В математике принято использовать свои обозначения. Запись условий задач с их помощью приводит к появлению так называемых математических выражений. Можно говорить про числовые, буквенные выражения и математические выражения с переменными. Для удобства и одни, и вторые и третьи называются просто выражениями. В этой статье мы дадим определения и по порядку рассмотрим каждый тип математических выражений.
Видео:Числовые равенства. 6 класс.Скачать
Числовые выражения
С самый первых уроков математики школьники начинают знакомство с числовыми выражениями. Выражение содержит числа, и действия над этими числами. Возьмем простейшие примеры для счета: 5 + 2 ; 3 — 8 ; 1 + 1 . Все это — числовые выражения. Если выполнить действия, указанные в выражении, то получится его значение.
Конечно, числовые выражения содержат не только знаки «плюс» и «минус». Они могут включать деление и умножение, содержать скобки, степени, корни, логарифмы и состоять из нескольких действий.
Учитывая все сказанное, дадим определение. Что такое числовое выражение?
Определение. Числовое выражение
Числовые выражения — это комбинация чисел, арифметических действий, знаков дробных черт, корней, логарифмов, тригонометрических и других функций, а также скобок и иных математических символов.
Числовым выражением считается только та комбинация, которая составлена с учетом математических правил.
Поясним данное определение.
Во-первых, числа. Математическое выражение может содержать любые числа. Это значит, что в математическом выражении можно встретить:
- натуральные числа: 6 , 173 , 9 ,
- целые числа: 18 , 0 , 64 ,
- рациональные числа:
обыкновенные дроби 1 3 , 3 4 ,
смешанные числа 6 1 8 , 89 5 7 ,
периодические и непериодические десятичные дроби 9 , 78 , 8 , 556 - иррациональные числа: π , e ,
- комплексные числа: i = — 1 .
Во-вторых, арифметические действия. то известные нам еще из курса начальной школы сложение, умножение, вычитание и деление. Знаки » + » , » — » , » · » и » ÷ » могут присутствовать в выражении не один раз. Вот пример такого числового выражения: 12 + 4 — 3 + 3 ÷ 1 · 8 · 6 ÷ 2 .
деление в выражениях может присутствовать как в виде знака, так и в виде дробной черты.
Скобки в числовых выражениях
- указывают порядок выполнения действий: 5 — 2 , 5 + 5 * 0 , 25 ;
- используются для записи отрицательных чисел: 5 + ( — 2 ) ;
- отделяют аргумент функции: sin π 2 — π 3 ;
- отделяют показатель степени: 2 — 1 , 3 2
Есть и специальные значения для записи скобок. Например, запись 1 , 75 + 2 означает, что к целой части числа 1 , 75 прибавляется число 2 .
Согласно определению, числовые выражения могут содержать степени, корни, логарифмы, тригонометрические и обратные тригонометрическим функции. Приведем пример такого числового выражения:
В качестве примера использования в числовых выражениях специальных знаков, можно привести знак модуля.
— 2 2 5 · 6 + — 5 — 8 · 2
Видео:Числовые выражения. Буквенные выражения. 1 часть. 5 класс.Скачать
Буквенные выражения
После знакомства с числовыми выражениями можно вводить понятие буквенных выражений. Интуитивно понятно, что в них вместо чисел используются буквы. Но обо всем по порядку.
Запишем числовое выражение, но вместо одного числа оставим пустой квадратик.
В квадратик мы можем вписать любое число. Например, 2 , или 1032 .
Если условится записывать вместо числа в квадратике букву a , означающую данное число, то мы получим буквенное выражение:
Определение. Буквенное выражение
Выражение, в котором буквы заменяняют некоторые цифры, называется буквенным выражением. Буквенное выражение должно содержать по крайней мере одну букву.
Принципиальная разница числового и буквенного выражений в том, что первое не может содержать букв. В буквенных выражениях чаще всего используются маленькие буквы латинского алфавита a , b , c . . или маленькие греческие буквы α , β , γ . . и т.д.
Приведем пример сложного буквенного выражения.
x 3 + 2 — 4 · x 5 + 4 x y + 8 y 2 3 8 — 4 x 2 · a r c cos α + 1 3 x 2 + 2 y — 1
Видео:АЛГЕБРА 7 класс : Выражения с переменнымиСкачать
Выражения с переменными
В рассмотренных выше буквенных выражениях буква обозначала какое-то конкретное числовое значение. Величина, которая может принимать ряд различных значений, называется переменной. Выражение с такой величиной, соответственно, называются выражением с переменной.
Определение. Выражения с переменными
Выражение с переменной — выражение, в котором все или некоторые буквы обозначают величины, принимающие различные значения.
Пусть переменная x принимает натуральные значения из интервала от 0 до 10 . Тогда выражения x 2 — 1 есть выражение с переменной, а x — переменная в этом выражении.
В выражении может быть не одна, а несколько переменных. Например, при переменных x и y выражение x 3 · y + y 2 2 — 1 представляет собой выражение с двумя переменными.
Вообще буквенные выражения и выражения с переменными позволяют посмотреть на задачу вне контекста конкретных чисел, то есть более широко. Они широко используются в математическом анализе для формулировок и доказательств.
Внешний вид буквенного выражения не позволяет узнать, являются входящие в него буквы переменными, или нет. Для этого нужно знать условия конкретной задачи, описываемой выражением. Вне контекста ничто не мешает считать входящие в выражение буквы переменными. Таким образом, разница между понятиями «буквенное выражение» и «выражение с переменными» нивелируется.
Видео:Алгебраические выражения. 6 класс.Скачать
Методика изучения элементов алгебры и математической логики
Видео:АЛГЕБРА 7 класс : Числовые выражения | Короткий видеоурокСкачать
Методика изучения числовых выражений, выражений с переменными, числовых равенств и неравенств, уравнений
Изучение числовых выражений, равенств и неравенств, а так же уравнений начинается еще с первого класса, в период изучения нумерации в пределах 10.
Так знакомство с равенствами и неравенствами начинается уже с девятой страницы. Дети учатся сначала сравнивать числа, затем выражения с целью установления отношений «больше», «меньше», «равно», учатся записывать результаты с помощью знаков » «, «=» и читать полученные равенства и неравенства.
Сравнение чисел осуществляется сначала на основе сравнения множеств, которое выполняется с помощью установления взаимно однозначного соответствия. Попутно выполняется счет элементов множеств и сравнение полученных чисел:
в дальнейшем при сравнение чисел учащиеся опираются на знание их места в натуральном ряду: девять меньше, чем десять, потому что при счете число девять называют перед числом десять. Установленные отношения записываются с помощью знаков , =, учащиеся упражняются в чтении и записи равенств и неравенств, но сами термины вводятся только во втором классе.
Переход к сравнению двух выражений осуществляется постепенно. Сначала дети знакомятся с самими выражениями.
При формировании понятия числового выражения необходимо учитывать, что знак действия, поставленный между числами имеет двоякий смысл: с одной стороны, он обозначает действия, которое надо выполнить над числами; с другой стороны, знак действия служит для обозначения выражения (6 + 4 — это сумма чисел 6 и 4).
Понятия о выражениях формируется в тесной связи с понятиями об арифметических действия и способствует лучшему их усвоению. В первом классе формируется представление о простейших выражениях (сумма и разность). Знакомство осуществляется при помощи метода изложения.
На доске записан пример на сложение: 5 + 2.
Назвать и подписать: это сумма.
Найти чему равна сумма: 7.
Записать и подписать — это тоже сумма.
Каждое из чисел имеет свое название (имя): 5 — первое слагаемое, 2 — второе слагаемое. Наш пример можно прочесть так: сумма чисел 2 и 5 равна 7; первое слагаемое 5, второе — 2, сумма — 7.
Так же знакомятся и с разностью. И только после этого дети сравнивают выражение с числом, а далее выражение с выражением.
На первом уроке можно дать упражнение на сравнение с опорой на рисунки, например, в двух рядах рисуются по 6 квадратов (6 = 6), затем в первом ряду дорисовывают два квадрата или зачеркивают два квадрата. И дается запись:
- 6 + 2 > 6 6 — 2 6 4 6 +3
- 10> 9
Так же в первом классе осуществляется знакомство с записью и чтением выражений со скобками и некоторыми случаями в которых нужно установить порядок действий. Например, 70 — 26 + 10, 42 + 18 -19 и т. д. Выполняют тождественные преобразования, опираясь на свойства арифметических действий (прибавление числа к сумме и суммы к числу).
Например, продолжи запись: 76 — (20 + 4) = 26 — 20… Кроме этого, в первом классе проводится подготовительная работа к ознакомлению с уравнениями.
Неизвестно число появляется впервые уже в связи с решением примеров вида 1 + 1 = 2, которые решаются при изучении нумерации в пределах десяти. В этом примере два известных числа 1 и 1, а третье число, которое получится, надо найти. Число которое требуется найти, называют неизвестным.
Постепенно задания усложняются. Так, детям предлагается, пользуясь рисунком, имеющимся в учебнике, составить пример, в котором надо прибавить 1: + 1 = .
В рассмотренных примерах неизвестным числом являлся результат действия. В дальнейшем дети встречаются и с такими случаями, когда неизвестным оказывается один из компонентов действия. Например, спишите пример, заполняя пропуск: 3 + = 5.
Далее, изучение выражений с переменными, равенств и неравенств, уравнений продолжается во втором классе.
Здесь дети знакомятся с терминами «равенство» и «неравенство». Учащимся предлагается проверить, верны ли записи (даны два столбика равенств и неравенств). Учитель поясняет, что, если между выражениями стоит знак равно, — это равенство, а если знак больше или меньше это неравенство. Равенства и неравенства бывают верными и неверными. Учащиеся выбирают верные равенства и верные неравенства из предложенных. Затем решают большое количество заданий такого типа на закрепление.
Так же во втором классе дети знакомятся с темой «Порядок действий» в сложных выражениях. Формулируют правило: если в выражении без скобок есть только сложение и вычитание или умножение и деление, то они выполняются по порядку слева направо. Учитель обращает внимание детей на то, что при не соблюдении этих правил получатся не верное равенство.
Затем изучается порядок действий в выражении без скобок, в которых есть умножение и деление, сложение и вычитание: в выражениях без скобок умножение и деления выполняются раньше, чем сложение и вычитание.
После этого изучается правило порядка действий в выражениях со скобками, причем в скобках одно действие. Знакомятся с такими тождественными преобразованиями как умножение и деление суммы на число.
Вводится новое понятие, выражение с переменной. В подготовительной работе нужно повторить название чисел в математических выражениях: «сумма чисел», «разность чисел», «произведение чисел», а так же зависимость между компонентами и результатом действий.
Хорошим упражнением для подготовки к введению буквенной символики являются задачи с пропущенными числами.
В начале вводятся выражения с одно переменной. Для этого можно использовать пособие — прямоугольник с вырезанным «окошком» и продвижной лентой. На ленте записаны числа, например, 2, 6, 8, 15, а на картоне за «окошком» записано +8. Учитель передвигает ленту, а дети называют и записывают соответствующие выражения: 2 + 8, 6 + 8 и т. д. Учитель сообщает, что в математике вместо «окошка» записывают латинские буквы. Учитель объясняет: «Запишем вместо «окошка», например, букву с, тогда получим выражение с + 8, которое читают так: «сумма чисел с и 8″. Найдем значение этой суммы , подставляя значения записанные на этой ленте ( учитель передвигает ленту, а дети записывают на доске и в тетрадях выражение: с + 8, с = 2, 2 + 8 = 10; с = 6, 6 + 8 = 14 и т. д.»
Числа 2, 6 , 8, 15 — это обозначения буквы с, а числа 10, 14 … — это значение выражения с + 8 приданных значениях буквы.
Можно ли букве с придать другие значения? Назовите их. Дети называют несколько значений, записывают числовые выражения и находят их значения. Учитель замечает, что букве с можно придать очень много различных значений.
Для ознакомления с выражениями с двумя переменными можно использовать специальное пособие — прямоугольник с двумя «окошечками» и провести работу, аналогичную той, что при введении выражения с одной. Начать можно и с рассмотрения простой задачи, например, такой:
«На одной полке 3 книги, а на другой — 5 книг. Сколько всего книг на этих полках?»
Дети знают, что такие задачи решаются сложением.
На доске запись:
Затем в задаче меняются числовые данные: «На одной полке 6 книг, а на другой — 4». Вопрос тот же, запись данных и решение проводится по той же таблице.
С целью закрепления знаний приобретенных при первом знакомстве с буквенными выражениями, выполняются упражнения, связанные с вычислением значений данного выражения при заданных значениях букв. Полезны и упражнения на заполнение таблиц, где компоненты действий обозначен буквами.
И еще один элемент алгебры, который дети изучают во втором классе — это уравнения.
При введении уравнений они решаются подбором используя знания состава чисел, табличных случаев сложения, вычитания умножения и деления. После решения нескольких примеров подбором учитель дает уравнение х + 28 = 40, предлагает прочесть: первое слагаемое неизвестно, второе — 28, сумма — 40, надо найти первое слагаемое. Дети говорят правило нахождения неизвестного слагаемого: чтобы найти первое слагаемое, надо из суммы 40 вычесть известное слагаемое — 28.
Вычисляем: 40 -28 = 12, т. е. х = 12.
Проверяем: 12 + 28 = 40, значит уравнение решено правильно. Запись на доске и в тетрадях: х + 28 = 40
х = 40 — 28 12 + 28 = 40
Затем аналогично изучаются уравнения видов:
Х — 5 = 27 — нахождение неизвестного уменьшаемого;
- 32 — х = 8 — нахождение неизвестного вычитаемого;
- 14 · х = 28 — нахождение неизвестного множителя;
х : 6 = 12 — нахождение неизвестного делимого;
48 : х = 4 — нахождение неизвестного делителя.
Овладение понятием «уравнение» способствует и решение задач способом составления уравнения. Необходимым требованием для этого является умение составлять выражения по их условиям.
В третьем классе решаются задачи с помощью составления уравнения, в которых надо найти неизвестный компонент действия.
Для решения задачи с помощью уравнения обозначают буквой искомое число, выделяют в условии задачи связи, которые позволяют составить равенство, содержащее неизвестное, записывают его. Полученное уравнение решают, используя знания, связи между компонентами и результатом действия. Затем дается ответ на вопрос задачи.
Так же с помощью уравнений решаются задачи на нахождение одной из сторон прямоугольника по известным площади и длине смежной стороны.
Задачи на составление уравнений решаются систематически — это хорошее упражнение на отработку понятия уравнения.
Кроме решения уравнений учащиеся в третьем классе продолжают работу над выражениями с переменной, а так же с изучением порядка действий.
Таким образом учащиеся проверяют знания свойств арифметических действий в таких упражнениях: при каких значениях букв верны следующие равенства: 36 · в = в; а · а = а; с + с = с; 10 · с = 10; 49 · а = 0; в · 0 = 0; 12 · а = а · 12; в + в = в.
В данном уравнении буквенная символика способствует повышению уровня обобщения знаний и готовит их к изучению алгебры.
И новым в вопросе о порядке действий в выражениях является изучение правила порядка действий в выражениях со скобками, причем в скобках несколько действий.
Таким образом можно сделать вывод о том, что изучение числовых выражений с переменной, числовых равенств и неравенств, уравнений продолжается на протяжении всех трех лет начального обучения в школе.
Видео:Урок 67 Числовые выражения и выражения с переменными (7 класс)Скачать
Выражение. Равенство. Неравенство. Уравнение
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На данном уроке вы сможете повторить, а также сравнить между собой четыре понятия: числовое выражение, равенство, неравенство и уравнение. Узнаете, что равенства и неравенства могут быть всего двух типов – верные и неверные. Рассмотрите также различные примеры уравнений, способы их решения, потренируетесь в составлении собственных уравнений. Изучение данной темы поможет вам в дальнейшем при решении более сложных заданий.
📸 Видео
Урок 1 ЧИСЛОВЫЕ ВЫРАЖЕНИЯ 7 КЛАСССкачать
Математика 2 класс (Урок№14 - Числовые выражения. Порядок действий в числовых выражениях. Скобки.)Скачать
Порядок выполнения действий в выражениях. Числовые выраженияСкачать
Тема 5. Числовые выражения и выражения с переменнымиСкачать
Математика. 6 класс. Числовые равенства и их свойства /11.01.2021/Скачать
Линейное уравнение с одной переменной. 6 класс.Скачать
АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ 7 класс ПРИМЕРЫ формулы КАК РЕШАТЬ урок 1Скачать
6 класс, 16 урок, Алгебраические выраженияСкачать
7 класс - Алгебра - Числовые выражения. Выражения с переменнымиСкачать
Урок 2 ВЫРАЖЕНИЯ С ПЕРЕМЕННЫМИ 7 КЛАСССкачать
Числовые выражения. Буквенные выражения. 2 часть. 5 класс.Скачать
Числовые выражения. Алгебра, 7 классСкачать
Математика. 6 класс. Числовые равенства и их свойства /12.01.2021/Скачать
Раскрытие скобок. 6 класс.Скачать