметь

Если взять сумму и прировнять к 0, D рассчитается, как два в квадрате минус произведение чисел . Это выражение упростится до 4 — 4 и обратится в ноль. Выходит, что результаты совпадают. Если внимательно вглядеться в данную формулу, то станет понятно, что это «полный квадрат». Значит, равенство можно переписать в форме (w + 1) ^ 2 = 0. Стало очевидно, что результат в этой задаче «-1». В ситуации если D равен 0, левую часть равенства всегда получится свернуть по формуле «квадрат суммы».

Использование дискриминанта в вычислении корней

Эта вспомогательная конструкция не только показывает количество вещественных решений, но и помогает их находить. Общая формула расчёта для уравнения второй степени такова:

w = (-j +/- d) / (2 * i), где d — дискриминант в степени 1/2.

Допустим, дискриминант ниже нулевой отметки, тогда d — мнимо и результаты мнимые.

D нулевой, тогда d, равный D в степени 1/2, тоже нулевой. Решение: -j / (2 * i). Снова рассматриваем 1 * w ^ 2 + 2 * w + 1 = 0, находим результаты эквивалентные -2 / (2 * 1) = -1.

Предположим, D > 0, значит, d — вещественное число, и ответ здесь распадается на две части: w1 = (-j + d) / (2 * i) и w2 = (-j — d) / (2 * i). Оба результата окажутся действительные. Взглянем на 2 * w ^ 2 — 3 * w + 1 = 0. Здесь дискриминант и d — единицы. Выходит, w1 равняется (3 + 1) делить (2 * 2) или 1, а w2 равен (3 — 1) делить на 2 * 2 или 1/2.

Результат приравнивания квадратного выражения к нулю вычисляется согласно алгоритму:

  1. Вычисление дискриминанта.
  2. Определение количества действительных решений.
  3. Вычисление d = D ^ (1/2).
  4. Нахождение результата в соответствии с формулой (-j +/- d) / (2 * i).
  5. Подстановка полученного результата в исходное равенство для проверки.

Видео:8 класс, 24 урок, Основные понятия, связанные с квадратными уравнениямиСкачать

8 класс, 24 урок, Основные понятия, связанные с квадратными уравнениями

Некоторые частные случаи

В зависимости от коэффициентов решение может несколько упрощаться. Очевидно, что если коэффициент перед переменной во второй степени равен нулю, то получается линейное равенство. Когда коэффициент перед переменной в первой степени нулевой, то возможны два варианта:

  1. многочлен раскладывается в разность квадратов при отрицательном свободном члене;
  2. при положительной константе действительных решений найти нельзя.

Если свободный член нулевой, то корни будут

Но есть и другие частные случаи, упрощающие нахождение решения.

Приведенное уравнение второй степени

Приведенным именуют такой квадратный трёхчлен, где коэффициент перед старшим членом — единица. Для данной ситуации применима теорема Виета, гласящая, что сумма корней равняется коэффициенту при переменной в первой степени, помноженному на -1, а произведение соответствует константе «k».

Следовательно, w1 + w2 равно -j и w1 * w2 равняется k, если первый коэффициент — единица. Чтобы убедиться в правильности такого представления, можно выразить из первой формулы w2 = -j — w1 и подставить его во второе равенство w1 * (-j — w1) = k. В итоге получается исходное равенство w1 ^ 2 + j * w1 + k = 0.

Что называют дискриминантом квадратного уравнения сколько корней может иметь

Важно отметить, что i * w ^ 2 + j * w + k = 0 удастся привести путём деления на «i». Результат будет: w ^ 2 + j1 * w + k1 = 0, где j1 равно j / i и k1 равно k / i.

Взглянем на уже решенное 2 * w ^ 2 — 3 * w + 1 = 0 с результатами w1 = 1 и w2 = 1/2. Надо поделить его пополам, в итоге w ^ 2 — 3/2 * w + 1/2 = 0. Проверим, что для найденных результатов справедливы условия теоремы: 1 + 1/2 = 3/2 и 1*1/2 = 1/2.

Чётный второй множитель

Если множитель при переменной в первой степени (j) делится на 2, то удастся упростить формулу и искать решение через четверть дискриминанта D/4 = (j / 2) ^ 2 — i * k. получается w = (-j +/- d/2) / i, где d/2 = D/4 в степени 1/2.

Если i = 1, а коэффициент j — чётный, то решением будет произведение -1 и половины коэффициента при переменной w, плюс/минус корень из квадрата этой половины за вычетом константы «k». Формула: w = -j / 2 +/- (j ^ 2 / 4 — k) ^ 1/2.

Видео:Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

Более высокий порядок дискриминанта

Рассмотренный выше дискриминант трёхчлена второй степени — это наиболее употребимый частный случай. В общем же случае дискриминант многочлена представляет собой перемноженные квадраты разностей корней этого многочлена. Следовательно, дискриминант равный нулю говорит о наличии как минимум двух кратных решений.

Рассмотрим i * w ^ 3 + j * w ^ 2 + k * w + m = 0.

D = j ^ 2 * k ^ 2 — 4 * i * k ^ 3 — 4 * i ^ 3 * k — 27 * i ^ 2 * m ^ 2 + 18 * i * j * k * m.

💡 Видео

Как решать квадратные уравнения без дискриминантаСкачать

Как решать квадратные уравнения без дискриминанта

Квадратное уравнение, дискриминант, формула корнейСкачать

Квадратное уравнение, дискриминант, формула корней

Найти сумму корней квадратного уравнения, если дискриминант равен нулюСкачать

Найти сумму корней квадратного уравнения, если дискриминант равен нулю

МАТЕМАТИКА 8 класс - Полные Квадратные Уравнения. Как решать Полные Квадратные Уравнения?Скачать

МАТЕМАТИКА 8 класс - Полные Квадратные Уравнения. Как решать Полные Квадратные Уравнения?

РАЗБИРАЕМ ДИСКРИМИНАНТ ЧАСТЬ I #shorts #математика #егэ #огэ #дискриминантСкачать

РАЗБИРАЕМ ДИСКРИМИНАНТ ЧАСТЬ I #shorts #математика #егэ #огэ #дискриминант

МАТЕМАТИКА 8 класс - Квадратные Уравнения. Как решать Квадратные Уравнения? Формула КорнейСкачать

МАТЕМАТИКА 8 класс - Квадратные Уравнения. Как решать Квадратные Уравнения? Формула Корней

Формула корней квадратного уравнения – 8 класс алгебраСкачать

Формула корней квадратного уравнения – 8 класс алгебра

Отрицательный дискриминантСкачать

Отрицательный дискриминант

КВАДРАТНОЕ УРАВНЕНИЕ дискриминантСкачать

КВАДРАТНОЕ УРАВНЕНИЕ дискриминант
Поделиться или сохранить к себе: