Численное решение дифференциальных уравнений 4 порядка

Метод Рунге — Кутты

Этот онлайн калькулятор реализует классический метод Рунге — Кутты (встречается также название метод Рунге — Кутта) четвертого порядка точности. Метод используется для решения дифференциальных уравнений первой степени с заданным начальным значением

Калькулятор ниже находит численное решение дифференциального уравнения первой степени методом Рунге-Кутты (иногда встречается название метод Рунге-Кутта, а в поисковиках бывает ищут «метод рунге кута», «метод рунги кутта» и даже «метод рунги кута»), который также известен как классический метод Рунге — Кутты (потому что есть на самом деле семейство методов Рунге-Кутты) или метод Рунге — Кутты четвертого порядка.

Для того, чтобы использовать калькулятор, вам надо привести дифференциальное уравнение к форме

и ввести правую часть уравнения f(x,y) в поле y’ калькулятора.

Также вам понадобится ввести начальное значение

и указать точку в которой вы хотите получить численное решение уравнения .

Последнее параметр калькулятора — размер шага с которым вычисляется следующее приближение по графику функции.

Описание метода можно найти под калькулятором.

Содержание
  1. Численное решение математических моделей объектов заданных системами дифференциальных уравнений
  2. Введение:
  3. Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ
  4. Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения с использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга
  5. Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга
  6. Решение краевой задачи с поточно разделёнными краевыми условиями
  7. Вывод
  8. Численное решение дифференциальных уравнений 4 порядка
  9. 🎬 Видео

Видео:Метод ЭйлераСкачать

Метод Эйлера

Численное решение математических моделей объектов заданных системами дифференциальных уравнений

Введение:

При математическом моделировании ряда технических устройств используются системы дифференциальных нелинейных уравнений. Такие модели используются не только в технике, они находят применение в экономике, химии, биологии, медицине, управлении.

Исследование функционирования таких устройств требуют решения указанных систем уравнений. Поскольку основная часть таких уравнений являются нелинейными и нестационарными, часто невозможно получить их аналитическое решение.

Возникает необходимость использовать численные методы, наиболее известным из которых является метод Рунге — Кутты [1]. Что касается Python, то в публикациях по численным методам, например [2,3], данных по применение Рунге — Кутты крайне мало, а по его модификации — методу Рунге-Кутта-Фельберга вообще нет.

В настоящее время, благодаря простому интерфейсу, наибольшее распространение в Python имеет функцию odeint из модуля scipy.integrate. Вторая функция ode из этого модуля реализует несколько методов, в том числе и упомянутый пятиранговый метод Рунге-Кутта-Фельберга, но, вследствие универсальности, имеет ограниченное быстродействие.

Целью настоящей публикации является сравнительный анализ перечисленных средств численного решения систем дифференциальных уравнений с модифицированным автором под Python методом Рунге-Кутта-Фельберга. В публикации так же приведены решения по краевым задачам для систем дифференциальных уравнений (СДУ).

Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ

Для одного дифференциального уравнения n – го порядка, задача Коши состоит в нахождении функции, удовлетворяющей равенству:

Численное решение дифференциальных уравнений 4 порядка

и начальным условиям

Численное решение дифференциальных уравнений 4 порядка

Перед решением эта задача должна быть переписана в виде следующей СДУ

Численное решение дифференциальных уравнений 4 порядка(1)

с начальными условиями

Численное решение дифференциальных уравнений 4 порядка

Модуль имеет две функции ode() и odeint(), предназначенные для решения систем обыкновенных дифференциальных уравнений (ОДУ) первого порядка с начальными условиями в одной точке (задача Коши). Функция ode() более универсальная, а функция odeint() (ODE integrator) имеет более простой интерфейс и хорошо решает большинство задач.

Функция odeint() имеет три обязательных аргумента и много опций. Она имеет следующий формат odeint(func, y0, t[,args=(), . ]) Аргумент func – это имя Python функции двух переменных, первой из которых является список y=[y1,y2. yn], а второй – имя независимой переменной.

Функция func должна возвращать список из n значений функций Численное решение дифференциальных уравнений 4 порядкапри заданном значении независимого аргумента t. Фактически функция func(y,t) реализует вычисление правых частей системы (1).

Второй аргумент y0 функции odeint() является массивом (или списком) начальных значений Численное решение дифференциальных уравнений 4 порядкапри t=t0.

Третий аргумент является массивом моментов времени, в которые вы хотите получить решение задачи. При этом первый элемент этого массива рассматривается как t0.

Функция odeint() возвращает массив размера len(t) x len(y0). Функция odeint() имеет много опций, управляющих ее работой. Опции rtol (относительная погрешность) и atol (абсолютная погрешность) определяют погрешность вычислений ei для каждого значения yi по формуле

Численное решение дифференциальных уравнений 4 порядка

Они могут быть векторами или скалярами. По умолчанию

Численное решение дифференциальных уравнений 4 порядка

Вторая функция модуля scipy.integrate, которая предназначена для решения дифференциальных уравнений и систем, называется ode(). Она создает объект ОДУ (тип scipy.integrate._ode.ode). Имея ссылку на такой объект, для решения дифференциальных уравнений следует использовать его методы. Аналогично функции odeint(), функция ode(func) предполагает приведение задачи к системе дифференциальных уравнений вида (1) и использовании ее функции правых частей.

Отличие только в том, что функция правых частей func(t,y) первым аргументом принимает независимую переменную, а вторым – список значений искомых функций. Например, следующая последовательность инструкций создает объект ODE, представляющий задачу Коши.

При построении численных алгоритмов будем считать, что решение этой дифференциальной задачи существует, оно единственно и обладает необходимыми свойствами гладкости.

При численном решении задачи Коши

Численное решение дифференциальных уравнений 4 порядка(2)

Численное решение дифференциальных уравнений 4 порядка(3)

по известному решению в точке t =0 необходимо найти из уравнения (3) решение при других t. При численном решении задачи (2),(3) будем использовать равномерную, для простоты, сетку по переменной t с шагом т > 0.

Приближенное решение задачи (2), (3) в точке Численное решение дифференциальных уравнений 4 порядкаобозначим Численное решение дифференциальных уравнений 4 порядка. Метод сходится в точке Численное решение дифференциальных уравнений 4 порядкаесли Численное решение дифференциальных уравнений 4 порядкапри Численное решение дифференциальных уравнений 4 порядка. Метод имеет р-й порядок точности, если Численное решение дифференциальных уравнений 4 порядка, р > 0 при Численное решение дифференциальных уравнений 4 порядка. Простейшая разностная схема для приближенного решения задачи (2),(3) есть

Численное решение дифференциальных уравнений 4 порядка(4)

При Численное решение дифференциальных уравнений 4 порядкаимеем явный метод и в этом случае разностная схема аппроксимирует уравнение (2) с первым порядком. Симметричная схема Численное решение дифференциальных уравнений 4 порядкав (4) имеет второй порядок аппроксимации. Эта схема относится к классу неявных — для определения приближенного решения на новом слое необходимо решать нелинейную задачу.

Явные схемы второго и более высокого порядка аппроксимации удобно строить, ориентируясь на метод предиктор-корректор. На этапе предиктора (предсказания) используется явная схема

Численное решение дифференциальных уравнений 4 порядка(5)

а на этапе корректора (уточнения) — схема

Численное решение дифференциальных уравнений 4 порядка

В одношаговых методах Рунге—Кутта идеи предиктора-корректора реализуются наиболее полно. Этот метод записывается в общем виде:

Численное решение дифференциальных уравнений 4 порядка(6),

Численное решение дифференциальных уравнений 4 порядка

Формула (6) основана на s вычислениях функции f и называется s-стадийной. Если Численное решение дифференциальных уравнений 4 порядкапри Численное решение дифференциальных уравнений 4 порядкаимеем явный метод Рунге—Кутта. Если Численное решение дифференциальных уравнений 4 порядкапри j>1 и Численное решение дифференциальных уравнений 4 порядкато Численное решение дифференциальных уравнений 4 порядкаопределяется неявно из уравнения:

Численное решение дифференциальных уравнений 4 порядка(7)

О таком методе Рунге—Кутта говорят как о диагонально-неявном. Параметры Численное решение дифференциальных уравнений 4 порядкаопределяют вариант метода Рунге—Кутта. Используется следующее представление метода (таблица Бутчера)

Численное решение дифференциальных уравнений 4 порядка

Одним из наиболее распространенных является явный метод Рунге—Кутта четвертого порядка

Численное решение дифференциальных уравнений 4 порядка(8)

Метод Рунге—Кутта— Фельберга

Привожу значение расчётных коэффициентов Численное решение дифференциальных уравнений 4 порядкаметода

Численное решение дифференциальных уравнений 4 порядка(9)

С учётом(9) общее решение имеет вид:

Численное решение дифференциальных уравнений 4 порядка(10)

Это решение обеспечивает пятый порядок точности, остаётся его адаптировать к Python.

Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения Численное решение дифференциальных уравнений 4 порядкас использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга

Численное решение дифференциальных уравнений 4 порядка

Численное решение дифференциальных уравнений 4 порядка

Численное решение дифференциальных уравнений 4 порядка

Численное решение дифференциальных уравнений 4 порядка

Адаптированные к Python методы Рунге—Кутта и Рунге—Кутта— Фельберга имеют меньшую абсолютную, чем решение с применением функции odeint, но большую, чем с использованием функции edu. Необходимо провести исследование быстродействия.

Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга

Сравнительный анализ проведём на примере модельной задачи, приведенной в [2]. Чтобы не повторять источник, приведу постановку и решение модельной задачи из [2].

Решим задачу Коши, описывающую движение тела, брошенного с начальной скоростью v0 под углом α к горизонту в предположении, что сопротивление воздуха пропорционально квадрату скорости. В векторной форме уравнение движения имеет вид

Численное решение дифференциальных уравнений 4 порядка

где Численное решение дифференциальных уравнений 4 порядка– радиус вектор движущегося тела, Численное решение дифференциальных уравнений 4 порядка– вектор скорости тела, Численное решение дифференциальных уравнений 4 порядка– коэффициент сопротивления, вектор Численное решение дифференциальных уравнений 4 порядкасилы веса тела массы m, g – ускорение свободного падения.

Численное решение дифференциальных уравнений 4 порядка

Особенность этой задачи состоит в том, что движение заканчивается в заранее неизвестный момент времени, когда тело падает на землю. Если обозначить Численное решение дифференциальных уравнений 4 порядка, то в координатной форме мы имеем систему уравнений:

Численное решение дифференциальных уравнений 4 порядка

К системе следует добавить начальные условия: Численное решение дифференциальных уравнений 4 порядка(h начальная высота), Численное решение дифференциальных уравнений 4 порядка. Положим Численное решение дифференциальных уравнений 4 порядка. Тогда соответствующая система ОДУ 1 – го порядка примет вид:

Численное решение дифференциальных уравнений 4 порядка

Для модельной задачи положим Численное решение дифференциальных уравнений 4 порядка. Опуская довольно обширное описание программы, приведу только листинг из комментариев к которому, думаю, будет ясен принцип её работы. В программу добавлен отсчёт времени работы для сравнительного анализа.

Flight time = 1.2316 Distance = 5.9829 Height =1.8542
Flight time = 1.1016 Distance = 4.3830 Height =1.5088
Flight time = 1.0197 Distance = 3.5265 Height =1.2912
Flight time = 0.9068 Distance = 2.5842 Height =1.0240
Время на модельную задачу: 0.454787

Численное решение дифференциальных уравнений 4 порядка

Для реализации средствами Python численного решения СДУ без использования специальных модулей, мною была предложена и исследована следующая функция:

def increment(f, t, y, tau
k1=tau*f(t,y)
k2=tau*f(t+(1/4)*tau,y+(1/4)*k1)
k3 =tau *f(t+(3/8)*tau,y+(3/32)*k1+(9/32)*k2)
k4=tau*f(t+(12/13)*tau,y+(1932/2197)*k1-(7200/2197)*k2+(7296/2197)*k3)
k5=tau*f(t+tau,y+(439/216)*k1-8*k2+(3680/513)*k3 -(845/4104)*k4)
k6=tau*f(t+(1/2)*tau,y-(8/27)*k1+2*k2-(3544/2565)*k3 +(1859/4104)*k4-(11/40)*k5)
return (16/135)*k1+(6656/12825)*k3+(28561/56430)*k4-(9/50)*k5+(2/55)*k6

Функция increment(f, t, y, tau) обеспечивает пятый порядок численного метода решения. Остальные особенности программы можно посмотреть в следующем листинге:

Время на модельную задачу: 0.259927

Численное решение дифференциальных уравнений 4 порядка

Предложенная программная реализация модельной задачи без использования специальных модулей имеет почти в двое большее быстродействие, чем с функцией ode, однако нельзя забывать, что ode имеет более высокую точность численного решения и возможности выбора метода решения.

Решение краевой задачи с поточно разделёнными краевыми условиями

Приведем пример некоторой конкретной краевой задачи с поточно разделенными краевыми условиями:

Численное решение дифференциальных уравнений 4 порядка(11)

Для решения задачи (11) используем следующий алгоритм:

1. Решаем первые три неоднородные уравнения системы (11) с начальными условиями
Численное решение дифференциальных уравнений 4 порядка
Введем обозначение для решения задачи Коши:
Численное решение дифференциальных уравнений 4 порядка

2. Решаем первые три однородные уравнения системы (11) с начальными условиями
Численное решение дифференциальных уравнений 4 порядка
Введем обозначение для решения задачи Коши:
Численное решение дифференциальных уравнений 4 порядка

3. Решаем первые три однородные уравнения системы (11) с начальными условиями

Численное решение дифференциальных уравнений 4 порядка

Введем обозначение для решения задачи Коши:

Численное решение дифференциальных уравнений 4 порядка

4. Общее решение краевой задачи (11) при помощи решений задач Коши записывается в виде линейной комбинации решений:
Численное решение дифференциальных уравнений 4 порядка
где p2, p3 — некоторые неизвестные параметры.

5. Для определения параметров p2, p3, используем краевые условия последних двух уравнений (11), то есть условия при x = b. Подставляя, получим систему линейных уравнений относительно неизвестных p2, p3:
Численное решение дифференциальных уравнений 4 порядка(12)
Решая (12), получим соотношения для p2, p3.

По приведенному алгоритму с применением метода Рунге—Кутта—Фельберга получим следующую программу:

y0[0]= 0.0
y1[0]= 1.0
y2[0]= 0.7156448588231397
y3[0]= 1.324566562303714
y0[N-1]= 0.9900000000000007
y1[N-1]= 0.1747719838716767
y2[N-1]= 0.8
y3[N-1]= 0.5000000000000001
Время на модельную задачу: 0.070878

Численное решение дифференциальных уравнений 4 порядка

Вывод

Разработанная мною программа отличается от приведенной в [3] меньшей погрешностью, что подтверждает приведенный в начале статьи сравнительный анализ функции odeint с реализованным на Python метода Рунге—Кутта—Фельберга.

3. Н.М. Полякова, Е.В. Ширяева Python 3. Создание графического интерфейса пользователя (на примере решения методом пристрелки краевой задачи для линейных обыкновенных дифференциальных уравнений). Ростов-на-Дону 2017.

Видео:Решение ОДУ методом Рунге-Кутта 4 порядка (программа)Скачать

Решение ОДУ методом Рунге-Кутта 4 порядка (программа)

Численное решение дифференциальных уравнений 4 порядка

Системой дифференциальных уравнений называется система вида

Численное решение дифференциальных уравнений 4 порядка

где x — независимый аргумент,

yi — зависимая функция, Численное решение дифференциальных уравнений 4 порядка,

Функции yi(x), при подстановке которой система уравнений обращается в тождество, называется решением системой дифференциальных уравнений.

Численные методы решения систем дифференциальных уравнений.

Численное решение дифференциальных уравнений 4 порядка

Модифицированный метод Эйлера.

Метод Рунге-Кутта четвертого порядка.

Дифференциальным уравнением второго порядка называется уравнение вида

F(x,y,у’,y»)=0(1)
y»=f(x,y,y’).(2)

Функция y(x), при подстановке которой уравнение обращается в тождество, называется решением дифференциального уравнения.

Численно ищется частное решение уравнения (2), которое удовлетворяет заданным начальным условиям, то есть решается задача Коши.

Для численного решения дифференциальное уравнение второго порядка преобразуется в систему двух дифференциальных уравнений первого порядка и приводится к машинному виду (3). Для этого вводится новая неизвестная функция Численное решение дифференциальных уравнений 4 порядка, слева в каждом уравнении системы оставляют только первые производные неизвестных функций, а в правых частях производных быть не должно

Численное решение дифференциальных уравнений 4 порядка.(3)

Функция f2(x, y1, y) в систему (3) введена формально для того, чтобы методы, которые будут показаны ниже, могли быть использованы для решения произвольной системы дифференциальных уравнений первого порядка. Рассмотрим несколько численных методов решения системы (3). Расчетные зависимости для i+1 шага интегрирования имеют следующий вид. Для решения системы из n уравнений расчетные формулы приведены выше. Для решения системы из двух уравнений расчетные формулы удобно записать без двойных индексов в следующем виде:

Метод Рунге-Кутта четвертого порядка.

где h — шаг интегрирования. Начальные условия при численном интегрировании учитываются на нулевом шаге: i=0, x=x0, y1=y10, y=y0.

Контрольное задание по зачетной работе.

Колебания с одной степенью свободы

Цель. Изучение численных методов решения дифференциальных уравнений второго порядка и систем дифференциальных уравнений первого порядка.

Задание. Численно и аналитически найти:

  1. закон движения материальной точки на пружинке х(t),
  2. закон изменения силы тока I(t) в колебательном контуре (RLC — цепи) для заданных в табл.1,2 режимов. Построить графики искомых функций.

Свободные незатухающие колебания

Затухающее колебательное движение

Предельное апериодическое движение

Вынужденное колебание без сопротивления

Вынужденное колебание без сопротивления, явление резонанса

Вынужденное колебание с линейным сопротивлением

Вынужденное колебание с линейным сопротивлением, явление резонанса

🎬 Видео

Операционное исчисление. Решение дифференциального уравнения четвертого порядка.Скачать

Операционное исчисление. Решение дифференциального уравнения четвертого порядка.

Однородное линейное дифференциальное уравнение. Алгоритм решенияСкачать

Однородное линейное дифференциальное уравнение. Алгоритм решения

Python - численное решение дифференциального уравнения 1го порядка и вывод графикаСкачать

Python - численное решение дифференциального уравнения 1го порядка и вывод графика

Решение системы дифференциальных уравнений методом ЭйлераСкачать

Решение системы дифференциальных уравнений методом Эйлера

Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Численное решение задачи Коши методом ЭйлераСкачать

Численное решение задачи Коши методом Эйлера

6.1 Численные методы решения задачи Коши для ОДУСкачать

6.1 Численные методы решения задачи Коши для ОДУ

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Численное решение системы дифференциальных уравнений(задачи Коши)Скачать

Численное решение системы дифференциальных уравнений(задачи Коши)

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1

Дифференциальные уравнения. Задача Коши. Метод Эйлера.Скачать

Дифференциальные уравнения. Задача Коши. Метод Эйлера.

13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?

Дифференциальное уравнение. Формула ЭйлераСкачать

Дифференциальное уравнение. Формула Эйлера

Дифференциальные уравнения, 4 урок, Линейные дифференциальные уравнения первого порядкаСкачать

Дифференциальные уравнения, 4 урок, Линейные дифференциальные уравнения первого порядка

4. Однородные дифференциальные уравнения (часть 1)Скачать

4. Однородные дифференциальные уравнения (часть 1)

Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентамСкачать

Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентам
Поделиться или сохранить к себе: