Численные методы дифференциальных уравнений python

Содержание
  1. Численное решение обыкновенных дифференциальных уравнений (ОДУ) в Python
  2. Краткое описание модуля scipy.integrate
  3. Решение одного ОДУ
  4. Решение системы ОДУ
  5. Численное решение математических моделей объектов заданных системами дифференциальных уравнений
  6. Введение:
  7. Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ
  8. Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения с использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга
  9. Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга
  10. Решение краевой задачи с поточно разделёнными краевыми условиями
  11. Вывод
  12. Библиотека Sympy: символьные вычисления в Python
  13. Первые шаги с SymPy
  14. Используем SymPy как обычный калькулятор
  15. Символы
  16. Алгебраические преобразования
  17. Раскрытие скобок
  18. Упрощение выражений
  19. Вычисления
  20. Вычисления пределов
  21. Дифференцирование
  22. Разложение в ряд
  23. Интегрирование
  24. Решение уравнений
  25. Системы линейных уравнений
  26. Факторизация
  27. Булевы уравнения
  28. Линейная алгебра
  29. Матрицы
  30. Дифференциальные уравнения
  31. Английский для программистов
  32. 📺 Видео

Видео:Численные методы (1 урок)(Решение нелинейных уравнений. Метод дихотомии. Python)Скачать

Численные методы (1 урок)(Решение нелинейных уравнений. Метод дихотомии. Python)

Численное решение обыкновенных дифференциальных уравнений (ОДУ) в Python

Рассмотрены приемы решения обыкновенных дифференциальных уравнений (ОДУ) с помощью модуля scipy.integrate языка Python

Видео:Python - численное решение дифференциального уравнения 1го порядка и вывод графикаСкачать

Python - численное решение дифференциального уравнения 1го порядка и вывод графика

Краткое описание модуля scipy.integrate

Модуль scipy.integrate имеет две функции ode() и odeint(), которые предназначены для решения систем обыкновенных дифференциальных уравнений (ОДУ) первого порядка с начальными условиями в одной точке (т.е. задача Коши).

Функция ode() более универсальная, а функция odeint() (ODE integrator) имеет более простой интерфейс и хорошо решает большинство задач.

Функция odeint() имеет три обязательных аргумента и много опций. Она имеет следующий формат

Видео:01.02. Модель SIR. Численное решение системы дифференциальных уравнений с помощью SciPyСкачать

01.02. Модель SIR. Численное решение системы дифференциальных уравнений с помощью SciPy

Решение одного ОДУ

Допустим надо решить диф. уравнение 1-го порядка

Получилось что-то такое:

Видео:Метод ЭйлераСкачать

Метод Эйлера

Решение системы ОДУ

Пусть теперь мы хотим решить (автономную) систему диф. уравнений 1-го порядка

Выходной массив w состоит из двух столбцов — y1(t) и y2(t).

Также без труда можно построить фазовые траектории:

Видео:Решение дифференциальных уравнений в Python. Задача о четырех жуках.Скачать

Решение дифференциальных уравнений в Python. Задача о четырех жуках.

Численное решение математических моделей объектов заданных системами дифференциальных уравнений

Введение:

При математическом моделировании ряда технических устройств используются системы дифференциальных нелинейных уравнений. Такие модели используются не только в технике, они находят применение в экономике, химии, биологии, медицине, управлении.

Исследование функционирования таких устройств требуют решения указанных систем уравнений. Поскольку основная часть таких уравнений являются нелинейными и нестационарными, часто невозможно получить их аналитическое решение.

Возникает необходимость использовать численные методы, наиболее известным из которых является метод Рунге — Кутты [1]. Что касается Python, то в публикациях по численным методам, например [2,3], данных по применение Рунге — Кутты крайне мало, а по его модификации — методу Рунге-Кутта-Фельберга вообще нет.

В настоящее время, благодаря простому интерфейсу, наибольшее распространение в Python имеет функцию odeint из модуля scipy.integrate. Вторая функция ode из этого модуля реализует несколько методов, в том числе и упомянутый пятиранговый метод Рунге-Кутта-Фельберга, но, вследствие универсальности, имеет ограниченное быстродействие.

Целью настоящей публикации является сравнительный анализ перечисленных средств численного решения систем дифференциальных уравнений с модифицированным автором под Python методом Рунге-Кутта-Фельберга. В публикации так же приведены решения по краевым задачам для систем дифференциальных уравнений (СДУ).

Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ

Для одного дифференциального уравнения n – го порядка, задача Коши состоит в нахождении функции, удовлетворяющей равенству:

Численные методы дифференциальных уравнений python

и начальным условиям

Численные методы дифференциальных уравнений python

Перед решением эта задача должна быть переписана в виде следующей СДУ

Численные методы дифференциальных уравнений python(1)

с начальными условиями

Численные методы дифференциальных уравнений python

Модуль имеет две функции ode() и odeint(), предназначенные для решения систем обыкновенных дифференциальных уравнений (ОДУ) первого порядка с начальными условиями в одной точке (задача Коши). Функция ode() более универсальная, а функция odeint() (ODE integrator) имеет более простой интерфейс и хорошо решает большинство задач.

Функция odeint() имеет три обязательных аргумента и много опций. Она имеет следующий формат odeint(func, y0, t[,args=(), . ]) Аргумент func – это имя Python функции двух переменных, первой из которых является список y=[y1,y2. yn], а второй – имя независимой переменной.

Функция func должна возвращать список из n значений функций Численные методы дифференциальных уравнений pythonпри заданном значении независимого аргумента t. Фактически функция func(y,t) реализует вычисление правых частей системы (1).

Второй аргумент y0 функции odeint() является массивом (или списком) начальных значений Численные методы дифференциальных уравнений pythonпри t=t0.

Третий аргумент является массивом моментов времени, в которые вы хотите получить решение задачи. При этом первый элемент этого массива рассматривается как t0.

Функция odeint() возвращает массив размера len(t) x len(y0). Функция odeint() имеет много опций, управляющих ее работой. Опции rtol (относительная погрешность) и atol (абсолютная погрешность) определяют погрешность вычислений ei для каждого значения yi по формуле

Численные методы дифференциальных уравнений python

Они могут быть векторами или скалярами. По умолчанию

Численные методы дифференциальных уравнений python

Вторая функция модуля scipy.integrate, которая предназначена для решения дифференциальных уравнений и систем, называется ode(). Она создает объект ОДУ (тип scipy.integrate._ode.ode). Имея ссылку на такой объект, для решения дифференциальных уравнений следует использовать его методы. Аналогично функции odeint(), функция ode(func) предполагает приведение задачи к системе дифференциальных уравнений вида (1) и использовании ее функции правых частей.

Отличие только в том, что функция правых частей func(t,y) первым аргументом принимает независимую переменную, а вторым – список значений искомых функций. Например, следующая последовательность инструкций создает объект ODE, представляющий задачу Коши.

При построении численных алгоритмов будем считать, что решение этой дифференциальной задачи существует, оно единственно и обладает необходимыми свойствами гладкости.

При численном решении задачи Коши

Численные методы дифференциальных уравнений python(2)

Численные методы дифференциальных уравнений python(3)

по известному решению в точке t =0 необходимо найти из уравнения (3) решение при других t. При численном решении задачи (2),(3) будем использовать равномерную, для простоты, сетку по переменной t с шагом т > 0.

Приближенное решение задачи (2), (3) в точке Численные методы дифференциальных уравнений pythonобозначим Численные методы дифференциальных уравнений python. Метод сходится в точке Численные методы дифференциальных уравнений pythonесли Численные методы дифференциальных уравнений pythonпри Численные методы дифференциальных уравнений python. Метод имеет р-й порядок точности, если Численные методы дифференциальных уравнений python, р > 0 при Численные методы дифференциальных уравнений python. Простейшая разностная схема для приближенного решения задачи (2),(3) есть

Численные методы дифференциальных уравнений python(4)

При Численные методы дифференциальных уравнений pythonимеем явный метод и в этом случае разностная схема аппроксимирует уравнение (2) с первым порядком. Симметричная схема Численные методы дифференциальных уравнений pythonв (4) имеет второй порядок аппроксимации. Эта схема относится к классу неявных — для определения приближенного решения на новом слое необходимо решать нелинейную задачу.

Явные схемы второго и более высокого порядка аппроксимации удобно строить, ориентируясь на метод предиктор-корректор. На этапе предиктора (предсказания) используется явная схема

Численные методы дифференциальных уравнений python(5)

а на этапе корректора (уточнения) — схема

Численные методы дифференциальных уравнений python

В одношаговых методах Рунге—Кутта идеи предиктора-корректора реализуются наиболее полно. Этот метод записывается в общем виде:

Численные методы дифференциальных уравнений python(6),

Численные методы дифференциальных уравнений python

Формула (6) основана на s вычислениях функции f и называется s-стадийной. Если Численные методы дифференциальных уравнений pythonпри Численные методы дифференциальных уравнений pythonимеем явный метод Рунге—Кутта. Если Численные методы дифференциальных уравнений pythonпри j>1 и Численные методы дифференциальных уравнений pythonто Численные методы дифференциальных уравнений pythonопределяется неявно из уравнения:

Численные методы дифференциальных уравнений python(7)

О таком методе Рунге—Кутта говорят как о диагонально-неявном. Параметры Численные методы дифференциальных уравнений pythonопределяют вариант метода Рунге—Кутта. Используется следующее представление метода (таблица Бутчера)

Численные методы дифференциальных уравнений python

Одним из наиболее распространенных является явный метод Рунге—Кутта четвертого порядка

Численные методы дифференциальных уравнений python(8)

Метод Рунге—Кутта— Фельберга

Привожу значение расчётных коэффициентов Численные методы дифференциальных уравнений pythonметода

Численные методы дифференциальных уравнений python(9)

С учётом(9) общее решение имеет вид:

Численные методы дифференциальных уравнений python(10)

Это решение обеспечивает пятый порядок точности, остаётся его адаптировать к Python.

Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения Численные методы дифференциальных уравнений pythonс использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга

Численные методы дифференциальных уравнений python

Численные методы дифференциальных уравнений python

Численные методы дифференциальных уравнений python

Численные методы дифференциальных уравнений python

Адаптированные к Python методы Рунге—Кутта и Рунге—Кутта— Фельберга имеют меньшую абсолютную, чем решение с применением функции odeint, но большую, чем с использованием функции edu. Необходимо провести исследование быстродействия.

Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга

Сравнительный анализ проведём на примере модельной задачи, приведенной в [2]. Чтобы не повторять источник, приведу постановку и решение модельной задачи из [2].

Решим задачу Коши, описывающую движение тела, брошенного с начальной скоростью v0 под углом α к горизонту в предположении, что сопротивление воздуха пропорционально квадрату скорости. В векторной форме уравнение движения имеет вид

Численные методы дифференциальных уравнений python

где Численные методы дифференциальных уравнений python– радиус вектор движущегося тела, Численные методы дифференциальных уравнений python– вектор скорости тела, Численные методы дифференциальных уравнений python– коэффициент сопротивления, вектор Численные методы дифференциальных уравнений pythonсилы веса тела массы m, g – ускорение свободного падения.

Численные методы дифференциальных уравнений python

Особенность этой задачи состоит в том, что движение заканчивается в заранее неизвестный момент времени, когда тело падает на землю. Если обозначить Численные методы дифференциальных уравнений python, то в координатной форме мы имеем систему уравнений:

Численные методы дифференциальных уравнений python

К системе следует добавить начальные условия: Численные методы дифференциальных уравнений python(h начальная высота), Численные методы дифференциальных уравнений python. Положим Численные методы дифференциальных уравнений python. Тогда соответствующая система ОДУ 1 – го порядка примет вид:

Численные методы дифференциальных уравнений python

Для модельной задачи положим Численные методы дифференциальных уравнений python. Опуская довольно обширное описание программы, приведу только листинг из комментариев к которому, думаю, будет ясен принцип её работы. В программу добавлен отсчёт времени работы для сравнительного анализа.

Flight time = 1.2316 Distance = 5.9829 Height =1.8542
Flight time = 1.1016 Distance = 4.3830 Height =1.5088
Flight time = 1.0197 Distance = 3.5265 Height =1.2912
Flight time = 0.9068 Distance = 2.5842 Height =1.0240
Время на модельную задачу: 0.454787

Численные методы дифференциальных уравнений python

Для реализации средствами Python численного решения СДУ без использования специальных модулей, мною была предложена и исследована следующая функция:

def increment(f, t, y, tau
k1=tau*f(t,y)
k2=tau*f(t+(1/4)*tau,y+(1/4)*k1)
k3 =tau *f(t+(3/8)*tau,y+(3/32)*k1+(9/32)*k2)
k4=tau*f(t+(12/13)*tau,y+(1932/2197)*k1-(7200/2197)*k2+(7296/2197)*k3)
k5=tau*f(t+tau,y+(439/216)*k1-8*k2+(3680/513)*k3 -(845/4104)*k4)
k6=tau*f(t+(1/2)*tau,y-(8/27)*k1+2*k2-(3544/2565)*k3 +(1859/4104)*k4-(11/40)*k5)
return (16/135)*k1+(6656/12825)*k3+(28561/56430)*k4-(9/50)*k5+(2/55)*k6

Функция increment(f, t, y, tau) обеспечивает пятый порядок численного метода решения. Остальные особенности программы можно посмотреть в следующем листинге:

Время на модельную задачу: 0.259927

Численные методы дифференциальных уравнений python

Предложенная программная реализация модельной задачи без использования специальных модулей имеет почти в двое большее быстродействие, чем с функцией ode, однако нельзя забывать, что ode имеет более высокую точность численного решения и возможности выбора метода решения.

Решение краевой задачи с поточно разделёнными краевыми условиями

Приведем пример некоторой конкретной краевой задачи с поточно разделенными краевыми условиями:

Численные методы дифференциальных уравнений python(11)

Для решения задачи (11) используем следующий алгоритм:

1. Решаем первые три неоднородные уравнения системы (11) с начальными условиями
Численные методы дифференциальных уравнений python
Введем обозначение для решения задачи Коши:
Численные методы дифференциальных уравнений python

2. Решаем первые три однородные уравнения системы (11) с начальными условиями
Численные методы дифференциальных уравнений python
Введем обозначение для решения задачи Коши:
Численные методы дифференциальных уравнений python

3. Решаем первые три однородные уравнения системы (11) с начальными условиями

Численные методы дифференциальных уравнений python

Введем обозначение для решения задачи Коши:

Численные методы дифференциальных уравнений python

4. Общее решение краевой задачи (11) при помощи решений задач Коши записывается в виде линейной комбинации решений:
Численные методы дифференциальных уравнений python
где p2, p3 — некоторые неизвестные параметры.

5. Для определения параметров p2, p3, используем краевые условия последних двух уравнений (11), то есть условия при x = b. Подставляя, получим систему линейных уравнений относительно неизвестных p2, p3:
Численные методы дифференциальных уравнений python(12)
Решая (12), получим соотношения для p2, p3.

По приведенному алгоритму с применением метода Рунге—Кутта—Фельберга получим следующую программу:

y0[0]= 0.0
y1[0]= 1.0
y2[0]= 0.7156448588231397
y3[0]= 1.324566562303714
y0[N-1]= 0.9900000000000007
y1[N-1]= 0.1747719838716767
y2[N-1]= 0.8
y3[N-1]= 0.5000000000000001
Время на модельную задачу: 0.070878

Численные методы дифференциальных уравнений python

Вывод

Разработанная мною программа отличается от приведенной в [3] меньшей погрешностью, что подтверждает приведенный в начале статьи сравнительный анализ функции odeint с реализованным на Python метода Рунге—Кутта—Фельберга.

3. Н.М. Полякова, Е.В. Ширяева Python 3. Создание графического интерфейса пользователя (на примере решения методом пристрелки краевой задачи для линейных обыкновенных дифференциальных уравнений). Ростов-на-Дону 2017.

Видео:Python - поле направлений дифференциального уравненияСкачать

Python - поле направлений дифференциального уравнения

Библиотека Sympy: символьные вычисления в Python

Что такое SymPy ? Это библиотека символьной математики языка Python. Она является реальной альтернативой таким математическим пакетам как Mathematica или Maple и обладает очень простым и легко расширяемым кодом. SymPy написана исключительно на языке Python и не требует никаких сторонних библиотек.

Документацию и исходный код этой библиотеки можно найти на ее официальной странице.

Видео:Решение ОДУ 2 порядка в PythonСкачать

Решение  ОДУ  2 порядка  в Python

Первые шаги с SymPy

Используем SymPy как обычный калькулятор

В библиотеке SymPy есть три встроенных численных типа данных: Real , Rational и Integer . С Real и Integer все понятно, а класс Rational представляет рациональное число как пару чисел: числитель и знаменатель рациональной дроби. Таким образом, Rational(1, 2) представляет собой 1/2 , а, например, Rational(5, 2) — соответственно 5/2 .

Библиотека SymPy использует библиотеку mpmath , что позволяет производить вычисления с произвольной точностью. Таким образом, ряд констант (например, пи, e), которые в данной библиотеке рассматриваются как символы, могут быть вычислены с любой точностью.

Как можно заметить, функция evalf() дает на выходе число с плавающей точкой.

В SymPy есть также класс, представляющий такое понятие в математике, как бесконечность. Он обозначается следующим образом: oo .

Символы

В отличие от ряда других систем компьютерной алгебры, в SymPy можно в явном виде задавать символьные переменные. Это происходит следующим образом:

После их задания, с ними можно производить различные манипуляции.

С символами можно производить преобразования с использованием некоторых операторов языка Python. А именно, арифметических ( + , -` , «* , ** ) и логических ( & , | ,

Библиотека SymPy позволяет задавать форму вывода результатов на экран. Обычно мы используем формат такого вида:

Видео:Решение системы ОДУ в PythonСкачать

Решение  системы ОДУ в Python

Алгебраические преобразования

SymPy способна на сложные алгебраические преобразования. Здесь мы рассмотрим наиболее востребованные из них, а именно раскрытие скобок и упрощение выражений.

Раскрытие скобок

Чтобы раскрыть скобки в алгебраических выражениях, используйте следующий синтаксис:

При помощи ключевого слова можно добавить поддержку работы с комплексными переменными, а также раскрытие скобок в тригонометрических функциях.

Упрощение выражений

Если вы хотите привести выражение к более простому виду (возможно, сократить какие-то члены), то используйте функцию simplify .

Также надо сказать, что для определенных видов математических функций существуют альтернативные, более конкретные функции для упрощения выражений. Так, для упрощения степенных функций есть функция powsimp , для тригонометрических — trigsimp , а для логарифмических — logcombine , radsimp .

Видео:Решение ОДУ в PythonСкачать

Решение  ОДУ в Python

Вычисления

Вычисления пределов

Для вычисления пределов в SymPy предусмотрен очень простой синтаксис, а именно limit(function, variable, point) . Например, если вы хотите вычислить предел функции f(x) , где x -> 0 , то надо написать limit(f(x), x, 0) .

Также можно вычислять пределы, которые стремятся к бесконечности.

Дифференцирование

Для дифференцирования выражений в SymPy есть функция diff(func, var) . Ниже даны примеры ее работы.

Проверим результат последней функции при помощи определения производной через предел.

tan 2 (?)+1 Результат тот же.

Также при помощи этой же функции могут быть вычислены производные более высоких порядков. Синтаксис функции будет следующим: diff(func, var, n) . Ниже приведено несколько примеров.

Разложение в ряд

Для разложения выражения в ряд Тейлора используется следующий синтаксис: series(expr, var) .

Интегрирование

В SymPy реализована поддержка определенных и неопределенных интегралов при помощи функции integrate() . Интегрировать можно элементарные, трансцендентные и специальные функции. Интегрирование осуществляется с помощью расширенного алгоритма Риша-Нормана. Также используются различные эвристики и шаблоны. Вот примеры интегрирования элементарных функций:

Также несложно посчитать интеграл и от специальных функций. Возьмем, например, функцию Гаусса:

Результат вычисления можете посмотреть сами. Вот примеры вычисления определенных интегралов.

Также можно вычислять определенные интегралы с бесконечными пределами интегрирования (несобственные интегралы).

Решение уравнений

При помощи SymPy можно решать алгебраические уравнения с одной или несколькими переменными. Для этого используется функция solveset() .

Как можно заметить, первое выражение функции solveset() приравнивается к 0 и решается относительно х . Также возможно решать некоторые уравнения с трансцендентными функциями.

Системы линейных уравнений

SymPy способна решать широкий класс полиномиальных уравнений. Также при помощи данной библиотеки можно решать и системы уравнений. При этом переменные, относительно которых должна быть разрешена система, передаются в виде кортежа во втором аргументе функции solve() , которая используется для таких задач.

Факторизация

Другим мощным методом исследования полиномиальных уравнений является факторизация многочленов (то есть представление многочлена в виде произведения многочленов меньших степеней). Для этого в SymPy предусмотрена функция factor() , которая способна производить факторизацию очень широкого класса полиномов.

Булевы уравнения

Также в SymPy реализована возможность решения булевых уравнений, что по сути означает проверку булевого выражения на истинность. Для этого используется функция satisfiable() .

Данный результат говорит нам о том, что выражение (x & y) будет истинным тогда и только тогда, когда x и y истинны. Если выражение не может быть истинным ни при каких значениях переменных, то функция вернет результат False .

Видео:#5. Математические функции и работа с модулем math | Python для начинающихСкачать

#5. Математические функции и работа с модулем math | Python для начинающих

Линейная алгебра

Матрицы

Матрицы в SymPy создаются как экземпляры класса Matrix :

В отличие от NumPy , мы можем использовать в матрицах символьные переменные:

И производить с ними разные манипуляции:

Дифференциальные уравнения

При помощи библиотеки SymPy можно решать некоторые обыкновенные дифференциальные уравнения. Для этого используется функция dsolve() . Для начала нам надо задать неопределенную функцию. Это можно сделать, передав параметр cls=Function в функцию symbols() .

Теперь f и g заданы как неопределенные функции. мы можем в этом убедиться, просто вызвав f(x) .

Теперь решим следующее дифференциальное уравнение:

Чтобы улучшить решаемость и помочь этой функции в поиске решения, можно передавать в нее определенные ключевые аргументы. Например, если мы видим, что это уравнение с разделяемыми переменными, то мы можем передать в функцию аргумент hint=’separable’ .

Численные методы дифференциальных уравнений python

Английский для программистов

Наш телеграм канал с тестами по английскому языку для программистов. Английский это часть карьеры программиста. Поэтому полезно заняться им уже сейчас

📺 Видео

Численное решение задачи Коши методом ЭйлераСкачать

Численное решение задачи Коши методом Эйлера

Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Методы численного анализа - Метод Рунге-Кутта для ОДУ 2 порядкаСкачать

Методы численного анализа - Метод Рунге-Кутта для ОДУ 2 порядка

Решение 1 го нелинейного алгебраического уравнения в PythonСкачать

Решение 1 го нелинейного алгебраического уравнения в Python

Численное решение уравнений, урок 3/5. Метод хордСкачать

Численное решение уравнений, урок 3/5. Метод хорд

Вычислительная математика. Метод касательных на Python(1 практика).Скачать

Вычислительная математика. Метод касательных на Python(1 практика).

Лекция 13, Численные методы решения ОДУСкачать

Лекция 13, Численные методы решения ОДУ
Поделиться или сохранить к себе: