Название | Лабораторная работа 1 по дисциплине Вычислительная математика» По теме Численные методы решения нелинейных уравнений» |
Дата | 11.01.2022 |
Размер | 421.92 Kb. |
Формат файла | |
Имя файла | 1.docx |
Тип | Лабораторная работа #328249 |
С этим файлом связано 3 файл(ов). Среди них: 2.docx, Мдк.docx, PERESChET_PARAMETROV_FP.docx. Показать все связанные файлы Подборка по базе: практическая работа 1Колдаев Молендеев.docx, Лабораторная работа №1.docx, Контрольная работа обновлённая.docx, Практическая работа 1.docx, практическая работа №16.pdf, Самостоятельная работа по теме 4.doc, Курсовая работа на тему прибыль и рентабельность.docx, Лаборатооная работа 1 ЗФО (1).docx, Самостоятельная работа по истории № 7 — копия.docx, Лекции по дисциплине Соц.отв.налогоплательщика.doc МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра вычислительной техники Лабораторная работа №1 по дисциплине «Вычислительная математика” По теме: «Численные методы решения нелинейных уравнений”
Группа: АВТ-941 Преподаватель: Балакин В. В. Студента: Ю дин Фёдор Александрович Новосибирск, 2021 г 1. Описание задания . 3 1.1. Исходные данные. 3 1.2. Цели и задачи работы . 3 2. Описание методов. 3 2.1. Метод простых итераций . 3 2.2. Метод половинного деления. 4 2.3. Метод хорд и касательных . 4 3. Ход работы . 5 3.1. Метод простых итераций. Реализация в MathCAD . 5 3.2. Метод половинного деления. 6 3.3. Метод хорд и касательных . 7 4. Сравнение методов решения нелинейных уравнений по скорости. 8 1.1.Исходные данные
1.2.Цели и задачи работы
2.Описание 2.1. Метод простых итераций Метод, входящий в список простейших численных методов решения уравнений. Его суть лежит на принципе сжимающего отображения, который применителен к численным методом. В общем виде также называется методом последовательных приближений. Метод итераций широко распространен в математике, его применяют при решении дифференциальных, интегральных, интегродиффренциальных уравнений и во многих других вычислительных задачах. Идея метода состоит в приведении f(x) = 0 к уравнению x = φ(x) таким образом, чтобы отображение φ(x) было сжимающим. Если это удается, то последовательность итераций xi+1 = φ(xi) сходится.
Алгоритм данного метода следующий:
Суть метода состоит в разбиении отрезка [a; b] на три отрезка с помощью хорды и касательной, затем выбирается новый отрезок от точки пересечения хорды с осью абсцисс до точки пересечения касательной с осью абсцисс, на котором функция меняет знак и содержит решение. Комбинированный метод применим, если ни одна точка отрезка [a; b] не является ни стационарной, ни критической. Условие начальной точки для метода хорд: f(x)f’’(x) 0. Алгоритм решения:
3.Ход работы
Зависимость количества потребовавшихся итераций от заданной точности ε
Зависимость количества потребовавшихся итераций от заданной точности ε
Содержание Видео:10 Численные методы решения нелинейных уравненийСкачать 4. Сравнение методов решения нелинейных уравнений по скорости
В ходе лабораторной работы №1 реализованы такие методы как метод итерации, метод хорд и касательных, метод половинного деления. Самым быстрым оказался метод хорд и касательных, так как для получения решения с нужной точностью потребовалась одна итерация, что достаточно мало по сравнении с методом итерации, так как для получения того же результата понадобилось 22 итерации. В методе хорд и касательный потребовалась только одна итерация, потому что задана такая функция, касательная к которой будет близка к нулю. С помощью оператора solveбыло найдено решение данного нелинейного уравнение, оно совпало с решением, которое было получено в результате использования численных методов решения. Решением нелинейного уравнения является х=1,2536±0,0001 Видео:14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравненияСкачать Лабораторная работа по теме «Тема 1.2. Методы решения нелинейных уравнений»
1 Лабораторная работа по теме «Тема.. Методы решения нелинейных уравнений» Перейти к Теме. Теме. Огл. Вопросы, подлежащие изучению. Постановка задачи численного решения нелинейных уравнений.. Этапы численного решения уравнения.. Аналитический и графический методы отделения корней. 4. Уточнение корня методами половинного деления, итерации, Ньютона и хорд. 5. Графическая иллюстрация методов половинного деления, итерации, Ньютона и хорд. 6. Условие окончания вычислений при использовании методов половинного деления, итерации, Ньютона и хорд. 7. Сходимость метода итерации, выбор начального приближения, правило выбора итерирующей функции и оценка погрешности метода итерации. 8. Теорема о сходимости метода Ньютона и оценка погрешности метода. 9. Правило выбора неподвижной точки, начальной точки и условие сходимости метода хорд. 0. Условия окончания вычислений в методах итерации, Ньютона и хорд.. Сравнение методов половинного деления, итерации, Ньютона и хорд.. Алгоритмы и программы решения нелинейных уравнений на языке программирования. Задание. Выбрать индивидуальное задание по указанию преподавателя из табл..-: нелинейное уравнение; метод решения нелинейного уравнения для «ручного расчета»; метод решения нелинейного уравнения для «расчета на ПК».. Отделить корни уравнения.. Провести исследование нелинейного уравнения для его решения. проверить выполнение условий сходимости вычислительного процесса, в случае расходящегося процесса сделать необходимые преобразования для обеспечения сходимости; выбрать начальное приближение; сформулировать условия окончания этапа уточнения корня. 4. Провести «ручной расчет» трех итераций. 5. Оценить погрешность результата «ручного расчета». 6. Составить схему алгоритма, написать программу для решения нелинейных уравнений для «расчета на ПК» и провести контрольное тестирование программы, воспользовавшись исходными данными и результатами примера из п.п Решить нелинейное уравнение с точностью = 0. 0 i E, i =,, 4, воспользовавшись написанной программой для «расчета на ПК». 8. Построить зависимость числа итераций от заданной точности (E). Тема.. Методы решения нелинейных уравнений (Лабораторные работы) Страница 0 2 . Варианты задания Таблица.- Уравнение t p Уравнение t p — cos( / ) = lg 7 = 0 + l(4) = cos = 4 e 4 e — = lg( + ) =,5 4 e = 0 49 si( 0,6) =,5 5 4 ( + ) l() = 0 50 lg( + ) = 4 6 si( / 4) = lg()/( + ) = l() = = / 8 cos() ( + ) / + = cos + = ( + / ) l() = 0 54 lg()=0 0 5 l() / = 0 55 ( ) = e / 4 e + = ( )e = 0,5 si ( / ) + = 0 57, = 0 0. l() = log() = cos( + 0. ) = 0 59 e = l() 5 = 0 60 = ( + ) 6 si( 0. ) = = lg( + ) 7 e e — = 0 6 si0,5 + =(/) 4 8 si( / ) = = 0,5 + log( ) 4 9 e + l() = 0 64 si (0,5 + ) = 0,5 0 +si() l(+) = 0 65 lg( + ) + = ( ) / cos( ) = lg( + ) = si( )+cos( ) 0 = l( /6) + = 0 4 l( + ) = 0 68 log ( ) = /(+) 4 4 cos( / ) l( ) = 0 69 e = 5 cos(/5) (+) / = e = e — = e / = 0 7 4(+ / ) l() 0 = 0 7 arctg + = 0 8 si() / cos()+4 4 = 0 7 si ( 0,5) + 0,8 = 0 9 / ( + si(.6)) = 0 74 ( ) lg( ) = cos( / 4) = cos = 0 4 = l 4 76 ( ) lg(+) = + 4si = 0 77 e cos() + = 0 tg (0,6 + 0,4) = 4 78 cos = 4 + lg = 0,5 79 ( ) = 4 5 lg /+ = 0 80 ( ) = 6 si = 0,5 4 8 e + + = 0 7 lg (0,4 + 0,4) = 8 0,5 = ( + ) 4 8 cos0,87 = 0 8 ( ) lg( + 5) = 4 9 lg 7/(+6)= 0 84 ( 4) log( ) = 40 tg(0,5 + 0,) = 4 85 = 0 4 cos = 0 86 log ( + ) = 4 + lg = 0, ,5 + ( + ) = 0 4,8 si0 = 0 89 arcctg + = 0 44 ctg,05 = = 0 4 Тема.. Методы решения нелинейных уравнений (Лабораторные работы) Страница 3 45 lg, = cos ()+ = В табл..- t номер метода для «расчета на ПК»; p номер метода для «ручного расчета». Номера методов: половинное деление; итерации; Ньютона; 4 хорд. 4. Содержание отчета. Индивидуальное задание (уравнение, методы решения).. Результат отделения корней (интервалы, где находятся корни уравнения).. Результаты исследования задания для «ручного расчета»: условие сходимости вычислительного процесса; начальное приближение; условие окончания этапа уточнения корня. 4. Результаты «ручного расчета», представленные в табл. -а для метода половинного деления или в табл. -б для остальных методов. Таблица.-а к a b f(a) f(b) (a+b)/ f( (a+b)/) b-a 4 Таблица.-б к f() 4 5. Оценки погрешностей результатов «ручного расчета». 6. Схема алгоритма, программа решения задачи выбранным методом уточнения корня для «расчета на ПК» и результаты контрольного тестирования. 7. Результаты «расчета на ПК», представленные в табл..-. Таблица.- E f() Зависимость числа итераций от заданной точности в логарифмическом масштабе табл..-4. Таблица.-4 E Тема.. Методы решения нелинейных уравнений (Лабораторные работы) Страница 4 ..5. Пример выполнения задания. Задание для решения нелинейных уравнений: уравнение f() = + cos = 0 ; методы решения нелинейных уравнений для ручного расчета половинного деления, итерации, Ньютона и хорд; методы решения нелинейных уравнений для расчета на ПК половинного деления, итерации, Ньютона и хорд.. Отделение корней f( ) := + :=, cos( ) f( ) d f’ ( ) := d f( ) d f» ( ) := := 0, 0. d = f( ) = f’ ( ) f( ) = f» ( ) = f(0)f() 5 . Результаты «ручного расчета» трех итераций f ( ) := + cos( ) a := 0b := 0 := a + b 0 = 0.5 f ( a) f ( 0) = >0,следовательно,a := 0 b := b a = 0.5 b = := a + b = 0.75 f ( a) f ( ) = 0.96 6 7. Зависимость числа итераций от точности в логарифмическом масштабе Для метода половинного деления по данным таблицы построим зависимость (lge) ε Метод итераций. Исследование задания Приведем уравнение f()=0 к виду = ϕ(). Тогда рекуррентная формула = ϕ + ( ), = 0. Для сходимости процесса итерации необходимо, чтобы ϕ'( ) 0,то 7 f( ) := + cos( ) 0 := 0 f( 0) = := φ( 0) = f( ) = 0.4 := 0 := φ( ) = f( ) = 0.04 := := φ( ) = f( ) = Результаты вычислений удобно представить в виде табл..-b. к X к f( к ) Погрешность численного решения нелинейных уравнений Погрешность результата, вычисленного методом итерации, можно оценить с помощью выражения..-4 в []: q 0.8 * = 0.04 = q 0.7. Схема алгоритмов, программа и контрольное тестирование Базовая схема алгоритма метода итерации приведена на рис. -5 в[], а программу студенты должны написать самостоятельно и провести контрольное тестирование. 4. Результаты «расчета на ПК» Результаты расчета приближенного корня уравнения с различной точностью, по программе, написанной по схеме алгоритма рис..—5 с различными значениями точности, приведены в следующей таблице: E f() E E E Зависимость числа итераций от точности в логарифмическом масштабе Для метода итерации по данным таблицы построим зависимость (E) ε Метод Ньютона. Исследование задания для «ручного расчета» Из условия для уравнения — х + cos() = 0, где f(0) f () 0 выберем начальное приближение к корню: 0 =. Для получения решения уравнения методом Ньютона воспользуемся следующей рекуррентной формулой: f( ) = +. f ‘( ) Тема.. Методы решения нелинейных уравнений (Лабораторные работы) Страница 6 8 В нашем случае + cos + =. si. «Ручной расчет» трех итераций f( ) := + cos( ) si( ) 0 := f( 0) =.4597 := f( 0) = 0.6 f( ) = := f( ) = f( ) = := f( ) = f( ) = Представим вычисления в виде следующей табл..-b. k X k f( k ) Погрешность численного решения нелинейных уравнений Оценку погрешности результата, вычисленного методом Ньютона, можно проводить M по формуле..- в []: * ( ). m Оценим погрешность после трех итераций: * M ( ) m = f (0) =, M = f (0) =,. m * Тогда Схема алгоритмов, программа и контрольное тестирование Базовая схема алгоритма метода Ньютона приведена на рис. -7 в [], а программу студенты должны написать самостоятельно и провести контрольное тестирование. 5. Результаты «расчета на ПК» Результаты расчета приближенного корня уравнения с различной точностью по программе, написанной по схеме алгоритма рис..—7 в [] с различными значениями точности, приведены в следующей таблице: E f() Зависимость числа итераций от точности в логарифмическом масштабе Для метода Ньютона деления по данным таблицы построим зависимость (lge) ε Тема.. Методы решения нелинейных уравнений (Лабораторные работы) Страница 7 9 Метод хорд. Исследование задания Проверка выполнения условий сходимости.для сходимости метода необходимо знакопостоянство f () на отрезке [a;b]. Выбор начального приближения.видрекуррентной формулы зависит от того, какая из точек a или b является неподвижной. Неподвижен тот конец отрезка [a;b], для которого знак функции f()совпадает со знаком ее второй производной. Тогда второй конец отрезка можно принять за начальное приближение к корню, то есть точку х 0. Рекуррентная формула метода хорд (..-) в []: = f( ) + ( ), где — неподвижная точка. f() f( ) Выше было показано, что для функцииf()= +cos f () 0. Таким образом, полагая 0 =a=0, получим сходящуюся последовательность приближений к корню. В рассматриваемой задаче рекуррентная формула принимает следующий вид = f( ) + ( ). f() f( ) Условие окончания процесса уточнения корня. Оценку погрешности можно проводить по любой из формул (..-5 или..-6) в [].. «Ручной расчет» трех итераций Для получения решения уравнения методом хорд воспользуемся следующей рекуррентной формулой: f( k ) = k + k ( k). f() f( ) f ( ) := + := := 0 0 i 0.. ( ) k cos( ) f 0 := = f 0 f ( ) f ( 0 ) 0 ( ) ( ) f := = f f ( ) f ( ) ( ) ( ) f := = f f ( ) f ( ) ( ) ( ) = 0.05 ( ) = ( ) = Результаты вычислений удобно представить в виде следующей таблицы: X f( ) Погрешность численного решения нелинейных уравнений Погрешность результата, вычисленного методом хорд, оцениваем по формуле.—5 в []. Тогда после трех итераций * 0.00=.08 0, * Тема.. Методы решения нелинейных уравнений (Лабораторные работы) Страница 8 10 4. Схема алгоритмов, программа и контрольное тестирование Базовая схема алгоритма метода хорд приведена на рис. -0 в [], а программу студенты должны написать самостоятельно и провести контрольное тестирование. 5. Результаты «расчета на ПК» Результаты расчета приближенного корня уравнения с различной точностью по программе, написанной по схеме алгоритма рис..—0 с различными значениями точности, приведены в следующей таблице: E f() Е Е Е Зависимость числа итераций от точности в логарифмическом масштабе Для метода хорд по данным таблицы построим зависимость (E) ε Тема.. Методы решения нелинейных уравнений (Лабораторные работы) Страница 9 11 ..6.Контрольные вопросы по теме «Методы решения нелинейных уравнений». Что представляет собой нелинейное уравнение?. Что является корнем нелинейного уравнения f()=0?. Чему равна функция в точке корня? 4. Как называется процесс нахождения возможно более узкого отрезка, содержащего только один корень уравнения? 5. Каково условие существования на отрезке [a;b] хотя бы одного корня? 6. При каких условиях корень будет единственным на отрезке [a;b]? 7. Процесс решения нелинейного уравнения состоит из. этапов. 8. Как называются этапы решения нелинейного уравнения? 9. В чем заключается этап «отделения корней» нелинейного уравнения? 0. Что такое начальное приближение к корню?. Что определяется на этапе уточнения корней?. При каких условиях метод решения нелинейного уравнения сходится?. Какие методы не относятся к методам отделения корня? 4. Какие методы не относятся к методам уточнения корня? 5. Какие методы используются на этапе отделения корней? 6. Что необходимо, чтобы выбрать 0 в качестве начального приближения в методе Ньютона? 7. Что является необходимым условием существования корня на отрезке [a;b]? 8. Какой метод решения нелинейного уравнения требует более близкого к корню начального значения? 9. Что представляет собой метод решения нелинейного уравнения, в результате которого получается последовательность вложенных отрезков? 0. Можно ли уточнить корень уравнения графическим методом?. Что является первым приближением к корню, отделенному на отрезке [a;b], для решения нелинейного уравнения методом половинного деления?. На каком этапе применяется метод хорд?. При каких условиях метод половинного деления всегда находит корень уравнения f()=0? 4. Что означает термин — «метод расходится»? 5. Какой метод решения нелинейного уравнения обладает квадратичной сходимостью? 6. Каково правило выбора итерирующей функции при использовании метода итераций? 7. Что принимается за начальное приближение в методе итерации? 8. Каково правило выбора неподвижной точки при использовании метода хорд? 9. Какое значение выбирается в качестве начального приближения в методе хорд? 0. Какой метод не предназначается для решения нелинейных уравнений?. Как называется термин, который относится к методам решения нелинейных уравнений?. Почему необходим этап отделения корней?. При каких условиях метод хорд позволяет вычислить отделенный корень с заданной погрешностью? 4. В каких случаях за неподвижный конец отрезка [a;b]в методе хорд выбирают конец отрезка? 5. Для каких функций не рекомендуется применять метод Ньютона? 6. Что можно сказать о методе итерации, если на заданном отрезке имеются два корня? 7. Как могут осуществляться итерации приближения к корню в процессе решения уравнения методом простой итерации? 8. Какой метод решения нелинейного уравнения обладает свойством «самокоррекции»? 9. Что относится к способам улучшения сходимости метода простой итерации? Тема.. Методы решения нелинейных уравнений (Лабораторные работы) Страница 0 Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать Лабораторная работа №5. Численные методы решения систем нелинейных уравненийЛабораторная работа №5 Численные методы решения систем нелинейных уравнений Цель работы: Сформировать у студентов представления о методах решения систем нелинейных уравнений, привить умения составлять и применять алгоритмы и программы для решения таких систем уравнений, выработать навыки в использовании программных средств для решения систем уравнений. Решить систему двух нелинейных уравнений методом Ньютона . 1. Зададим систему координатную сетку и вычислим значения координат x и y в узлах сетки 2. Построим график функции и карты линий уровня (на которых наглядно видно, что данная система имеет решение, и причем единственное). 3. Строим карту уровня (для того, чтобы найти первое приближение) – панель Graph –карта линий уровня. Точки пересечения линий одинакового уровня дают решение данной системы уравнений. 4. Зададим начальное приближение переменных 5. Зададим функцию, содержащую решение системы уравнений 6. Зададим функцию, реализующую метод Ньютона (функция F возвращает таблицу, содержащую значения координат x , y на каждом шаге итерационного процесса и соответствующие значения координат вектор функции). Запустив программу, получим итерационную последовательность, которая показывает, как находятся приближения. Первые две строки – значения x и y соответственно, а последние две строки – значения данных функций при найденных значениях x и y . В ноль функции обращаются на шестом шаге. Значит , решением будет являться пара чисел x =3,487 и y =2,262. 7. Визуализируем итерационный процесс, транспонируя для этого полученную матрицу F : Для первого уравнения. Для второго уравнения. 8. проверяем решение системы нелинейных уравнения с помощью блока Given … Minner Решить систему двух нелинейных уравнений методом Ньютона: 🎦 ВидеоМетод простых итераций пример решения нелинейных уравненийСкачать Численные методы (1 урок)(Решение нелинейных уравнений. Метод дихотомии. Python)Скачать 15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать Метод половинного деления решение нелинейного уравненияСкачать 13 Шаговый метод Ручной счет Численные методы решения нелинейного уравненияСкачать 2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)Скачать Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14Скачать 8 Метод половинного деления Calc Excel Численные методы решения нелинейного уравненияСкачать ЧМ-1. Решение нелинейных уравнений. Часть 1/2Скачать Численные методы решения нелинейного уравнени Теория Шаговый Метод половинного деления Метод НьютонаСкачать МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравненийСкачать 1 3 Решение нелинейных уравнений методом простых итерацийСкачать Способы решения систем нелинейных уравнений. 9 класс.Скачать Решение нелинейного уравнения методом простых итераций (программа)Скачать 4.2 Решение систем нелинейных уравнений. МетодыСкачать 11 Метод Ньютона (Метод касательных) Mathcad Численные методы решения нелинейного уравненияСкачать Численное решение уравнений, урок 3/5. Метод хордСкачать |