Численные методы решения уравнений на c

Приложение «Численные методы на C#»

Этот пост в равной степени мог бы присутствовать в блогах «Я пиарюсь», «Open Source» или «.NET». Но так как программа, о которой я хочу рассказать, очень тесно связана с образованием, то я решил опубликовать его именно сюда.

Если кратко, то речь пойдет об open source проекте под названием «Numerical Methods on C#» — наборе реализаций численных методов на языке C#, в то же время позволяющая проводить расчеты с помощью написанного на WPF графического интерфейса.

Кому интересно — читаем ниже.

Программа представляет собой набор реализаций численных методов — от методов интерполяции до решения дифференциальных уравнений + графический интерфейс, написанный на WPF. Также на странице проекта можно скачать версию, написанную на Windows Forms.

Программа позволяет проводить расчеты, просматривать скриншоты решений, сделанных в mathcad и исходный код.

Численные методы решения уравнений на c

Почему образование?

Последнее время стало появляться большое количество постов, тредов на форумах с вопросами типа «что лучше — программирование или наука», «аспирантура или работа», «нужны ли знания математики простому разработчику», «где набраться опыту молодому специалисту без опыта, который знает лишь основы дискретки» и т.д.

Думаю, что для всех перечисленных категорий подойдет эта программа — кто-то найдет полезным поиграться с решениями, кому-то будет интересно заняться программированием, кто-то имеет реализованные методы и захочет внести свою лепту в развитии программы. Согласитесь, потом ее можно будет использовать и в университете, и в исследованиях, да в принципе, где угодно, где нужен математический подход.

Принять участие

Хочу сразу оговориться, что программу разрабатывали, в основном, студенты «за опыт», я принимаю участие в проекте потому, что мне это нравится. Программа содержит ряд неточностей, ошибок, недоработок, посему предлагаю активной части хабрасообщества присоединится к проекту и выявить (устранить) их. Кроме того, если у вас есть реализованные алгоритмы, методы (как известные, так и свои) — присылайте, мы их включим в программу.

Ошибки можно постить в issue tracker, либо в комментариях, либо в личку. За одно и проверим активность хабрасообщества 🙂

Видео:Численное решение уравнений, урок 1/5. Локализация корняСкачать

Численное решение уравнений, урок 1/5. Локализация корня

Поиск по сайту

В прошлой статье мы говорили о решении специальных типов уравнений с помощью точных методов. Сегодня же поговорим о приближенных (численных) методах решения уравнений вида f(x)=0.

В листингах программ есть записи вида:

которые соответствуют процедуре получения значения функции, записанной в виде математического выражения в точке x. Фактически, функция Function реализует парсер функций.

Видео:5.1 Численные методы решения уравнений F(x)=0Скачать

5.1 Численные методы решения уравнений F(x)=0

Метод половинного деления

Другие названия: метод бисекции (bisection method), метод дихотомии.

Метод половинного деления – простейший численный метод для решения нелинейных уравнений вида f(x)=0, где функция f(x) должна быть непрерывной на искомом отрезке [xL; xR], причем функция должна принимать значения разных знаков, т.е. должно выполняться условие:

С непрерывности функции f(x) следует, что на интервале [xL; xR] существует, по крайней мере, один корень уравнения (если их несколько, то метод находит один из них).

Выберем точку – середину интервала:

Если f(xM) = 0, то корень найден. Если f(x)≠0, то разобьем этот интервал на два: [xL; xM] и [xM; xR].

Теперь найдем новый интервал, на котором функция изменяет знак. Повторим описанную процедуру до тех пор, пока не получим требуемую точность или превысим максимально допустимое количество итераций.

Геометрическая интерпретация метода:

Численные методы решения уравнений на c

Реализация метода на C#:

Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Метод секущих

Другие названия: метод хорд (secant method);

Метод хорд – еще один численный метод для решения нелинейных уравнений вида f(x)=0, где функция f(x) должна быть непрерывной на искомом отрезке [x0; x1], причем функция должна принимать значения разных знаков, т.е. должно выполняться условие:

Последующие приближения находят по формуле:

Геометрическая интерпретация метода:

Численные методы решения уравнений на c

Реализация метода на C#:

Видео:6 Метод половинного деления C++ Численные методы решения нелинейного уравненияСкачать

6 Метод половинного деления C++ Численные методы решения нелинейного уравнения

Метод простых итераций

Уравнение f(x)=0 с помощью некоторых преобразований необходимо переписать в виде x=φ(x).

Уравнение f(x)=0 эквивалентно уравнению x=x+λ(x)f(x) для любой функции λ(x)≠0. Возьмем φ(x)=x-λ(x)f(x) и выберем функцию (или переменную) λ(x)≠0 так, чтобы функция φ(x) удовлетворяла необходимым условиям.

Для нахождения корня уравнения x=φ(x) выберем некоторое начальное значение x0, которое должно находиться как можно ближе к корню уравнения. Дальше с помощью итерационной формулы xn+1=φ(xn) будем находить каждое следующее приближение корня уравнения.

Пример: x 2 -5x+6=0

Преобразования в вид x=φ(x):

Реализация метода на C#:

Видео:14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравненияСкачать

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравнения

Метод Вегштейна

Метод Вегштейна является модификацией метода секущих, однако его можно назвать и улучшенным методом простой итерации, преобразовав вычислительную формулу к виду:

Это двухшаговый метод, и для начала вычислений необходимо задать 2 приближения xa и xb.

Реализация метода на C#:

public static double Wegstein(string expression, double xa, double xb, double epsilon = 0.00001) < double x = 0.0;

Видео:10 Численные методы решения нелинейных уравненийСкачать

10 Численные методы решения нелинейных уравнений

Метод Ньютона

Если Численные методы решения уравнений на c— начальное приближение корня уравнения f(x) = 0, то последовательные приближения находят по формуле:

Численные методы решения уравнений на c

Если f’ и непрерывны и сохраняют определенные знаки на отрезке Численные методы решения уравнений на c, а f(a)f(b)

Видео:Численное решение уравнений, урок 3/5. Метод хордСкачать

Численное решение уравнений, урок 3/5. Метод хорд

Численные методы: решение нелинейных уравнений

Численные методы решения уравнений на c

Задачи решения уравнений постоянно возникают на практике, например, в экономике, развивая бизнес, вы хотите узнать, когда прибыль достигнет определенного значения, в медицине при исследовании действия лекарственных препаратов, важно знать, когда концентрация вещества достигнет заданного уровня и т.д.

В задачах оптимизации часто необходимо определять точки, в которых производная функции обращается в 0, что является необходимым условием локального экстремума.

В статистике при построении оценок методом наименьших квадратов или методом максимального правдоподобия также приходится решать нелинейные уравнения и системы уравнений.

Итак, возникает целый класс задач, связанных с нахождением решений нелинейных уравнений, например, уравнения Численные методы решения уравнений на cили уравнения Численные методы решения уравнений на cи т.д.

В простейшем случае у нас имеется функция Численные методы решения уравнений на c, заданная на отрезке ( a , b ) и принимающая определенные значения.

Каждому значению x из этого отрезка мы можем сопоставить число Численные методы решения уравнений на c, это и есть функциональная зависимость, ключевое понятие математики.

Нам нужно найти такое значение Численные методы решения уравнений на cпри котором Численные методы решения уравнений на cтакие Численные методы решения уравнений на cназываются корнями функции Численные методы решения уравнений на c

Визуально нам нужно определить точку пересечения графика функции Численные методы решения уравнений на c с осью абсцисс.

Видео:15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать

15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравнения

Метод деления пополам

Простейшим методом нахождения корней уравнения Численные методы решения уравнений на cявляется метод деления пополам или дихотомия.

Этот метод является интуитивно ясным и каждый действовал бы при решении задачи подобным образом.

Алгоритм состоит в следующем.

Предположим, мы нашли две точки Численные методы решения уравнений на cи Численные методы решения уравнений на c, такие что Численные методы решения уравнений на cи Численные методы решения уравнений на cимеют разные знаки, тогда между этими точками находится хотя бы один корень функции Численные методы решения уравнений на c.

Поделим отрезок Численные методы решения уравнений на cпополам и введем среднюю точку Численные методы решения уравнений на c.

Тогда либо Численные методы решения уравнений на c, либо Численные методы решения уравнений на c.

Оставим ту половину отрезка, для которой значения на концах имеют разные знаки. Теперь этот отрезок снова делим пополам и оставляем ту его часть, на границах которой функция имеет разные знаки, и так далее, достижения требуемой точности.

Очевидно, постепенно мы сузим область, где находится корень функции, а, следовательно, с определенной степенью точности определим его.

Заметьте, описанный алгоритм применим для любой непрерывной функции.

К достоинствам метода деления пополам следует отнести его высокую надежность и простоту.

Недостатком метода является тот факт, что прежде чем начать его применение, необходимо найти две точки, значения функции в которых имеют разные знаки. Очевидно, что метод неприменим для корней четной кратности и также не может быть обобщен на случай комплексных корней и на системы уравнений.

Порядок сходимости метода линейный, на каждом шаге точность возрастает вдвое, чем больше сделано итераций, тем точнее определен корень.

Видео:Метод Ньютона (касательных) и хорд Численное решение уравнения c++Скачать

Метод Ньютона (касательных) и хорд  Численное решение уравнения c++

Метод Ньютона: теоретические основы

Классический метод Ньютона или касательных заключается в том, что если Численные методы решения уравнений на c— некоторое приближение к корню Численные методы решения уравнений на cуравнения Численные методы решения уравнений на c, то следующее приближение определяется как корень касательной к функции Численные методы решения уравнений на c, проведенной в точке Численные методы решения уравнений на c.

Уравнение касательной к функции Численные методы решения уравнений на cв точке Численные методы решения уравнений на cимеет вид:

Численные методы решения уравнений на c

В уравнении касательной положим Численные методы решения уравнений на cи Численные методы решения уравнений на c.

Тогда алгоритм последовательных вычислений в методе Ньютона состоит в следующем:

Численные методы решения уравнений на c

Сходимость метода касательных квадратичная, порядок сходимости равен 2.

Таким образом, сходимость метода касательных Ньютона очень быстрая.

Запомните этот замечательный факт!

Без всяких изменений метод обобщается на комплексный случай.

Если корень Численные методы решения уравнений на cявляется корнем второй кратности и выше, то порядок сходимости падает и становится линейным.

Упражнение 1. Найти с помощью метода касательных решение уравнения Численные методы решения уравнений на cна отрезке (0, 2).

Упражнение 2. Найти с помощью метода касательных решение уравнения Численные методы решения уравнений на cна отрезке (1, 3).

К недостаткам метода Ньютона следует отнести его локальность, поскольку он гарантированно сходится при произвольном стартовом приближении только, если везде выполнено условие Численные методы решения уравнений на c, в противной ситуации сходимость есть лишь в некоторой окрестности корня.

Недостатком метода Ньютона является необходимость вычисления производных на каждом шаге.

Видео:Отделение корней уравнений аналитическим методом. Уточнение корней методом половинного деленияСкачать

Отделение корней уравнений аналитическим методом. Уточнение корней методом половинного деления

Визуализация метода Ньютона

Метод Ньютона (метод касательных) применяется в том случае, если уравнение f(x) = 0 имеет корень Численные методы решения уравнений на c, и выполняются условия:

1) функция y= f(x) определена и непрерывна при Численные методы решения уравнений на c;

2) f(af(b) 0. Таким образом, выбирается точка с абсциссой x0, в которой касательная к кривой y=f(x) на отрезке [a;b] пересекает ось Ox. За точку x0 сначала удобно выбирать один из концов отрезка.

Рассмотрим метод Ньютона на конкретном примере.

Пусть нам дана возрастающая функция y = f(x) =x 2 -2, непрерывная на отрезке (0;2), и имеющая f ‘(x) = 2x > 0 и f »(x) = 2 > 0.

Численные методы решения уравнений на c

Уравнение касательной в общем виде имеет представление:

В нашем случае: y-y0=2x0·(x-x0). В качестве точки x0 выбираем точку B1(b; f(b)) = (2,2). Проводим касательную к функции y = f(x) в точке B1, и обозначаем точку пересечения касательной и оси Ox точкой x1. Получаем уравнение первой касательной:y-2=2·2(x-2), y=4x-6.

Точка пересечения касательной и оси Ox: x1 = Численные методы решения уравнений на c

Численные методы решения уравнений на c

Рисунок 2. Результат первой итерации

Затем находим точку пересечения функции y=f(x) и перпендикуляра, проведенного к оси Ox через точку x1, получаем точку В2 =(1.5; 0.25). Снова проводим касательную к функции y = f(x) в точке В2, и обозначаем точку пересечения касательной и оси Ox точкой x2.

Точка пересечения касательной и оси Ox: x2 = Численные методы решения уравнений на c.

Численные методы решения уравнений на c

Рисунок 3. Вторая итерация метода Ньютона

Затем находим точку пересечения функции y=f(x) и перпендикуляра, проведенного к оси Ox через точку x2, получаем точку В3 и так далее.

В3 = (Численные методы решения уравнений на c)

Численные методы решения уравнений на c

Рисунок 4. Третий шаг метода касательных

Первое приближение корня определяется по формуле:

Численные методы решения уравнений на c= 1.5.

Второе приближение корня определяется по формуле:

Численные методы решения уравнений на c= Численные методы решения уравнений на c

Третье приближение корня определяется по формуле:

Численные методы решения уравнений на c Численные методы решения уравнений на c

Таким образом, i-ое приближение корня определяется по формуле:

Численные методы решения уравнений на c

Вычисления ведутся до тех пор, пока не будет достигнуто совпадение десятичных знаков, которые необходимы в ответе, или заданной точности e — до выполнения неравенства |xixi-1|

using namespace std;

float f(double x) //возвращает значение функции f(x) = x^2-2

float df(float x) //возвращает значение производной

float d2f(float x) // значение второй производной

int _tmain(int argc, _TCHAR* argv[])

int exit = 0, i=0;//переменные для выхода и цикла

double x0,xn;// вычисляемые приближения для корня

double a, b, eps;// границы отрезка и необходимая точность

cin>>a>>b; // вводим границы отрезка, на котором будем искать корень

cin>>eps; // вводим нужную точность вычислений

if (a > b) // если пользователь перепутал границы отрезка, меняем их местами

if (f(a)*f(b)>0) // если знаки функции на краях отрезка одинаковые, то здесь нет корня

cout 0) x0 = a; // для выбора начальной точки проверяем f(x0)*d2f(x0)>0 ?

xn = x0-f(x0)/df(x0); // считаем первое приближение

cout eps) // пока не достигнем необходимой точности, будет продолжать вычислять

xn = x0-f(x0)/df(x0); // непосредственно формула Ньютона

> while (exit!=1); // пока пользователь не ввел exit = 1

Посмотрим, как это работает. Нажмем на зеленый треугольник в верхнем левом углу экрана, или же клавишу F5.

Если происходит ошибка компиляции «Ошибка error LNK1123: сбой при преобразовании в COFF: файл недопустим или поврежден», то это лечится либо установкой первого Service pack 1, либо в настройках проекта Свойства -> Компоновщик отключаем инкрементную компоновку.

Численные методы решения уравнений на c

Рис. 4. Решение ошибки компиляции проекта

Мы будем искать корни у функции f(x) = x2-2.

Сначала проверим работу приложения на «неправильных» входных данных. На отрезке [3; 5] нет корней, наша программа должна выдать сообщение об ошибке.

У нас появилось окно приложения:

Численные методы решения уравнений на c

Рис. 5. Ввод входных данных

Введем границы отрезка 3 и 5, и точность 0.05. Программа, как и надо, выдала сообщение об ошибке, что на данном отрезке корней нет.

Численные методы решения уравнений на c

Рис. 6. Ошибка «На этом отрезке корней нет!»

Выходить мы пока не собираемся, так что на сообщение «Exit?» вводим «0».

Теперь проверим работу приложения на корректных входных данных. Введем отрезок [0; 2] и точность 0.0001.

Численные методы решения уравнений на c

Рис. 7. Вычисление корня с необходимой точностью

Как мы видим, необходимая точность была достигнута уже на 4-ой итерации.

Чтобы выйти из приложения, введем «Exit?» => 1.

Видео:10 Метод Ньютона (Метод касательных) C++ Численные методы решения нелинейного уравненияСкачать

10 Метод Ньютона (Метод касательных) C++ Численные методы решения нелинейного уравнения

Метод секущих

Чтобы избежать вычисления производной, метод Ньютона можно упростить, заменив производную на приближенное значение, вычисленное по двум предыдущим точкам:

Численные методы решения уравнений на c/Численные методы решения уравнений на c

Итерационный процесс имеет вид:

Численные методы решения уравнений на c

где Численные методы решения уравнений на c.

Это двухшаговый итерационный процесс, поскольку использует для нахождения последующего приближения два предыдущих.

Порядок сходимости метода секущих ниже, чем у метода касательных и равен в случае однократного корня Численные методы решения уравнений на c.

Эта замечательная величина называется золотым сечением:

Численные методы решения уравнений на c

Убедимся в этом, считая для удобства, что Численные методы решения уравнений на c.

Численные методы решения уравнений на c

Численные методы решения уравнений на c

Таким образом, с точностью до бесконечно малых более высокого порядка

Численные методы решения уравнений на c

Отбрасывая остаточный член, получаем рекуррентное соотношение, решение которого естественно искать в виде Численные методы решения уравнений на c.

После подстановки имеем: Численные методы решения уравнений на cи Численные методы решения уравнений на c

Для сходимости необходимо, чтобы Численные методы решения уравнений на cбыло положительным, поэтому Численные методы решения уравнений на c.

Поскольку знание производной не требуется, то при том же объёме вычислений в методе секущих (несмотря на меньший порядок сходимости) можно добиться большей точности, чем в методе касательных.

Отметим, что вблизи корня приходится делить на малое число, и это приводит к потере точности (особенно в случае кратных корней), поэтому, выбрав относительно малое Численные методы решения уравнений на c, выполняют вычисления до выполнения Численные методы решения уравнений на cи продолжают их пока модуль разности соседних приближений убывает.

Как только начнется рост, вычисления прекращают и последнюю итерацию не используют.

Такая процедура определения момента окончания итераций называется приемом Гарвика.

Видео:Метод простых итераций пример решения нелинейных уравненийСкачать

Метод простых итераций пример решения нелинейных уравнений

Метод парабол

Рассмотрим трехшаговый метод, в котором приближение Численные методы решения уравнений на cопределяется по трем предыдущим точкам Численные методы решения уравнений на c, Численные методы решения уравнений на cи Численные методы решения уравнений на c.

Для этого заменим, аналогично методу секущих, функцию Численные методы решения уравнений на cинтерполяционной параболой проходящей через точки Численные методы решения уравнений на c, Численные методы решения уравнений на cи Численные методы решения уравнений на c.

В форме Ньютона она имеет вид:

Численные методы решения уравнений на c

Точка Численные методы решения уравнений на cопределяется как тот из корней этого полинома, который ближе по модулю к точке Численные методы решения уравнений на c.

Порядок сходимости метода парабол выше, чем у метода секущих, но ниже, чем у метода Ньютона.

Важным отличием от ранее рассмотренных методов, является то обстоятельство, что даже если Численные методы решения уравнений на cвещественна при вещественных Численные методы решения уравнений на cи стартовые приближения выбраны вещественными, метод парабол может привести к комплексному корню исходной задачи.

Этот метод очень удобен для поиска корней многочленов высокой степени.

Видео:1 3 Решение нелинейных уравнений методом простых итерацийСкачать

1 3 Решение нелинейных уравнений методом простых итераций

Метод простых итераций

Задачу нахождения решений уравнений можно формулировать как задачу нахождения корней: Численные методы решения уравнений на c, или как задачу нахождения неподвижной точкиЧисленные методы решения уравнений на c.

Пусть Численные методы решения уравнений на cи Численные методы решения уравнений на c— сжатие: Численные методы решения уравнений на c(в частности, тот факт, что Численные методы решения уравнений на c— сжатие, как легко видеть, означает, чтоЧисленные методы решения уравнений на c).

По теореме Банаха существует и единственна неподвижная точка Численные методы решения уравнений на c

Она может быть найдена как предел простой итерационной процедуры

Численные методы решения уравнений на c

где начальное приближение Численные методы решения уравнений на c— произвольная точка промежутка Численные методы решения уравнений на c.

Если функция Численные методы решения уравнений на cдифференцируема, то удобным критерием сжатия является число Численные методы решения уравнений на c. Действительно, по теореме Лагранжа

Численные методы решения уравнений на c

Таким образом, если производная меньше единицы, то Численные методы решения уравнений на cявляется сжатием.

Условие Численные методы решения уравнений на cсущественно, ибо если, например, Численные методы решения уравнений на cна [0,1] , то неподвижная точка отсутствует, хотя производная равна нулю. Скорость сходимости зависит от величины Численные методы решения уравнений на c. Чем меньше Численные методы решения уравнений на c, тем быстрее сходимость.

Рассмотрим уравнение: Численные методы решения уравнений на c.

Если в качестве Численные методы решения уравнений на cвзять функцию Численные методы решения уравнений на c, то соответствующая итерационная процедура будет иметь вид: Численные методы решения уравнений на c. Как нетрудно убедиться, метод итераций в данном случае расходится при любой начальной точке Численные методы решения уравнений на c, не совпадающей с собственно неподвижной точкой Численные методы решения уравнений на c.

Однако можно в качестве Численные методы решения уравнений на cможно взять, например, функцию Численные методы решения уравнений на c. Соответствующая итерационная процедура имеет вид: Численные методы решения уравнений на c.

Эти итерации сходятся к неподвижной точке для любого начального приближения Численные методы решения уравнений на c:

Численные методы решения уравнений на c

Действительно, в первом случае Численные методы решения уравнений на c, т.е. для выполнения условия Численные методы решения уравнений на cнеобходимо чтобы Численные методы решения уравнений на c, но тогда Численные методы решения уравнений на c. Таким образом, отображение Численные методы решения уравнений на cсжатием не является.

Рассмотрим Численные методы решения уравнений на c, неподвижная точка та же самая, ситуация другая. Здесь, хотя формально производная может быть довольно большой (при малых ж), однако уже на следующем шаге она будет меньше 1.

Численные методы решения уравнений на c

Численные методы решения уравнений на c

т.е. такой итерационный процесс всегда сходится.

Метод Ньютона представляет собой частный случай метода простых итераций.

Здесь Численные методы решения уравнений на cнетрудно убедиться, что при Численные методы решения уравнений на cсуществует окрестность корня, в которой Численные методы решения уравнений на c.

Численные методы решения уравнений на c

то если Численные методы решения уравнений на cкорень кратности Численные методы решения уравнений на c, то в его окрестности Численные методы решения уравнений на cи, следовательно,Численные методы решения уравнений на c.

Если Численные методы решения уравнений на c— простой корень, то сходимость метода касательных квадратичная (то есть порядок сходимости равен 2).

Поскольку Численные методы решения уравнений на c, то

Численные методы решения уравнений на c

Численные методы решения уравнений на c

Численные методы решения уравнений на c

Таким образом, сходимость метода Ньютона очень быстрая.

Видео:Способы решения систем нелинейных уравнений. 9 класс.Скачать

Способы решения систем нелинейных уравнений. 9 класс.

Нахождение всех корней уравнения

Недостатком почти всех итерационных методов нахождения корней является то, что они при однократном применении позволяют найти лишь один корень функции, к тому же, мы не знаем какой именно.

Чтобы найти другие корни, можно было бы брать новые стартовые точки и применять метод вновь, но нет гарантии, что при этом итерации сойдутся к новому корню, а не к уже найденному, если вообще сойдутся.

Для поиска других корней используется метод удаления корней.

Пусть Численные методы решения уравнений на c— корень функции Численные методы решения уравнений на c, рассмотрим функциюЧисленные методы решения уравнений на c. Точка Численные методы решения уравнений на cбудет являться корнем функции Численные методы решения уравнений на cна единицу меньшей кратности, чемЧисленные методы решения уравнений на c, при этом все остальные корни у функций Численные методы решения уравнений на cи Численные методы решения уравнений на cсовпадают с учетом кратности.

Применяя тот или иной метод нахождения корней к функции Численные методы решения уравнений на c, мы найдем новый корень Численные методы решения уравнений на c(который может в случае кратных корней и совпадать с Численные методы решения уравнений на c). Далее можно рассмотреть функцию Численные методы решения уравнений на cи искать корни у неё.

Повторяя указанную процедуру, можно найти все корни Численные методы решения уравнений на cс учетом кратности.

Заметим, что когда мы производим деление на тот или иной корень Численные методы решения уравнений на c, то в действительности мы делим лишь на найденное приближение Численные методы решения уравнений на c, и, тем самым, несколько сдвигаем корни вспомогательной функции относительно истинных корней функции Численные методы решения уравнений на c. Это может привести к значительным погрешностям, если процедура отделения применялась уже достаточное число раз.

Чтобы избежать этого, с помощью вспомогательных функций вычисляются лишь первые итерации, а окончательные проводятся по исходной функции Численные методы решения уравнений на c, используя в качестве стартового приближения, последнюю итерацию, полученную по вспомогательной функции.

Мы рассмотрели решение уравнений только в одномерном случае, нахождение решений многомерных уравнений существенно более трудная задача.

🔍 Видео

1,2 Решение нелинейных уравнений методом хордСкачать

1,2 Решение нелинейных уравнений методом хорд

13 Шаговый метод Ручной счет Численные методы решения нелинейного уравненияСкачать

13 Шаговый метод Ручной счет Численные методы решения нелинейного уравнения

Метод половинного деления Ручной счет Численные методы решения нелинейного уравненияСкачать

Метод половинного деления Ручной счет Численные методы решения нелинейного уравнения

Численные методы - Занятие 1: Численное решение уравнения методом дихотомииСкачать

Численные методы - Занятие 1: Численное решение уравнения методом дихотомии

Численное решение уравнений, урок 2/5. Метод деления отрезка пополамСкачать

Численное решение уравнений, урок 2/5. Метод деления отрезка пополам
Поделиться или сохранить к себе: