Число независимых уравнений которое можно записать по первому закону кирхгофа

Задания. 6.1.Число независимых уравнений, которое можно записать по первому закону Кирхгофа для заданной схемы равно

6.1.Число независимых уравнений, которое можно записать по первому закону Кирхгофа для заданной схемы равно…

Читайте также:

  1. I. Анализ задания
  2. I. Задания для самостоятельной работы
  3. I. Задания для самостоятельной работы
  4. II часть контрольного задания
  5. II. Тестовые задания
  6. II. Тестовые задания
  7. III. Для обеспечения проверки исходного уровня знаний-умений решите 2 задания.
  8. III. Для обеспечения проверки исходного уровня знаний-умений решите 2 задания.
  9. III. Для обеспечения проверки исходного уровня знаний-умений решите 2 задания.
  10. III. КОНТРОЛЬНЫЕ ЗАДАНИЯ.
Число независимых уравнений которое можно записать по первому закону кирхгофа

а) Пяти б) Четырем в) Трем г) Двум

6.2. Для определения всех токов путем непосредственного применения законов Кирхгофа необходимо записать столько уравнений, сколько ______ в схеме.

а) контуров б) узлов в) сопротивлений г) ветвей

6.3.Математические выражения первого и второго законов Кирхгофа имеют вид…

а) Число независимых уравнений которое можно записать по первому закону кирхгофаи Число независимых уравнений которое можно записать по первому закону кирхгофаб) Число независимых уравнений которое можно записать по первому закону кирхгофаи Число независимых уравнений которое можно записать по первому закону кирхгофа

в) Число независимых уравнений которое можно записать по первому закону кирхгофаи Число независимых уравнений которое можно записать по первому закону кирхгофаг) Число независимых уравнений которое можно записать по первому закону кирхгофаи Число независимых уравнений которое можно записать по первому закону кирхгофа

6.4. Для данной схемы неверным будет уравнение…

Число независимых уравнений которое можно записать по первому закону кирхгофа

а) Число независимых уравнений которое можно записать по первому закону кирхгофаб) Число независимых уравнений которое можно записать по первому закону кирхгофа

в) Число независимых уравнений которое можно записать по первому закону кирхгофаг) Число независимых уравнений которое можно записать по первому закону кирхгофа

6.5.Для данной схемы неверным будет уравнение…

Число независимых уравнений которое можно записать по первому закону кирхгофа

а) Число независимых уравнений которое можно записать по первому закону кирхгофаб) Число независимых уравнений которое можно записать по первому закону кирхгофа

в) Число независимых уравнений которое можно записать по первому закону кирхгофаг) Число независимых уравнений которое можно записать по первому закону кирхгофа

6.6.Для узла «а» справедливо уравнение …

Число независимых уравнений которое можно записать по первому закону кирхгофа

а) I1+ I2 – I3 – I4=0 б) I1+ I2 + I3 – I4 =0

в) I1 – I2 – I3 – I4 = 0 г) – I1+I2 –I3 – I4=0

6.7.Выражение для второго закона Кирхгофа имеет вид…

а) ∑ Ik = 0 б) U = RI

в) P = I²R г) Число независимых уравнений которое можно записать по первому закону кирхгофаmRm = Число независимых уравнений которое можно записать по первому закону кирхгофаEm

6.8.Выражение для первого закона Кирхгофа имеет вид…

а) Число независимых уравнений которое можно записать по первому закону кирхгофаmRm = Число независимых уравнений которое можно записать по первому закону кирхгофаEm б) ∑ Uk = 0

6.9.Количество независимых уравнений по первому закону Кирхгофа, необходимое для расчета токов в ветвях составит…

Число независимых уравнений которое можно записать по первому закону кирхгофа

а) три б) четыре в) два г) шесть

6.10.Если токи в ветвях составляют I1= 2 A, I2 = 10 A, то ток I5 будет равен…

Число независимых уравнений которое можно записать по первому закону кирхгофа

а) 12 А б) 20 А в) 8 А г) 6 А

Число независимых уравнений которое можно записать по первому закону кирхгофа6.11.Для контура, содержащего ветви с R2, R3, R5, справедливо уравнение по второму закону Кирхгофа.

6.12.Для узла «b» справедливо уравнение…

Число независимых уравнений которое можно записать по первому закону кирхгофа

Дата добавления: 2015-04-16 ; просмотров: 39 ; Нарушение авторских прав

Видео:Урок 4. Расчет цепей постоянного тока. Законы КирхгофаСкачать

Урок 4. Расчет цепей постоянного тока. Законы Кирхгофа

Законы Кирхгофа для расчёта электрических цепей

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие полностью определить режим её работы.

Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

Прежде чем перейти к самим законам Кирхгофа, дадим определение ветвей и узлов электрической цепи.

Ветвью электрической цепи называется такой её участок, который состоит только из последовательно включённых источников ЭДС и сопротивлений, вдоль которого протекает один и тот же ток. Узлом электрической цепи называется место (точка) соединения трёх и более ветвей. При обходе по соединённым в узлах ветвям можно получить замкнутый контур электрической цепи. Каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям, при этом каждый узел в рассматриваемом контуре встречается не более одного раза [1].

Первый закон Кирхгофа

Первый закон Кирхгофа применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна нулю:

или в комплексной форме

Второй закон Кирхгофа

Второй закон Кирхгофа применяется к контурам электрической цепи и формулируется следующим образом: в любом замкнутом контуре алгебраическая сумма напряжений на сопротивлениях, входящих в этот контур, равна алгебраической сумме ЭДС:

Количество уравнений, составляемых для электрической цепи по первому закону Кирхгофа, равно $ N_textrm-1 $, где $ N_textrm $ – число узлов. Количество уравнений, составляемой для электрической цепи по второму закону Кирхгофа, равно $ N_textrm-N_textrm+1 $, где $ N_textrm $ – число ветвей. Количество составляемых уравнений по второму закону Кирхгофа легко определить по виду схемы: для этого достаточно посчитать число «окошек» схемы, но с одним уточнением: следует помнить, что контур с источником тока не рассматривается.

Опишем методику составления уравнений по законам Кирхгофа. Рассмотрим её на примере электрической цепи, представленной на рис. 1.

Число независимых уравнений которое можно записать по первому закону кирхгофа
Рис. 1. Рассматриваемая электрическая цепь

Для начала необходимо задать произвольно направления токов в ветвях и задать направления обхода контуров (рис. 2).

Число независимых уравнений которое можно записать по первому закону кирхгофа
Рис. 2. Задание направления токов и направления обхода контуров для электрической цепи

Количество уравнений, составляемых по первому закону Кирхгофа, в данном случае равно 5 – 1 = 4. Количество уравнений, составляемых по второму закону Кирхгофа, равно 3, хотя «окошек» в данном случае 4. Но напомним, что «окошко», содержащее источник тока $ underline_ $, не рассматривается.

Составим уравнения по первому закону Кирхгофа. Для этого «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» — со знаком «-». Отсюда для узла «1 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

$$ underline_- underline_- underline_ = 0; $$

для узла «2 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

$$ -underline_- underline_ + underline_ = 0; $$

$$ underline_+ underline_ + underline_- underline_ = 0; $$

$$ underline_- underline_- underline_ = 0. $$

Уравнение для узла «5 у.» можно не составлять.

Составим уравнения по второму закону Кирхгофа. В этих уравнениях положительные значения для токов и ЭДС выбираются в том случае, если они совпадают с направлением обхода контура. Для контура «1 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

$$ underline_ cdot underline_ + R_ cdot underline_- underline_ cdot underline_ = underline_; $$

для контура «2 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

$$ -R_ cdot underline_ + R_ cdot underline_ + underline_ cdot underline_ = underline_; $$

для контура «3 к.»:

$$ underline_ cdot underline_ + (underline_ + R_) cdot underline_ + R_ cdot underline_ = underline_; $$

где $ underline_ = -frac $, $ underline_ = omega L $.

Таким образом, для того, чтобы найти искомые токи, необходимо решить следующую систему уравнений:

$$ begin underline_- underline_- underline_ = 0 \ -underline_- underline_ + underline_ = 0 \ underline_+ underline_ + underline_- underline_ = 0 \ underline_- underline_- underline_ = 0 \ underline_ cdot underline_ + R_ cdot underline_- underline_ cdot underline_ = underline_ \ -R_ cdot underline_ + R_ cdot underline_ + underline_ cdot underline_ = underline_ \ underline_ cdot underline_ + (underline_ + R_) cdot underline_ + R_ cdot underline_ = underline_ end $$

В данном случае это система из 7 уравнений с 7 неизвестными. Для решения данной системы уравнений удобно пользоваться Matlab. Для этого представим эту систему уравнений в матричной форме:

$$ begin 1 & -1 & -1 & 0 & 0 & 0 & 0 \ -1 & 0 & 0 & -1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 & 1 & 0 & -1 \ 0 & 0 & 1 & 0 & -1 & 0 & 0 \ underline_ & R_ & 0 & -underline_ & 0 & 0 & 0 \ 0 & -R_ & R_ & 0 & underline_ & 0 & 0 \ 0 & 0 & 0 & underline_ & 0 & R_+underline_ & R_ \ end cdot begin underline_ \ underline_ \ underline_ \ underline_ \ underline_ \ underline_ \ underline_ \ end = begin 0 \ 0 \ 0 \ underline_ \ underline_ \ underline_ \ underline_ \ end $$

Для решения данной системы уравнений воспользуемся следующим скриптом Matlab:

В результате получим вектор-столбец $ underline<bold> $ токов из семи элементов, состоящий из искомых токов, записанный в общем виде. Видим, что программный комплекс Matlab позволяет существенно упростить решение сложных систем уравнений, составленных по законам Кирхгофа.

Список использованной литературы

  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.

Рекомендуемые записи

При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов…

Расчёт матриц передачи многополюсников различной формы осуществляется достаточно просто. Матрицы передачи — это математическое описание рассматриваемой…

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Видео:Законы Кирхгофа - самое простое и понятное объяснение этих законовСкачать

Законы Кирхгофа - самое простое и понятное объяснение этих законов

Алгоритм составления уравнений

Алгоритм составления уравнений по законом Кирхгофа:

Видео:Как составить уравнения по законам Кирхгофа?Скачать

Как составить уравнения по законам Кирхгофа?

Составляем уравнения по первому закону Кирхгофа

Для составления уравнений по первому закону кирхгофа любой электрической цепи выполняем следующие действия.

  1. Количество уравнений по 1 закону киргофа равно количеству узлов минус один.
  2. Произвольно задаемся направлением токов в каждой ветви электрической цепи.
  3. Если в ветви присутствует источник тока, то считаем данный ток уже известным, равным величине источника тока.
  4. Составляем уравнения по первому правилу Кирхгофа для любых узлов кроме одного.
  5. Расставляем знаки. Токи, которые втекают в узел берем с одним знаком, например с плюсом. Токи, которые вытекают из узла берем с противоположным знаком, например с минусом.

Видео:Решение задачи. Расчет электрической цепи по законам КирхгофаСкачать

Решение задачи. Расчет электрической цепи по законам Кирхгофа

Составляем уравнения по второму закону Кирхгофа

Для составления системы уравнения по 2 правилу Кирхгофа необходимо выполнить следующие пункты.

  1. Количество уравнений по второму закону Киргофа равно количеству независимых контуров. По второму закону можно записать В-ВI-У+1 независимых уравнений. Где В — число ветвей в схеме. ВI— число ветвей в схеме с источником тока. У — число узлов в схеме.
  2. Находим независимые контура в электрической цепи (чтобы отличались хотя бы одной ветвью).
  3. Если в цепи присутствуют источники тока, то данные ветви не учитываем при нахождении независимых контуров.
  4. Задаемся произвольным направление обхода независимых контуров.
  5. Составляем уравнения по второму правилу Кирхгофа для каждого выбранного контура.
  6. Расставляем знаки на участках с нагрузкой. Если направление обхода контура совпадает с направлением протекающего тока, то падение напряжения на заданном участке берем со знаком «+». Если направление протекающего тока не совпадает с направлением обхода контура, то падение напряжения на данном участке берем со знаком «-«.
  7. Расставляем знаки на участках с источниками ЭДС. Если направление действия ЭДС (направление стрелочки) совпадает с направлением обхода независимого контура, то знак будет «плюс». Если не совпадает, то знак — «минус».

Видео:Первый закон Кирхгофа! Хочешь понять? Посмотри!Скачать

Первый закон Кирхгофа! Хочешь понять? Посмотри!

Расчет токов по правилам Кирхгофа

Полученные уравнения объединяем в систему уравнений. Количество уравнений должно быть равно количеству неизвестных. Далее решаем систему уравнений любым известным способом.

Правильность расчета проверяется составлением уравнения баланса мощностей.

🎬 Видео

Применение законов Кирхгофа при решении задачСкачать

Применение законов Кирхгофа при решении задач

Расчет цепи с ИСТОЧНИКОМ ТОКА по законам КирхгофаСкачать

Расчет цепи с ИСТОЧНИКОМ ТОКА по законам Кирхгофа

Урок 14. Законы Кирхгофа простыми словами с примерамиСкачать

Урок 14. Законы Кирхгофа простыми словами с примерами

Урок 265. Задачи на правила КирхгофаСкачать

Урок 265. Задачи на правила Кирхгофа

Метод контурных токов - определение токов. ЭлектротехникаСкачать

Метод контурных токов - определение токов. Электротехника

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Расчет переходного процесса через ДИФФЕРЕНЦИАЛЬНОЕ уравнение по законам Кирхгофа│Классический методСкачать

Расчет переходного процесса через ДИФФЕРЕНЦИАЛЬНОЕ уравнение по законам Кирхгофа│Классический метод

решение задачи составлением уравнений по правилам киргофа. Законы киргофа кратко на практикеСкачать

решение задачи составлением уравнений по правилам киргофа. Законы киргофа кратко на практике

Переходные процессы | Классический метод расчета переходных процессов. Теория и задачаСкачать

Переходные процессы | Классический метод расчета переходных процессов. Теория и задача

Правила Кирхгофа - определение токов. ЭлектротехникаСкачать

Правила Кирхгофа - определение токов. Электротехника

Лекция 020-1. Цепи постоянного тока. Расчет при помощи уравнений КирхгофаСкачать

Лекция 020-1.  Цепи постоянного тока.  Расчет при помощи уравнений Кирхгофа

Лекция 010-3. Основные законы электрических цепей - законы КирхгофаСкачать

Лекция 010-3.  Основные законы электрических цепей - законы Кирхгофа

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Метод узловых и контурных уравненийСкачать

Метод узловых и контурных уравнений

Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 1 часть. 6 класс.Скачать

Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 1 часть. 6 класс.
Поделиться или сохранить к себе: