Численное решение дифференциальных уравнений с граничными условиями

Численное решение дифференциальных уравнений с граничными условиями

Электронный курс по MathCAD

Численное решение дифференциальных уравнений с граничными условиями Численное решение дифференциальных уравнений с граничными условиями Численное решение дифференциальных уравнений с граничными условиями Численное решение дифференциальных уравнений с граничными условиями

Содержание
  1. 5.2 Решение дифференциальных уравнений и систем.(Задача Коши и граничные задачи).
  2. Решение одиночного дифференциального уравнения.
  3. Численное решение задачи Коши для дифференциальных уравнений и систем.
  4. Решение граничных задач для обыкновенных дифференциальных уравнений.
  5. Численное решение дифференциальных уравнений с граничными условиями
  6. Численное решение математических моделей объектов заданных системами дифференциальных уравнений
  7. Введение:
  8. Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ
  9. Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения с использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга
  10. Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга
  11. Решение краевой задачи с поточно разделёнными краевыми условиями
  12. Вывод
  13. 🔍 Видео

5.2 Решение дифференциальных уравнений и систем.(Задача Коши и граничные задачи).


Решение одиночного дифференциального уравнения.

Для численного решения одиночного дифференциального уравнения в MathCAD имеется функция Odesolve, с помощью которой может быть решена как задача Коши для обыкновенного дифференциального уравнения, так и граничная задача. Эта функция входит в состав блока решения и сявляется его заключительным ключевым словом.

Odesolve(x,b,[step]) — Возвращает функцию, которая является решением дифференциального уравнения. Используется в блоке с оператором Given.
x — переменная интегрирования, действительное число
b — конечная точка отрезка интегрирования
step — величина шага по переменной интегрирования (необязательный аргумент)

Замечания:

  1. Уравнение должно быть линейным относительно старшей производной.
  2. Число заданных начальных или граничных условий внутри блока должно быть равно порядку уравнения.
  3. При записи уравнения для обозначения производных функции используйте специальные кнопки с панели Math или ‘ (штрих) — [Ctrl+F7], для знака равенства = [Ctrl+=] (в том числе и для дополнительных условий).
  4. Конечная точка должна быть больше начальной.
  5. Не допускаются начальные и граничные условия смешанного типа (f ‘(a)+f(a)=5).
  6. Искомая функция в блоке дложна быть обязательно с аргументом ( f(x))

Численное решение дифференциальных уравнений с граничными условиями Численное решение дифференциальных уравнений с граничными условиями

Численное решение задачи Коши для дифференциальных уравнений и систем.

Для численного решения задачи Коши для дифференциальных уравнений и систем могут быть использованы функции:

rkfixed(y,x1,x2,n,F) — возвращает матрицу решений системы уравнений методом Рунге-Кутта 4-го порядка при фиксированном шаге по x

rkadapt(y,x1,x2,n,F) — ищет решение с переменным шагом ( там, где решение меняется медленнее, шаг увеличивается, а в области быстрого изменения решения шаг функции уменьшается). Возвращается решение с равным шагом. Функция работает быстрее, чем rkfixed

Bulstoer(y,x1,x2,n,F) — дает более точное решение (методом Bulirsch-Stoer)

Агрумкнты вышеуказанных функций:
y — вектор начальных условий
x1,x2 — границы интервала для поиска решения
n — количество точек на интервале
F(x,y) — вектор-функция первых производных

При решении дифференциальных уравнений порядка выше первого (или систем уравнений, выше первого порядка) исходное уравнение (систему) необходимо преобразовать к системе дифференциальных уравнений первого порядка.

Численное решение дифференциальных уравнений с граничными условиямиЧисленное решение дифференциальных уравнений с граничными условиями

В результате работы укзанных функций рассчитывается матрица, количество стобцов которой равно порядку уравнения +1(или сумме порядков уравнений в системе +1), а количество строк равно параметру n. Первый столбец содержит значения независимой переменной, второй — значение функции, третий — для диф. уравнений 2-го порядка — значение производной искомой функции (если решается система двух уравнений 1-го порядка, то третий столбец будет содержать значения второй функции). Для выделения решений (функций или их производных) можно воспользоваться стандартным оператором вывода столбцов матрицы M &lt &gt

Численное решение дифференциальных уравнений с граничными условиямиЧисленное решение дифференциальных уравнений с граничными условиями

Если матрица правых частей дифференциальных уравнений почти вырождена, то такие системы называются жесткими. В этом случае решения, возвращаемые функцией rkfixed будет неустойчивым и для решения таких систем необходимо применять функции Stiffb , Stiffr

Stiffb(y,x1,x2,n,F,J) — ищет решение диф. уравнения или системы дифференциальных уравнений методом Bulirsch-Stoer

Stiffr(y,x1,x2,n,F,J) — ищет решение диф. уравнения или системы дифференциальных уравнений методом Rosenbrock

Первые пять аргументов такие же,как и при решении хорошо обусловленных систем дифференциальных уравнений . Дополнительный аргумент — матрица J размером nx(n+1), первый столбец которой содержит частные производные dF/dx, остальные столбцы и строки представляют собой матрицу Якоби dF/dy

Численное решение дифференциальных уравнений с граничными условиями

Пример решения жесткой системы дифференциальных уравнений.

Для отыскания решения системы диф. уравнений только в конечной точке используются функции bulstoer,rkadapt, stiffb, stiffr (начинаются с прописной буквы).

Численное решение дифференциальных уравнений с граничными условиями

Набор парамтров для этих функций :
bulstoer(y,x1,x2,acc,F,kmax,save)
rkadapt(y,x1,x2,acc,F,kmax,save)
stiffb(y,x1,x2,acc,F,J,kmax,save)
stiffr(y,x1,x2,acc,F,J,kmax,save)

Первые три параметра и пятый (F) этих функций те же, что идля функции Rkadapt. Дополнительные параметры:
acc — параметр, контролирующий точность решения (реком. асс=0.001)
kmax — максимальное число промежуточных точек в которых ищется решение
save — минимально допустимый интервал между точками, в которых ищется решение

Решение граничных задач для обыкновенных дифференциальных уравнений.

Если для дифференциального уравнения n-го порядка k граничных условий заданы в начальной точке х1, а (n-k) граничных условий — в конечной точке х2, то такая задача называется краевой. В MathCAD реализованы две функции, позволяющие численно найти недостающие условия в точках х1 и х2.

Двухточечная краевая задача

Задача решается в два этапа. Сначала с помощью функции sbval находятся недостающие начальные значения, а затем применяется одна из выше описанных функций для решения стандартной задачи Коши на отрезке.

sbval(v,x1,x2,F,load,score) — ищет недостающие начальные условия в точке х1
v — вектор началных приближений для искомых начальных значений в точке х1,
х1,х2 — граничные точки интервала
F(x,y) — вектор-столбец из n элементов, содержит правые части дифференциальных уравнений
load(x1,v) — вектор-столбец из n элементов, содержит начальные значения в точке х1; некоторые из значений- константы, другие неизвестны и будут найдены в процессе решения.
score(x2,y) — вектор-столбец размерности вектора v, содержащий разность между начальным условием в точке х2 и значеием искомого решения в этой точке.

Численное решение дифференциальных уравнений с граничными условиямиЧисленное решение дифференциальных уравнений с граничными условиями

Краевая задача с условиями внутри интервала.

На первом этапе используется функция

balfit(V1,V2,x1,x2,xf,F,load1,load2,score) — ищет недостающие начальные условия в точках х1 и х2, сшивая решения, выходящие из этих точек, в точке xf
V1,V2 — вектора началных приближений для искомых начальных значений в точках х1 и х2
х1,х2 — граничные точки интервала
load1(x1,V1) — вектор-столбец из n элементов, содержит начальные значения в точке х1; некоторые из значений- константы, другие неизвестны и будут найдены в процессе решения
load2(x2,V2) — вектор-столбец из n элементов, содержит начальные значения в точке х2; некоторые из значений- константы, другие неизвестны и будут найдены в процессе решения.
score(xf,y) — вектор-столбец размерности n, содержащий разность между решениями, начинающимися в точках х1 и х2, в точке xf

Видео:Метод ЭйлераСкачать

Метод Эйлера

Численное решение дифференциальных уравнений с граничными условиями

Дифференциальным уравнением первого порядка называется уравнение вида F(x,y,у’)=0 или у’=f(x,y). Функция y(x), при подстановке которой уравнение обращается в тождество, называется решением дифференциального уравнения.

Рассмотрим несколько численных методов решения дифференциальных уравнений первого порядка. Описание численных методов приводится для уравнения в виде у’=f(x,y).

Рассмотрим два варианта вывода расчетных формул

Видео:Численное решение задачи Коши методом ЭйлераСкачать

Численное решение задачи Коши методом Эйлера

Численное решение математических моделей объектов заданных системами дифференциальных уравнений

Введение:

При математическом моделировании ряда технических устройств используются системы дифференциальных нелинейных уравнений. Такие модели используются не только в технике, они находят применение в экономике, химии, биологии, медицине, управлении.

Исследование функционирования таких устройств требуют решения указанных систем уравнений. Поскольку основная часть таких уравнений являются нелинейными и нестационарными, часто невозможно получить их аналитическое решение.

Возникает необходимость использовать численные методы, наиболее известным из которых является метод Рунге — Кутты [1]. Что касается Python, то в публикациях по численным методам, например [2,3], данных по применение Рунге — Кутты крайне мало, а по его модификации — методу Рунге-Кутта-Фельберга вообще нет.

В настоящее время, благодаря простому интерфейсу, наибольшее распространение в Python имеет функцию odeint из модуля scipy.integrate. Вторая функция ode из этого модуля реализует несколько методов, в том числе и упомянутый пятиранговый метод Рунге-Кутта-Фельберга, но, вследствие универсальности, имеет ограниченное быстродействие.

Целью настоящей публикации является сравнительный анализ перечисленных средств численного решения систем дифференциальных уравнений с модифицированным автором под Python методом Рунге-Кутта-Фельберга. В публикации так же приведены решения по краевым задачам для систем дифференциальных уравнений (СДУ).

Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ

Для одного дифференциального уравнения n – го порядка, задача Коши состоит в нахождении функции, удовлетворяющей равенству:

Численное решение дифференциальных уравнений с граничными условиями

и начальным условиям

Численное решение дифференциальных уравнений с граничными условиями

Перед решением эта задача должна быть переписана в виде следующей СДУ

Численное решение дифференциальных уравнений с граничными условиями(1)

с начальными условиями

Численное решение дифференциальных уравнений с граничными условиями

Модуль имеет две функции ode() и odeint(), предназначенные для решения систем обыкновенных дифференциальных уравнений (ОДУ) первого порядка с начальными условиями в одной точке (задача Коши). Функция ode() более универсальная, а функция odeint() (ODE integrator) имеет более простой интерфейс и хорошо решает большинство задач.

Функция odeint() имеет три обязательных аргумента и много опций. Она имеет следующий формат odeint(func, y0, t[,args=(), . ]) Аргумент func – это имя Python функции двух переменных, первой из которых является список y=[y1,y2. yn], а второй – имя независимой переменной.

Функция func должна возвращать список из n значений функций Численное решение дифференциальных уравнений с граничными условиямипри заданном значении независимого аргумента t. Фактически функция func(y,t) реализует вычисление правых частей системы (1).

Второй аргумент y0 функции odeint() является массивом (или списком) начальных значений Численное решение дифференциальных уравнений с граничными условиямипри t=t0.

Третий аргумент является массивом моментов времени, в которые вы хотите получить решение задачи. При этом первый элемент этого массива рассматривается как t0.

Функция odeint() возвращает массив размера len(t) x len(y0). Функция odeint() имеет много опций, управляющих ее работой. Опции rtol (относительная погрешность) и atol (абсолютная погрешность) определяют погрешность вычислений ei для каждого значения yi по формуле

Численное решение дифференциальных уравнений с граничными условиями

Они могут быть векторами или скалярами. По умолчанию

Численное решение дифференциальных уравнений с граничными условиями

Вторая функция модуля scipy.integrate, которая предназначена для решения дифференциальных уравнений и систем, называется ode(). Она создает объект ОДУ (тип scipy.integrate._ode.ode). Имея ссылку на такой объект, для решения дифференциальных уравнений следует использовать его методы. Аналогично функции odeint(), функция ode(func) предполагает приведение задачи к системе дифференциальных уравнений вида (1) и использовании ее функции правых частей.

Отличие только в том, что функция правых частей func(t,y) первым аргументом принимает независимую переменную, а вторым – список значений искомых функций. Например, следующая последовательность инструкций создает объект ODE, представляющий задачу Коши.

При построении численных алгоритмов будем считать, что решение этой дифференциальной задачи существует, оно единственно и обладает необходимыми свойствами гладкости.

При численном решении задачи Коши

Численное решение дифференциальных уравнений с граничными условиями(2)

Численное решение дифференциальных уравнений с граничными условиями(3)

по известному решению в точке t =0 необходимо найти из уравнения (3) решение при других t. При численном решении задачи (2),(3) будем использовать равномерную, для простоты, сетку по переменной t с шагом т > 0.

Приближенное решение задачи (2), (3) в точке Численное решение дифференциальных уравнений с граничными условиямиобозначим Численное решение дифференциальных уравнений с граничными условиями. Метод сходится в точке Численное решение дифференциальных уравнений с граничными условиямиесли Численное решение дифференциальных уравнений с граничными условиямипри Численное решение дифференциальных уравнений с граничными условиями. Метод имеет р-й порядок точности, если Численное решение дифференциальных уравнений с граничными условиями, р > 0 при Численное решение дифференциальных уравнений с граничными условиями. Простейшая разностная схема для приближенного решения задачи (2),(3) есть

Численное решение дифференциальных уравнений с граничными условиями(4)

При Численное решение дифференциальных уравнений с граничными условиямиимеем явный метод и в этом случае разностная схема аппроксимирует уравнение (2) с первым порядком. Симметричная схема Численное решение дифференциальных уравнений с граничными условиямив (4) имеет второй порядок аппроксимации. Эта схема относится к классу неявных — для определения приближенного решения на новом слое необходимо решать нелинейную задачу.

Явные схемы второго и более высокого порядка аппроксимации удобно строить, ориентируясь на метод предиктор-корректор. На этапе предиктора (предсказания) используется явная схема

Численное решение дифференциальных уравнений с граничными условиями(5)

а на этапе корректора (уточнения) — схема

Численное решение дифференциальных уравнений с граничными условиями

В одношаговых методах Рунге—Кутта идеи предиктора-корректора реализуются наиболее полно. Этот метод записывается в общем виде:

Численное решение дифференциальных уравнений с граничными условиями(6),

Численное решение дифференциальных уравнений с граничными условиями

Формула (6) основана на s вычислениях функции f и называется s-стадийной. Если Численное решение дифференциальных уравнений с граничными условиямипри Численное решение дифференциальных уравнений с граничными условиямиимеем явный метод Рунге—Кутта. Если Численное решение дифференциальных уравнений с граничными условиямипри j>1 и Численное решение дифференциальных уравнений с граничными условиямито Численное решение дифференциальных уравнений с граничными условиямиопределяется неявно из уравнения:

Численное решение дифференциальных уравнений с граничными условиями(7)

О таком методе Рунге—Кутта говорят как о диагонально-неявном. Параметры Численное решение дифференциальных уравнений с граничными условиямиопределяют вариант метода Рунге—Кутта. Используется следующее представление метода (таблица Бутчера)

Численное решение дифференциальных уравнений с граничными условиями

Одним из наиболее распространенных является явный метод Рунге—Кутта четвертого порядка

Численное решение дифференциальных уравнений с граничными условиями(8)

Метод Рунге—Кутта— Фельберга

Привожу значение расчётных коэффициентов Численное решение дифференциальных уравнений с граничными условиямиметода

Численное решение дифференциальных уравнений с граничными условиями(9)

С учётом(9) общее решение имеет вид:

Численное решение дифференциальных уравнений с граничными условиями(10)

Это решение обеспечивает пятый порядок точности, остаётся его адаптировать к Python.

Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения Численное решение дифференциальных уравнений с граничными условиямис использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга

Численное решение дифференциальных уравнений с граничными условиями

Численное решение дифференциальных уравнений с граничными условиями

Численное решение дифференциальных уравнений с граничными условиями

Численное решение дифференциальных уравнений с граничными условиями

Адаптированные к Python методы Рунге—Кутта и Рунге—Кутта— Фельберга имеют меньшую абсолютную, чем решение с применением функции odeint, но большую, чем с использованием функции edu. Необходимо провести исследование быстродействия.

Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга

Сравнительный анализ проведём на примере модельной задачи, приведенной в [2]. Чтобы не повторять источник, приведу постановку и решение модельной задачи из [2].

Решим задачу Коши, описывающую движение тела, брошенного с начальной скоростью v0 под углом α к горизонту в предположении, что сопротивление воздуха пропорционально квадрату скорости. В векторной форме уравнение движения имеет вид

Численное решение дифференциальных уравнений с граничными условиями

где Численное решение дифференциальных уравнений с граничными условиями– радиус вектор движущегося тела, Численное решение дифференциальных уравнений с граничными условиями– вектор скорости тела, Численное решение дифференциальных уравнений с граничными условиями– коэффициент сопротивления, вектор Численное решение дифференциальных уравнений с граничными условиямисилы веса тела массы m, g – ускорение свободного падения.

Численное решение дифференциальных уравнений с граничными условиями

Особенность этой задачи состоит в том, что движение заканчивается в заранее неизвестный момент времени, когда тело падает на землю. Если обозначить Численное решение дифференциальных уравнений с граничными условиями, то в координатной форме мы имеем систему уравнений:

Численное решение дифференциальных уравнений с граничными условиями

К системе следует добавить начальные условия: Численное решение дифференциальных уравнений с граничными условиями(h начальная высота), Численное решение дифференциальных уравнений с граничными условиями. Положим Численное решение дифференциальных уравнений с граничными условиями. Тогда соответствующая система ОДУ 1 – го порядка примет вид:

Численное решение дифференциальных уравнений с граничными условиями

Для модельной задачи положим Численное решение дифференциальных уравнений с граничными условиями. Опуская довольно обширное описание программы, приведу только листинг из комментариев к которому, думаю, будет ясен принцип её работы. В программу добавлен отсчёт времени работы для сравнительного анализа.

Flight time = 1.2316 Distance = 5.9829 Height =1.8542
Flight time = 1.1016 Distance = 4.3830 Height =1.5088
Flight time = 1.0197 Distance = 3.5265 Height =1.2912
Flight time = 0.9068 Distance = 2.5842 Height =1.0240
Время на модельную задачу: 0.454787

Численное решение дифференциальных уравнений с граничными условиями

Для реализации средствами Python численного решения СДУ без использования специальных модулей, мною была предложена и исследована следующая функция:

def increment(f, t, y, tau
k1=tau*f(t,y)
k2=tau*f(t+(1/4)*tau,y+(1/4)*k1)
k3 =tau *f(t+(3/8)*tau,y+(3/32)*k1+(9/32)*k2)
k4=tau*f(t+(12/13)*tau,y+(1932/2197)*k1-(7200/2197)*k2+(7296/2197)*k3)
k5=tau*f(t+tau,y+(439/216)*k1-8*k2+(3680/513)*k3 -(845/4104)*k4)
k6=tau*f(t+(1/2)*tau,y-(8/27)*k1+2*k2-(3544/2565)*k3 +(1859/4104)*k4-(11/40)*k5)
return (16/135)*k1+(6656/12825)*k3+(28561/56430)*k4-(9/50)*k5+(2/55)*k6

Функция increment(f, t, y, tau) обеспечивает пятый порядок численного метода решения. Остальные особенности программы можно посмотреть в следующем листинге:

Время на модельную задачу: 0.259927

Численное решение дифференциальных уравнений с граничными условиями

Предложенная программная реализация модельной задачи без использования специальных модулей имеет почти в двое большее быстродействие, чем с функцией ode, однако нельзя забывать, что ode имеет более высокую точность численного решения и возможности выбора метода решения.

Решение краевой задачи с поточно разделёнными краевыми условиями

Приведем пример некоторой конкретной краевой задачи с поточно разделенными краевыми условиями:

Численное решение дифференциальных уравнений с граничными условиями(11)

Для решения задачи (11) используем следующий алгоритм:

1. Решаем первые три неоднородные уравнения системы (11) с начальными условиями
Численное решение дифференциальных уравнений с граничными условиями
Введем обозначение для решения задачи Коши:
Численное решение дифференциальных уравнений с граничными условиями

2. Решаем первые три однородные уравнения системы (11) с начальными условиями
Численное решение дифференциальных уравнений с граничными условиями
Введем обозначение для решения задачи Коши:
Численное решение дифференциальных уравнений с граничными условиями

3. Решаем первые три однородные уравнения системы (11) с начальными условиями

Численное решение дифференциальных уравнений с граничными условиями

Введем обозначение для решения задачи Коши:

Численное решение дифференциальных уравнений с граничными условиями

4. Общее решение краевой задачи (11) при помощи решений задач Коши записывается в виде линейной комбинации решений:
Численное решение дифференциальных уравнений с граничными условиями
где p2, p3 — некоторые неизвестные параметры.

5. Для определения параметров p2, p3, используем краевые условия последних двух уравнений (11), то есть условия при x = b. Подставляя, получим систему линейных уравнений относительно неизвестных p2, p3:
Численное решение дифференциальных уравнений с граничными условиями(12)
Решая (12), получим соотношения для p2, p3.

По приведенному алгоритму с применением метода Рунге—Кутта—Фельберга получим следующую программу:

y0[0]= 0.0
y1[0]= 1.0
y2[0]= 0.7156448588231397
y3[0]= 1.324566562303714
y0[N-1]= 0.9900000000000007
y1[N-1]= 0.1747719838716767
y2[N-1]= 0.8
y3[N-1]= 0.5000000000000001
Время на модельную задачу: 0.070878

Численное решение дифференциальных уравнений с граничными условиями

Вывод

Разработанная мною программа отличается от приведенной в [3] меньшей погрешностью, что подтверждает приведенный в начале статьи сравнительный анализ функции odeint с реализованным на Python метода Рунге—Кутта—Фельберга.

3. Н.М. Полякова, Е.В. Ширяева Python 3. Создание графического интерфейса пользователя (на примере решения методом пристрелки краевой задачи для линейных обыкновенных дифференциальных уравнений). Ростов-на-Дону 2017.

🔍 Видео

МЗЭ 2022 Численное решение дифференциальных уравнений. Неявный метод Эйлера. Ложкин С.А.Скачать

МЗЭ 2022 Численное решение дифференциальных уравнений.  Неявный метод Эйлера. Ложкин С.А.

Численное решение системы дифференциальных уравнений(задачи Коши)Скачать

Численное решение системы дифференциальных уравнений(задачи Коши)

Решение системы дифференциальных уравнений методом ЭйлераСкачать

Решение системы дифференциальных уравнений методом Эйлера

МЗЭ 2022 Численное решение дифференциальных уравнений Метод Эйлера Ложкин С. А.Скачать

МЗЭ 2022 Численное решение дифференциальных уравнений  Метод Эйлера  Ложкин С. А.

Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

Численное решение дифференциальных уравнений (задачи Коши)Скачать

Численное решение дифференциальных уравнений (задачи Коши)

5 Численное решение дифференциальных уравнений Part 1Скачать

5  Численное решение дифференциальных уравнений Part 1

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Сеточные методы решения дифференциальных уравнений в частных производных.Скачать

Сеточные методы решения дифференциальных уравнений в частных производных.

Python - численное решение дифференциального уравнения 1го порядка и вывод графикаСкачать

Python - численное решение дифференциального уравнения 1го порядка и вывод графика

Лекция 13, Численные методы решения ОДУСкачать

Лекция 13, Численные методы решения ОДУ

5 Численное решение дифференциальных уравнений Part 1Скачать

5  Численное решение дифференциальных уравнений Part 1

01.02. Модель SIR. Численное решение системы дифференциальных уравнений с помощью SciPyСкачать

01.02. Модель SIR. Численное решение системы дифференциальных уравнений с помощью SciPy

Решение физических задач с помощью дифференциальных уравненийСкачать

Решение  физических задач с помощью дифференциальных уравнений

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Частное решение дифференциального уравнения. 11 класс.Скачать

Частное решение дифференциального уравнения. 11 класс.
Поделиться или сохранить к себе:
Численное решение дифференциальных уравнений с граничными условиями