Численное решение жестких дифференциальных уравнений

Лекция 10: Численные методы решения жестких систем обыкновенных дифференциальных уравнений
Содержание
  1. 9.1. Явление жесткости. Предварительные сведения
  2. Численное решение математических моделей объектов заданных системами дифференциальных уравнений
  3. Введение:
  4. Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ
  5. Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения с использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга
  6. Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга
  7. Решение краевой задачи с поточно разделёнными краевыми условиями
  8. Вывод
  9. Численное решение жестких дифференциальных уравнений
  10. 🔥 Видео

9.1. Явление жесткости. Предварительные сведения

Рассмотрим в качестве примера две задачи Коши для систем обыкновенных дифференциальных уравнений (ОДУ) [9.1], [9.2]:

Численное решение жестких дифференциальных уравнений

с начальными данными u(0) = u0, v(0) = v0 ; здесь Численное решение жестких дифференциальных уравнений; и линейную систему с постоянными коэффициентами

Численное решение жестких дифференциальных уравнений

Решением первой задачи Коши являются функции

Численное решение жестких дифференциальных уравнений

В обоих случаях решение состоит из двух экспонент: быстро убывающей и относительно медленно изменяющейся. Отметим, что абсолютные величины собственных значений матриц рассматриваемых линейных систем ОДУ при их представлении в виде

Численное решение жестких дифференциальных уравнений

( u — вектор — столбец, A — матрица с постоянными коэффициентами) существенно различаются. Так, в первом случае Численное решение жестких дифференциальных уравнений Численное решение жестких дифференциальных уравнений; во втором: Численное решение жестких дифференциальных уравнений Численное решение жестких дифференциальных уравненийВ обоих случаях имеем:

Численное решение жестких дифференциальных уравнений

При моделировании физических процессов причина такой разницы в собственных числах заключена в существенно различных характерных временах процессов, описываемых системами ОДУ. Наиболее часто подобные системы встречаются при моделировании процессов в ядерных реакторах, при решении задач радиофизики, астрофизики, физики плазмы, биофизики, химической кинетики. Последние задачи часто могут быть записаны в виде [9.3]:

Численное решение жестких дифференциальных уравнений

где uk — концентрации веществ, участвующих в химических реакциях, скорости протекания которых характеризуются коэффициентами Численное решение жестких дифференциальных уравненийВ качестве примера приведем одну из систем химической кинетики, описывающую изменение концентрации трех веществ, участвующих в реакции для случая полного перемешивания [9.1].

Пример 1. Обозначим концентрации трех веществ, участвующих в реакции, через u1 , u2 и u3 , тогда

Численное решение жестких дифференциальных уравнений

Участки решения, характеризующиеся быстрым и медленным его изменением, называются пограничным слоем и квазистационарным режимом, соответственно.

Трудности численного решения подобных систем ОДУ , получивших название жестких ( определение жесткой системы приведено ниже), связаны с выбором шага интегрирования. Дело в том, что характерные времена исследуемых процессов могут различаться более чем в 10 12 раз. Следовательно, если при численном решении системы

Численное решение жестких дифференциальных уравнений

выбирать шаг из условия

Численное решение жестких дифференциальных уравнений

то он будет соответствовать самому быстрому процессу. В данном случае затраты машинного времени для исследования самых медленных процессов будут неоправданно велики. По этой причине имеются следующие альтернативы в выборе подхода к численному решению рассматриваемых задач.

  1. Численно решать систему ОДУ с шагом

Численное решение жестких дифференциальных уравнений

т.е. с учетом характерных времен всех процессов, описываемых данной системой.

Видео:01.02. Модель SIR. Численное решение системы дифференциальных уравнений с помощью SciPyСкачать

01.02. Модель SIR. Численное решение системы дифференциальных уравнений с помощью SciPy

Численное решение математических моделей объектов заданных системами дифференциальных уравнений

Введение:

При математическом моделировании ряда технических устройств используются системы дифференциальных нелинейных уравнений. Такие модели используются не только в технике, они находят применение в экономике, химии, биологии, медицине, управлении.

Исследование функционирования таких устройств требуют решения указанных систем уравнений. Поскольку основная часть таких уравнений являются нелинейными и нестационарными, часто невозможно получить их аналитическое решение.

Возникает необходимость использовать численные методы, наиболее известным из которых является метод Рунге — Кутты [1]. Что касается Python, то в публикациях по численным методам, например [2,3], данных по применение Рунге — Кутты крайне мало, а по его модификации — методу Рунге-Кутта-Фельберга вообще нет.

В настоящее время, благодаря простому интерфейсу, наибольшее распространение в Python имеет функцию odeint из модуля scipy.integrate. Вторая функция ode из этого модуля реализует несколько методов, в том числе и упомянутый пятиранговый метод Рунге-Кутта-Фельберга, но, вследствие универсальности, имеет ограниченное быстродействие.

Целью настоящей публикации является сравнительный анализ перечисленных средств численного решения систем дифференциальных уравнений с модифицированным автором под Python методом Рунге-Кутта-Фельберга. В публикации так же приведены решения по краевым задачам для систем дифференциальных уравнений (СДУ).

Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ

Для одного дифференциального уравнения n – го порядка, задача Коши состоит в нахождении функции, удовлетворяющей равенству:

Численное решение жестких дифференциальных уравнений

и начальным условиям

Численное решение жестких дифференциальных уравнений

Перед решением эта задача должна быть переписана в виде следующей СДУ

Численное решение жестких дифференциальных уравнений(1)

с начальными условиями

Численное решение жестких дифференциальных уравнений

Модуль имеет две функции ode() и odeint(), предназначенные для решения систем обыкновенных дифференциальных уравнений (ОДУ) первого порядка с начальными условиями в одной точке (задача Коши). Функция ode() более универсальная, а функция odeint() (ODE integrator) имеет более простой интерфейс и хорошо решает большинство задач.

Функция odeint() имеет три обязательных аргумента и много опций. Она имеет следующий формат odeint(func, y0, t[,args=(), . ]) Аргумент func – это имя Python функции двух переменных, первой из которых является список y=[y1,y2. yn], а второй – имя независимой переменной.

Функция func должна возвращать список из n значений функций Численное решение жестких дифференциальных уравненийпри заданном значении независимого аргумента t. Фактически функция func(y,t) реализует вычисление правых частей системы (1).

Второй аргумент y0 функции odeint() является массивом (или списком) начальных значений Численное решение жестких дифференциальных уравненийпри t=t0.

Третий аргумент является массивом моментов времени, в которые вы хотите получить решение задачи. При этом первый элемент этого массива рассматривается как t0.

Функция odeint() возвращает массив размера len(t) x len(y0). Функция odeint() имеет много опций, управляющих ее работой. Опции rtol (относительная погрешность) и atol (абсолютная погрешность) определяют погрешность вычислений ei для каждого значения yi по формуле

Численное решение жестких дифференциальных уравнений

Они могут быть векторами или скалярами. По умолчанию

Численное решение жестких дифференциальных уравнений

Вторая функция модуля scipy.integrate, которая предназначена для решения дифференциальных уравнений и систем, называется ode(). Она создает объект ОДУ (тип scipy.integrate._ode.ode). Имея ссылку на такой объект, для решения дифференциальных уравнений следует использовать его методы. Аналогично функции odeint(), функция ode(func) предполагает приведение задачи к системе дифференциальных уравнений вида (1) и использовании ее функции правых частей.

Отличие только в том, что функция правых частей func(t,y) первым аргументом принимает независимую переменную, а вторым – список значений искомых функций. Например, следующая последовательность инструкций создает объект ODE, представляющий задачу Коши.

При построении численных алгоритмов будем считать, что решение этой дифференциальной задачи существует, оно единственно и обладает необходимыми свойствами гладкости.

При численном решении задачи Коши

Численное решение жестких дифференциальных уравнений(2)

Численное решение жестких дифференциальных уравнений(3)

по известному решению в точке t =0 необходимо найти из уравнения (3) решение при других t. При численном решении задачи (2),(3) будем использовать равномерную, для простоты, сетку по переменной t с шагом т > 0.

Приближенное решение задачи (2), (3) в точке Численное решение жестких дифференциальных уравненийобозначим Численное решение жестких дифференциальных уравнений. Метод сходится в точке Численное решение жестких дифференциальных уравненийесли Численное решение жестких дифференциальных уравненийпри Численное решение жестких дифференциальных уравнений. Метод имеет р-й порядок точности, если Численное решение жестких дифференциальных уравнений, р > 0 при Численное решение жестких дифференциальных уравнений. Простейшая разностная схема для приближенного решения задачи (2),(3) есть

Численное решение жестких дифференциальных уравнений(4)

При Численное решение жестких дифференциальных уравненийимеем явный метод и в этом случае разностная схема аппроксимирует уравнение (2) с первым порядком. Симметричная схема Численное решение жестких дифференциальных уравненийв (4) имеет второй порядок аппроксимации. Эта схема относится к классу неявных — для определения приближенного решения на новом слое необходимо решать нелинейную задачу.

Явные схемы второго и более высокого порядка аппроксимации удобно строить, ориентируясь на метод предиктор-корректор. На этапе предиктора (предсказания) используется явная схема

Численное решение жестких дифференциальных уравнений(5)

а на этапе корректора (уточнения) — схема

Численное решение жестких дифференциальных уравнений

В одношаговых методах Рунге—Кутта идеи предиктора-корректора реализуются наиболее полно. Этот метод записывается в общем виде:

Численное решение жестких дифференциальных уравнений(6),

Численное решение жестких дифференциальных уравнений

Формула (6) основана на s вычислениях функции f и называется s-стадийной. Если Численное решение жестких дифференциальных уравненийпри Численное решение жестких дифференциальных уравненийимеем явный метод Рунге—Кутта. Если Численное решение жестких дифференциальных уравненийпри j>1 и Численное решение жестких дифференциальных уравненийто Численное решение жестких дифференциальных уравненийопределяется неявно из уравнения:

Численное решение жестких дифференциальных уравнений(7)

О таком методе Рунге—Кутта говорят как о диагонально-неявном. Параметры Численное решение жестких дифференциальных уравненийопределяют вариант метода Рунге—Кутта. Используется следующее представление метода (таблица Бутчера)

Численное решение жестких дифференциальных уравнений

Одним из наиболее распространенных является явный метод Рунге—Кутта четвертого порядка

Численное решение жестких дифференциальных уравнений(8)

Метод Рунге—Кутта— Фельберга

Привожу значение расчётных коэффициентов Численное решение жестких дифференциальных уравненийметода

Численное решение жестких дифференциальных уравнений(9)

С учётом(9) общее решение имеет вид:

Численное решение жестких дифференциальных уравнений(10)

Это решение обеспечивает пятый порядок точности, остаётся его адаптировать к Python.

Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения Численное решение жестких дифференциальных уравненийс использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга

Численное решение жестких дифференциальных уравнений

Численное решение жестких дифференциальных уравнений

Численное решение жестких дифференциальных уравнений

Численное решение жестких дифференциальных уравнений

Адаптированные к Python методы Рунге—Кутта и Рунге—Кутта— Фельберга имеют меньшую абсолютную, чем решение с применением функции odeint, но большую, чем с использованием функции edu. Необходимо провести исследование быстродействия.

Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга

Сравнительный анализ проведём на примере модельной задачи, приведенной в [2]. Чтобы не повторять источник, приведу постановку и решение модельной задачи из [2].

Решим задачу Коши, описывающую движение тела, брошенного с начальной скоростью v0 под углом α к горизонту в предположении, что сопротивление воздуха пропорционально квадрату скорости. В векторной форме уравнение движения имеет вид

Численное решение жестких дифференциальных уравнений

где Численное решение жестких дифференциальных уравнений– радиус вектор движущегося тела, Численное решение жестких дифференциальных уравнений– вектор скорости тела, Численное решение жестких дифференциальных уравнений– коэффициент сопротивления, вектор Численное решение жестких дифференциальных уравненийсилы веса тела массы m, g – ускорение свободного падения.

Численное решение жестких дифференциальных уравнений

Особенность этой задачи состоит в том, что движение заканчивается в заранее неизвестный момент времени, когда тело падает на землю. Если обозначить Численное решение жестких дифференциальных уравнений, то в координатной форме мы имеем систему уравнений:

Численное решение жестких дифференциальных уравнений

К системе следует добавить начальные условия: Численное решение жестких дифференциальных уравнений(h начальная высота), Численное решение жестких дифференциальных уравнений. Положим Численное решение жестких дифференциальных уравнений. Тогда соответствующая система ОДУ 1 – го порядка примет вид:

Численное решение жестких дифференциальных уравнений

Для модельной задачи положим Численное решение жестких дифференциальных уравнений. Опуская довольно обширное описание программы, приведу только листинг из комментариев к которому, думаю, будет ясен принцип её работы. В программу добавлен отсчёт времени работы для сравнительного анализа.

Flight time = 1.2316 Distance = 5.9829 Height =1.8542
Flight time = 1.1016 Distance = 4.3830 Height =1.5088
Flight time = 1.0197 Distance = 3.5265 Height =1.2912
Flight time = 0.9068 Distance = 2.5842 Height =1.0240
Время на модельную задачу: 0.454787

Численное решение жестких дифференциальных уравнений

Для реализации средствами Python численного решения СДУ без использования специальных модулей, мною была предложена и исследована следующая функция:

def increment(f, t, y, tau
k1=tau*f(t,y)
k2=tau*f(t+(1/4)*tau,y+(1/4)*k1)
k3 =tau *f(t+(3/8)*tau,y+(3/32)*k1+(9/32)*k2)
k4=tau*f(t+(12/13)*tau,y+(1932/2197)*k1-(7200/2197)*k2+(7296/2197)*k3)
k5=tau*f(t+tau,y+(439/216)*k1-8*k2+(3680/513)*k3 -(845/4104)*k4)
k6=tau*f(t+(1/2)*tau,y-(8/27)*k1+2*k2-(3544/2565)*k3 +(1859/4104)*k4-(11/40)*k5)
return (16/135)*k1+(6656/12825)*k3+(28561/56430)*k4-(9/50)*k5+(2/55)*k6

Функция increment(f, t, y, tau) обеспечивает пятый порядок численного метода решения. Остальные особенности программы можно посмотреть в следующем листинге:

Время на модельную задачу: 0.259927

Численное решение жестких дифференциальных уравнений

Предложенная программная реализация модельной задачи без использования специальных модулей имеет почти в двое большее быстродействие, чем с функцией ode, однако нельзя забывать, что ode имеет более высокую точность численного решения и возможности выбора метода решения.

Решение краевой задачи с поточно разделёнными краевыми условиями

Приведем пример некоторой конкретной краевой задачи с поточно разделенными краевыми условиями:

Численное решение жестких дифференциальных уравнений(11)

Для решения задачи (11) используем следующий алгоритм:

1. Решаем первые три неоднородные уравнения системы (11) с начальными условиями
Численное решение жестких дифференциальных уравнений
Введем обозначение для решения задачи Коши:
Численное решение жестких дифференциальных уравнений

2. Решаем первые три однородные уравнения системы (11) с начальными условиями
Численное решение жестких дифференциальных уравнений
Введем обозначение для решения задачи Коши:
Численное решение жестких дифференциальных уравнений

3. Решаем первые три однородные уравнения системы (11) с начальными условиями

Численное решение жестких дифференциальных уравнений

Введем обозначение для решения задачи Коши:

Численное решение жестких дифференциальных уравнений

4. Общее решение краевой задачи (11) при помощи решений задач Коши записывается в виде линейной комбинации решений:
Численное решение жестких дифференциальных уравнений
где p2, p3 — некоторые неизвестные параметры.

5. Для определения параметров p2, p3, используем краевые условия последних двух уравнений (11), то есть условия при x = b. Подставляя, получим систему линейных уравнений относительно неизвестных p2, p3:
Численное решение жестких дифференциальных уравнений(12)
Решая (12), получим соотношения для p2, p3.

По приведенному алгоритму с применением метода Рунге—Кутта—Фельберга получим следующую программу:

y0[0]= 0.0
y1[0]= 1.0
y2[0]= 0.7156448588231397
y3[0]= 1.324566562303714
y0[N-1]= 0.9900000000000007
y1[N-1]= 0.1747719838716767
y2[N-1]= 0.8
y3[N-1]= 0.5000000000000001
Время на модельную задачу: 0.070878

Численное решение жестких дифференциальных уравнений

Вывод

Разработанная мною программа отличается от приведенной в [3] меньшей погрешностью, что подтверждает приведенный в начале статьи сравнительный анализ функции odeint с реализованным на Python метода Рунге—Кутта—Фельберга.

3. Н.М. Полякова, Е.В. Ширяева Python 3. Создание графического интерфейса пользователя (на примере решения методом пристрелки краевой задачи для линейных обыкновенных дифференциальных уравнений). Ростов-на-Дону 2017.

Видео:МЗЭ 2022 Численное решение дифференциальных уравнений. Неявный метод Эйлера. Ложкин С.А.Скачать

МЗЭ 2022 Численное решение дифференциальных уравнений.  Неявный метод Эйлера. Ложкин С.А.

Численное решение жестких дифференциальных уравнений

Дифференциальным уравнением первого порядка называется уравнение вида F(x,y,у’)=0 или у’=f(x,y). Функция y(x), при подстановке которой уравнение обращается в тождество, называется решением дифференциального уравнения.

Рассмотрим несколько численных методов решения дифференциальных уравнений первого порядка. Описание численных методов приводится для уравнения в виде у’=f(x,y).

Рассмотрим два варианта вывода расчетных формул

🔥 Видео

Численное решение задачи Коши методом ЭйлераСкачать

Численное решение задачи Коши методом Эйлера

5 Численное решение дифференциальных уравнений Part 1Скачать

5  Численное решение дифференциальных уравнений Part 1

Кобельков Г. М. - Численные методы. Часть 2 -Жесткие системы обыкновенных дифференциальных уравненийСкачать

Кобельков Г. М. - Численные методы. Часть 2 -Жесткие системы обыкновенных дифференциальных уравнений

Численное решение дифференциальных уравнений (задачи Коши)Скачать

Численное решение дифференциальных уравнений (задачи Коши)

Решение системы дифференциальных уравнений методом ЭйлераСкачать

Решение системы дифференциальных уравнений методом Эйлера

Численное решение системы дифференциальных уравнений(задачи Коши)Скачать

Численное решение системы дифференциальных уравнений(задачи Коши)

Метод ЭйлераСкачать

Метод Эйлера

Python - численное решение дифференциального уравнения 1го порядка и вывод графикаСкачать

Python - численное решение дифференциального уравнения 1го порядка и вывод графика

Сеточные методы решения дифференциальных уравнений в частных производных.Скачать

Сеточные методы решения дифференциальных уравнений в частных производных.

Численное решение обыкновенных дифференциальных уравнений в ExcelСкачать

Численное решение обыкновенных дифференциальных уравнений в Excel

5 Численное решение дифференциальных уравнений Part 1Скачать

5  Численное решение дифференциальных уравнений Part 1

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Численное решение дифференциальных уравнений ч.1Скачать

Численное решение дифференциальных уравнений ч.1

Видеоурок "Системы дифференциальных уравнений"Скачать

Видеоурок "Системы дифференциальных уравнений"
Поделиться или сохранить к себе: