Четвертое уравнение максвелла теорема о циркуляции магнитного поля говорит о том что

Содержание
  1. Четвертое уравнение максвелла теорема о циркуляции магнитного поля говорит о том что
  2. Уравнения и история
  3. Следствия из уравнений Максвелла
  4. Решения уравнений Максвелла
  5. Компьютерные программы моделирования электромагнитных полей
  6. Заключение
  7. Уравнения Максвелла
  8. Уравнения Максвелла в дифференциальной форме
  9. Уравнение 1: Закон Гаусса или Теорема Гаусса
  10. Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)
  11. Уравнение 3: Закон Гаусса для магнетизма
  12. Уравнение 4: Закон Ампера
  13. Уравнения Максвелла в интегральной и дифференциальной форме
  14. Уравнение 1: Закон Гаусса (Теорема Гаусса)
  15. Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)
  16. Уравнение 3: Закон Гаусса для магнетизма
  17. Уравнение 4: Закон Ампера
  18. Четвертое уравнение максвелла теорема о циркуляции магнитного поля говорит о том что
  19. Первое уравнение Максвелла
  20. Второе уравнение Максвелла
  21. Третье уравнение Максвелла
  22. Четвертое уравнение Максвелла
  23. 4.1.2. Свойства электромагнитных волн
  24. 4.1.3. Шкала электромагнитных волн
  25. 4.1.4. Световая волна
  26. 4.1.5. Геометрическая оптика
  27. 4.1.6. Преломление в линзе
  28. 4.1.7. Принцип Гюйгенса
  29. 4.1.8. Интерференция световых волн
  30. 4.1.9. Дифракция световых волн
  31. 4.1.10. Поляризация световых волн
  32. 4.1.11. Вращение плоскости поляризации световых волн
  33. 📽️ Видео

Видео:О чем говорят уравнения Максвелла? Видео 1/2Скачать

О чем говорят уравнения Максвелла? Видео 1/2

Четвертое уравнение максвелла теорема о циркуляции магнитного поля говорит о том что

Четвертое уравнение максвелла теорема о циркуляции магнитного поля говорит о том что

Уравнения Джеймса Максвелла (1873 г) описывают любые электромагнитные поля. Но этим их значение не исчерпывается.

Они были одной из отправных точек при создании общей теории относительности Альберта Эйнштейна (отчасти от них попала в формулы теории относительности скорость света). Эйнштейн писал: «Со времени обоснования теоретической физики Ньютоном наибольшее изменение в ее теоретических основах, другими словами, в нашем представлении о структуре реальности, было достигнуто благодаря исследованиям электромагнитных явлений Фарадеем и Максвеллом».

Из-за уравнений Максвелла были открыты радиоволны. Да, именно так: Максвелл создал систему своих уравнений до обнаружения радиоволн. Немало физиков того времени выступили против теории Максвелла (много было недовольных током смещения). Герман фон Гельмгольц придумал свою теорию и поручил экспериментально проверить её своему ученику Генриху Герцу (вообще-то его звали Хайнрих Хертц, но в русскую транскрипцию попало и устоялось неправильное прочтение). Но опыты Герца показали, что Максвелл прав. И Герц вошел в историю как первооткрыватель радиоволн.

Уравнения Максвелла вошли и в квантовую механику, положив начало квантовой электродинамике.

До сих пор нет ни одного факта, ставящего под сомнение уравнения Максвелла. Причем, не только в мире привычных для нас размеров и скоростей, но и в квантовой механике и в теории относительности. Это очень важно. Ведь не секрет, что квантовая механика и теория относительности плохо стыкуются друг с другом. И физики современности прилагают большие усилия, чтобы свести их воедино в общую теорию (теории струн, суперсимметрии, суперструн и т.д.), но пока это не очень получается. А уравнения Максвелла работают и в квантовом микромире и в теории относительности, связывая наши представления о мире.

Казалось бы, при такой значимости понимать уравнения Максвелла должен любой человек, считающий себя образованным. Во всяком случае, тот, кто как-то связан с электромагнитными полями. Но, к сожалению, уравнения Максвелла даже среди профессионалов мало кто знает, а понимает еще меньше.

Почему-то многие при виде уравнений Максвелла впадают в благоговейный ступор, полагая, что без знания высшей математики там делать нечего. Это не так. Для понимания физической сути уравнений Максвелла хватит школьного образования.

Такое понимание необходимо, если вы хотите что-то (например, антенну) придумать или понять сами. Или не хотите быть обманутым очередным «гениальным изобретателем-ниспровергателем» (а таковых в последнее время, увы, развелось немало).

Уравнения и история

1. Первое уравнение Максвелла представляет собой закон Гаусса (да, того самого Карла Гаусса, чьё имя носит колоколообразное распределение случайных величин; в те времена можно было быть и выдающимся математиком и выдающимся физиком одновременно) для электрических полей. Максвелл записал его в дифференциальной форме. В современной записи оно выглядит так (не пугайтесь математики, и не бросайте чтение хотя бы еще несколько абзацев) :

E – векторное электрическое поле (здесь и далее жирным шрифтом выделены векторные величины, а курсивом — скалярные);

∇· – значок оператора дивергенции (потока);

εo = 8,85418782. •10 -12 Ф/м – диэлектрическая постоянная вакуума, измеряется экспериментально по силе притяжения между зарядами.

Первое уравнение говорит об очевидной вещи…

Но перед тем как ее озвучить, давайте разберемся, что такое дивергенция векторной величины. Вы видели водопроводный кран? Ну, тогда вы хорошо знаете, что такое дивергенция. В переводе с латинского это извержение наружу. Иначе говоря, поток. Для водопроводного крана это поток вытекающей воды, который тем больше, чем больше диаметр трубы и напор воды в ней. Если дивергенция больше нуля, то точка является источником, если меньше – стоком. Теперь вы знаете половину нужной векторной математики.

…Но вернемся к первому уравнению Максвелла (оно же – закон Гаусса). Оно говорит том, что поток электрического поля Е через любую замкнутую поверхность зависит от суммарного электрического заряда внутри этой поверхности. Иначе говоря, если из замкнутого бассейна вытекает воды больше, чем в него втекает (то есть суммарный поток из бассейна получается больше нуля), то ясно, что внутри бассейна прячется труба – источник этой самой воды (иначе бы она быстро кончилась).

С электрическим полем то же самое: если есть электрический заряд (труба-источник воды в бассейне), то поле от него будет вытекать наружу во все стороны (вода будет выливаться через края).

3. Третье (нарушим порядок следования для удобства понимания) уравнение Максвелла – это тоже закон Гаусса, записанный в дифференциальной форме. Но для магнитных полей:

B – векторное магнитное поле.

Это уравнение говорит о том, что поток магнитного поля через любую замкнутую поверхность всегда равен нулю. Или, иначе говоря, что одиночных магнитных зарядов в природе не существует. Вот электрически отрицательный электрон и положительный электрически протон есть и могут успешно существовать отдельно друг от друга. А полюса магнита отдельными не бывают. Только вместе. Один такой полюс толкает вперед, другой – тянет назад.

В примере с бассейном это две трубы, разнесенные на какое-то расстояние: сколько по одной втекает, столько по другой и вытекает. Движение воды по кругу у нас есть. Но суммарный поток равен нулю: сколько пришло, столько и ушло. Наружу ничего не вытекает. Точно также как и в потоке магнитного поля через замкнутую поверхность.

2. Второе уравнение Максвелла это закон Фарадея (на всех конденсаторах написано имя Майкла Фарадея) впервые в дифференциальной форме записан Максвеллом в качестве его второго уравнения:

∇× – значок оператора ротора (вихря);

B/∂t – частная производная (изменение) B по времени. Частная в том смысле, что магнитное поле вообще меняется и в пространстве и во времени, но тут нас интересует только его изменение во времени.

Это уравнение говорит, что ротор (интеграл по замкнутому контуру) электрического поля Е равен потоку (т.е. скорости изменения во времени) магнитного поля В сквозь этот контур.

… Тут надо остановиться и разобраться, что такое ротор векторного поля. Вы наблюдали, как вода уходит из ванной в сливное отверстие? Тогда вы этот самый ротор видели: крутящаяся воронка воды вокруг открытой пробки и есть ротор. Точнее говоря, не сама воронка, а сумма (еще точнее –интеграл: ведь любой интеграл это сумма чего-то) векторов угловых скоростей, частиц воды, крутящихся по замкнутому контуру вокруг отверстия пробки. Всё, теперь вы знаете векторную математику на уровне, достаточном для полного понимания Максвелла…

Но вернемся ко второму уравнению Максвелла. Там то же самое, что и в ванне: чем больше и чем быстрее изменяется магнитное поле внутри контура (чем сильнее сосёт воду сливное отверстие), тем сильнее раскручивается вихревое электрическое поле (стекающая вода) вокруг этого контура (отверстия).

На законе Фарадея (т.е. на втором уравнении Максвелла) работают все генераторы электричества: механически вращающийся магнит создает изменяющееся магнитное поле внутри катушки, с которой снимается индуцированный электрический ток.

4. Четвертое уравнение Максвелла. Сначала Максвелл взял закон Андре Ампера (которого он называл «Ньютоном электричества», а мы вспоминаем при каждом измерении тока), связывающий постоянный ток и магнитное поле вокруг него:

с – скорость света (на самом деле мы тут забегаем вперед, говоря, что это скорость света. Ни Ампер, ни Максвелл, когда писали свои уравнения этого еще не знали, и называли с 2 «электромагнитной постоянной»).

Этот закон говорит, что ротор магнитного поля (интеграл от B по замкнутому контуру) равен току, текущему сквозь этот контур. Ну не прямо равен, а с коэффициентом 1/εoc 2 . Иногда этот коэффициент обозначают как μo и называют магнитной постоянной вакуума. Но это делают только для упрощения записи: μo = 1/εoc 2 .

Проще говоря, закон Ампера говорит, что вокруг провода с током возникает кольцевое (ротор же) магнитное поле (школьный опыт с компасом и проводником с током помните?)

Итак, Максвелл собрал все известные на тот момент законы электричества и магнетизма и записал их в виде дифференциальных уравнений.

…Историческое отступление. Максвелл не использовал векторных обозначений и записывал свои уравнения в громоздком компонентном (по трем осям) виде (поэтому у него получилась система из 20-ти скалярных уравнений и с 20-ю же неизвестными). Понятия и символы дивергенции и ротора тогда еще не были придуманы. Кстати, в основном благодаря Максвеллу, стала очевидной важность создания таких комбинаций производных, которые мы сегодня называем ротором и дивергенцией. Эту работу проделали Оливер Хевисайд (который первый применил комплексные числа для анализа электрических цепей), Хайнрих Хертц (ну ладно, пусть он будет Генрих Герц, хотя Хайнрих бы не понял, что это его имя) и Джозайя Гиббс (один из создателей векторного анализа). Они переписали систему уравнений Максвелла в современном виде, упростив ее до 4-х векторных уравнений (против 20-ти скалярных у Максвелла). То есть Максвеллу было намного труднее управляться и анализировать написанные им уравнения. Но он справился…

Первые три (будем считать по современной векторной форме записи, хотя у Максвелла это было не 3, а 15) уравнения (два закона Гаусса и один Фарадея) проблем не обнаружили и были оставлены Максвеллом без изменений (он только переписал их в дифференциальном виде).

А вот в законе Ампера Максвелл заметил странность (и с этого момента начался его путь к современной электродинамике).

Дело в том, что если от закона Ампера взять дивергенцию от обеих частей уравнения, то левая его часть обратится в ноль (математически говоря, дивергенция ротора всегда равна нулю; а если на пальцах: ротор крутится, но наружу из него ничего не вытекает, поэтому поток-дивергенция у ротора отсутствует). Тогда из математики получается, что и правая часть уравнения обязана быть нулевой. А в правой части получается дивергенция (поток) тока, т.е. полный ток через замкнутую поверхность. Но физически очевидно, что такой ток вовсе не обязан быть равным нулю. Ведь ток – это движение зарядов, а они вполне двигаются из одного места в другое.

Получается нестыковка: физика говорит, что ток есть (вставьте внутрь поверхности любой переменный источник зарядов и ток точно будет), а математика говорит, что его быть не может. Следовательно, виновата математика.

Значит, что закон Ампера верен для статичного поля, но не выполняется для изменяющихся полей (операция дивергенции-потока, которую мы вслед за Максвеллом неудачно попытались провести над законом Ампера и есть изменение во времени).

Максвелл заметил это несоответствие, и чтобы избежать его предложил в закон Ампера добавить к току дополнительный член (1/c 2 )·∂E/∂t. Получилось четвертое уравнение Максвелла, называемое теоремой о циркуляции магнитного поля:

Это уравнение отличается от закона Ампера только добавкой (1/c 2 )·∂E/∂t. Добавка эта сделана к току. Следовательно, она описывает какой-то ток. Максвелл назвал его током смещения.

Четвертое уравнение Максвелла говорит о том, что вихревое магнитное поле может быть порождено как током в проводнике, так и изменением электрического поля. Причем, в смысле порождения магнитного поля ток в проводнике ничем не отличается от изменения электрического поля Е в диэлектрике. Поэтому изменение Е во времени называют током смещения.

Ток смещения (добавка Максвелла в 4-е уравнение) бывает только в диэлектрике (просто потому, что в хорошем проводнике электрическое поле отсутствует, а значит и меняться не может). А ток проводимости (правая часть закона Ампера) – только в проводнике (в диэлектрике отсутствуют заряды, способные двигаться, а движение зарядов — это и есть ток проводимости).

Допустим, мы длинными прямыми проводами подключили к генератору переменного тока простейший воздушный конденсатор, состоящий из двух пластин. Понятно, в цепи потечет какой-то ток. Возьмем маленький индикатор переменного магнитного поля и поведем его вдоль провода. Индикатор покажет некую величину магнитного поля: ток проводимости ведь по проводу течет, значит, он обязан создавать вокруг себя магнитное поле.

А теперь, продолжая вести индикатор вдоль проводов, передвинем его дальше, так чтобы он оказался бы напротив, конденсатора (сбоку от пластин). Что покажет индикатор? Ноль (ведь тока проводимости между обкладками конденсатора нет)? Это было бы нелогично: одинаковое магнитное поле вдоль провода, потом вдруг полный ноль между обкладками, а потом (когда пойдем индикатором вдоль второго провода) – снова поле. Интуитивно ясно, что магнитное поле вдоль всей цепи должно быть одинаковым (считая размеры конструкции малыми, чтобы пренебречь излучением).

Так и есть на практике. Но магнитное поле около конденсатора создает не ток, а меняющее по времени электрическое поле между его обкладками, которое Максвелл назвал током смещения.

Именно это и описывает дополнительный член в 4-м уравнении Максвелла. А его величина выбрана так, чтобы в ситуации данного примера магнитное поле везде (и около провода, около конденсатора) получалось бы одинаковым.

Следствия из уравнений Максвелла

Может сложиться впечатление, что добавка (1/c 2 )·∂E/∂t в четвертое уравнение Максвелла – это лишь небольшая математическая коррекция закона Ампера, чтобы на переменных полях из уравнения получать то, что имеем из физики.

Да, пока мы рассматриваем только одно четвертое уравнение, ничего особенно интересного не появляется (кроме того факта, что переменное электрическое поле порождает вокруг себя магнитное поле точно так же, как и электрический ток в проводе).

Но если рассмотреть всю систему уравнений Максвелла целиком, то оказывается, что эта небольшая добавка в 4-е уравнение приносит много важного.

1. Из совместного изучения второго и четвертого уравнений (точнее, добавки к 4-му уравнению) Максвелла следует, что электромагнитное поле сохраняет само себя и не может исчезнуть.

Допустим, мы имеем магнитное поле, а затем выключаем его. То есть, меняем его скачком. По закону Фарадея за счет изменения магнитного поля вокруг него (то есть чуть дальше) появляется электрическое поле. Причем тоже изменяющееся (т.к. его прародитель – магнитное поле было изменяющимся). По добавке Максвелла в 4-е уравнение это электрическое поле создаст вокруг себя (то есть еще дальше от исходного) новое магнитное поле (также изменяющееся). И так до бесконечности: магнитное и электрическое поле, перекачиваясь одно в другое, распространяются в пространстве до бесконечности. Узнали в этом описании радиоволну?

2. Из системы уравнений Максвелла вытекает, что распространяющееся в пространстве электромагнитное поле может делать это только со скоростью света с (давайте я опущу математический вывод этого факта, а то читатель еще наверное не пришел в себя от роторов и дивергенций).

Этот факт произвел революцию в физике. Ведь когда Максвелл писал свои уравнения, еще не было известно, что коэффициент с – это скорость света (мы её сразу назвали так, потому что знали ответ, но Максвелл-то его вначале не знал). Тогда это была просто некая константа. Точнее говоря, «электромагнитной константой» называли величину с 2 , получая её из экспериментов со светом никак не связанных.

… Отступление о том, как измеряли эту самую «электромагнитную константу». Измеряя силу притяжения между двумя единичными (причём, неважно, что считать единицей, их величина потом сокращается в дроби) зарядами можно экспериментально получить электрическую постоянную вакуума εo = 8,85418782. •10 -12 Ф/м. Магнитную постоянную вакуума μo = 1/εoc 2 из закона Ампера можно экспериментально определить, измеряя силы притяжения между двумя единичными токами (движение тех же единичных зарядов). Она равна μo = 1,25663706. •10 -6 Гн/м. Взяв обратную величину от произведения этих величин, получим c 2 = 1/εoμo «электромагнитную постоянную».

Таким образом, прямо из экспериментов с зарядами и токами нашли значение константы c 2 . А из уравнений Максвелла оказалось, что электромагнитное поле обязано распространяться со скоростью c. Когда Максвелл впервые проделал это вычисление по своим уравнениям, оказалось что полученная цифра (

3·10 8 м/с) очень близка к скорости света (эту скорость астрономы измерили до Максвелла по запаздыванию затмений спутников Юпитера).

Максвелл отметил это совпадение: «Мы едва ли можем избежать заключения, что свет это волнообразное движение той же самой среды, которая вызывает электрические и магнитные явления». Это революционное обобщение. До Максвелла свет рассматривался как область физики, совершенно отдельная от электричества и магнетизма. После Максвелла свет стал электромагнитными колебаниями и появились электромагнитные волны.

. Отступление о цифрах. Взяв квадратный корень из 1/εoμo получим точную скорость света c = 2,99792458·10 8 м/с. Кстати, это абсолютно точное значение. В отличие от других физических констант, которые имеют бесконечный хвост цифр за запятой, скорость света равна точно 299 792 458 м/с. Фокус тут не в какой-то сверхъестественной точности измерений, а том, что с 1983 года 1 метр в международной системе единиц (СИ) определён, как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299792458 секунды. То есть человечество подогнало свой метр под физическую константу c.

Квадратный корень из отношения μoo дает волновое сопротивление вакуума W = 376,730031 Ом. Возникает большой соблазн записать эту цифру как 120π, но увы это не точно: 120π = 376,991184. Так что число π (которое имеет бесконечное число цифр после запятой) не связано напрямую с электромагнетизмом.

Решения уравнений Максвелла

Решать мы их не будем. Это сложно. Тем более что решения зависят от начальных и граничных условий (расположения в пространстве токов и зарядов, поверхностей). Поэтому решать уравнения Максвелла надо заново для каждой задачи (например, расчета конкретной антенны в заданном окружении). И занимаются этим, в основном моделирующие компьютерные программы.

Здесь мы рассмотрим только готовое решение для электромагнитной волны в свободном пространстве.

Из этого решения вытекает положение векторов электрического и магнитного поля относительно направления движения электромагнитной волны:

  • В перпендикулярно направлению распространения.
  • E также перпендикулярно направлению распространения.
  • В и Е перпендикулярны между собой.

В нашем трехмерном мире это возможно, только если B, Е и направление движения волны расположены по трем координатным осям. На следующей анимации показана электромагнитная волна в свободном пространстве: Четвертое уравнение максвелла теорема о циркуляции магнитного поля говорит о том что

Являющееся решением системы уравнений Максвелла трехмерное волновое уравнение по E для свободного пространства выглядит так:

Это очень интересное уравнение.

Во-первых, в нём явно видна равнозначность между пространственными координатами и временем: x, y, z и t стоят в одном ряду и в одном и том же виде (множитель c 2 перед временем говорит лишь о том, что у координат и времени разная размерность и этот множитель лишь приводит ее к одной: скорость умножить на время получаются метры). И эта идентичность расположения x, y, z и t говорит о том, что для электромагнитной волны наш мир четырехмерен, время является точно такой же полноправной координатой, как и x, y, z.

Во-вторых, в трехмерном волновом уравнении x, y, z и t стоят в квадрате. Что говорит от четырехмерной симметрии нашего мира (квадрат величины не зависит от ее знака: плюс или минус). Поэтому знаки координат x, y, z, и знак времени t можно менять на противоположные без изменения уравнения.

Решением этого трехмерного волнового уравнения является любая функция (волна), движущаяся в пространстве со скоростью c. Но из-за того, что в этом уравнении c встречается только в виде квадрата, изменение знака скорости c на противоположный ничего не меняет. Поэтому общим математическим решением волнового уравнения является сумма (наложение) двух волн со скоростью света одновременно бегущих в противоположные стороны.

И тут мы делаем следующий шаг: утверждаем (без математического доказательства, просто из опыта), что электромагнитные волны, создаваемые источником, всегда бегут только от него. Согласитесь, с точки зрения здравого смысла было бы очень странно, если бы еще до включения источника некая волна зародилась где-то очень далеко и успела бы прибыть к источнику именно в тот момент, когда мы надумали его включить. Решение уравнений Максвелла дает обеим волнам равные права. И мы сами на опыте устанавливаем добавочное (отсутствующее в уравнениях Максвелла) правило, что физический смысл имеет только одна из этих волн. Та, которая уходит от источника.

Из-за этого добавочного правила мы теряем симметрию по времени, которая есть в уравнениях Максвелла.

Кстати говоря, математиками внимательно исследовалась такая электродинамика, которая обходится без этого дополнительного правила и имеет две волны. Как ни странно, результаты таких исследований во многих случаях не являются физически абсурдными (а иногда они имеют явный физический смысл, например, прямая и обратная волна в длинных линиях). Но в физическую гипотезу такая электродинамика так и не превратилась, оставшись математическим экспериментом. Хотя возможность обратного движения по времени (т.е. его симметрии) так привлекательна, но… Так что мы пользуемся электродинамикой, в которой пространство симметрично, а время – нет (то есть волны всегда уходят от источника).

Компьютерные программы моделирования электромагнитных полей

Если источник точечный (бесконечно малый), то понятно, что волны, расходящиеся от него, в свободном пространстве будут сферическими. То есть одинаковыми по всем трем пространственным координатам. В таких условиях решение трехмерного волнового уравнения получается довольно простым: поле убывает обратно пропорционально расстоянию.

Но точечных источников не бывает. Реально они все протяженные. Как быть? Это просто: представим протяженный источник как сумму большого числа точечных источников (а для каждого из них мы поле считать уже умеем). А потом просуммируем все поля от всех точечных источников. Точнее проинтегрируем (интеграл это ведь сумма) по всему объему.

Получим два интегральных уравнения: интегральное уравнение электрического поля: electric-field integral equation (EFIE) и интегральное уравнение магнитного поля magnetic Field Integral Equation (MFIE).

Исходными данными для этих уравнений является геометрия рассчитываемого источника поля (антенны, например) и распределение токов в пространстве.

Два свойства EFIE делают его незаменимым для расчета антенн:

    EFIE позволяет решать задачи излучения и рассеяния в неограниченной области (граница которой находится в бесконечности). Иными словами: можно рассчитывать излучающую антенну (ее поле и уходит в бесконечность).

    EFIE может быть решено численными методами, в частности, методом моментов.

    Для расчета полей в ограниченной области (например резонатор, волновод, и т.п.) лучше подходит MFIE.

    Компьютерные программы моделирования антенн (например, MMANA-GAL, GAL-ANA) работают, решая уравнение электрического поля EFIE для каждой конкретной антенны.

    Заключение

    Вот система уравнений Максвелла во всей красе:

    ∇·E = ρ/εoЗакон Гаусса для E
    ∇×E = – B/∂tЗакон Фарадея
    ∇·B = 0Закон Гаусса для В
    ∇×B = j/εoc 2 + (1/c 2 )·∂E/∂tТеорема о циркуляции В

    Она описывает абсолютно все электромагнитные явления. И вы ее теперь понимаете (во всяком случае, я на это надеюсь).

    Видео:Билет №16 "Теорема о циркуляции и теорема Гаусса для магнитного поля"Скачать

    Билет №16 "Теорема о циркуляции и теорема Гаусса для магнитного поля"

    Уравнения Максвелла

    Уравнения Максвелла — это 4 уравнения, которые описывают, как электрические и магнитные поля распространяются и взаимодействуют; т.е. эти уравнения (правила или даже законы) описывают процессы/взаимодействия электромагнетизма.

    Эти правила описывают, как проходит управление поведением электрических и магнитных полей. Уравнения Максвелла показывают, что электрический заряд (положительный и отрицательный):

    1. Порождает электрическое поле (также если заряд изменяется со временем, то он вызывает появление электрического поля).
    2. В дальнейшем он вызывает появление магнитного поля.

    Видео:Билеты №32, 33 "Уравнения Максвелла"Скачать

    Билеты №32, 33 "Уравнения Максвелла"

    Уравнения Максвелла в дифференциальной форме

    Уравнение 1: Закон Гаусса или Теорема Гаусса

    Дивергенция электрического поля равняется плотности заряда. Существует вязь между электрическим полем и электрическим зарядом.

    Дивергенция в физике показывает, насколько данная точка пространства является источником или потребителем потока поля.

    Очень кратко: Электрические поля расходятся от электрических зарядов: электрический заряд создаёт поле вокруг себя и, таким образом, действует как источник электрических полей. Это можно сравнить с краном, который является источником воды.

    Ещё закон Гаусса говорит о том, что отрицательные заряды действуют как сток для электрических полей (способ, как вода стекает через отверстие стока). Это означает, что линии электрического поля имеют начало и поглощаются при электрическом заряде.

    Заряды с одинаковым знаком отталкиваются друг от друга, а противоположные заряды притягиваются друг к другу (если есть два положительных заряда, они будут отталкиваться; а если есть один отрицательный и один положительный, они будут притягиваться друг к другу).

    Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

    Можно создать электрическое поле, изменив магнитное поле.

    Очень кратко: Закон Фарадея гласит, что изменяющееся магнитное поле внутри контура вызывает индуцированный ток, который возникает из-за силы или напряжения внутри контура. Это значит:

    1. Электрический ток порождает магнитные поля, а эти магнитные поля (вокруг цепи) вызывают электрический ток.
    2. Изменяющееся во времени магнитное поле вызывает распространение электрического поля.
    3. Циркулирующее во времени электрическое поле вызывает изменение магнитного поля во времени.

    Уравнение 3: Закон Гаусса для магнетизма

    Дивергенция магнитного потока любой замкнутой поверхности равна нулю. Магнитного монополя не существует.

    Закон Гаусса для магнетизма утверждает (очень кратко):

    1. Магнитных монополей не существует.
    2. Расхождение полей B или H всегда равно нулю в любом объёме.
    3. На расстоянии от магнитных диполей (это круговой ток) магнитные поля текут по замкнутому контуру.

    Уравнение 4: Закон Ампера

    Магнитное поле создаётся с помощью тока или изменяющегося электрического поля.

    Очень кратко: Электрический ток порождает магнитное поле вокруг тока. Изменяющийся во времени электрический поток порождает магнитное поле.

    Видео:Уравнения Максвелла Лекция 10-1Скачать

    Уравнения Максвелла Лекция 10-1

    Уравнения Максвелла в интегральной и дифференциальной форме

    Вспомним сначала в дифференциальной форме и следом будет в интегральной форме.

    Уравнение 1: Закон Гаусса (Теорема Гаусса)

    Это же уравнение в интегральной форме:

    Поток вектора электрической индукции D через любую замкнутую поверхность равняется сумме свободных зарядов, охваченных этой поверхностью. Электрическое поле создаётся нескомпенсированными электрическими зарядами (это те, что создают вокруг себя своё собственное электрическое поле).

    Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

    И это же уравнение в интегральной форме:

    Циркуляция вектора напряжённости Е вихревого электрического поля (по любому замкнутому контуру) равняется скорости изменения магнитного потока через площадь контура (S) с противоположным знаком.

    Уравнение 3: Закон Гаусса для магнетизма

    И это же уравнение в интегральной форме:

    Силовые линии магнитного поля замкнуты, т.к. поток вектора индукции В магнитного поля через любую замкнутую поверхность равняется нулю.

    Уравнение 4: Закон Ампера

    И это же уравнение в интегральной форме:

    Циркуляция вектора напряжённости Н магнитного поля по замкнутому контуру равняется алгебраической сумме токов, которые пронизывают этот контур. Магнитное поле создаётся не только током проводимости, но и переменным электрическим полем.

    Видео:Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.Скачать

    Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.

    Четвертое уравнение максвелла теорема о циркуляции магнитного поля говорит о том что

    Теория Д.К. Максвелла лежит в основе объяснения существования и свойств любых электромагнитных волн, таких, как световые волны, радиоволны, инфракрасное и ультрафиолетовое излучения. Эта теория является феноменологической, т.е. в ней не рассматриваются молекулярное строение среды и внутренний механизм процессов, происходящих в среде под действием электрического и магнитного полей. Электрические и магнитные свойства среды характеризуются относительной диэлектрической проницаемостью ε, относительной магнитной проницаемостью m и удельной электрической проводимостью σ. Предполагается, что эти параметры среды определяются из эксперимента.

    Теория Максвелла — макроскопическая. Это означает, что рассматриваются макроскопические поля зарядов и токов, пространственные размеры которых неизмеримо больше размеров отдельных молекул и атомов.

    Математическим выражением теории Максвелла служит система из четырех уравнений, которые записывают в двух формах — дифференциальной и интегральной.

    Дифференциальные уравнения Максвелла получаются из интегральных с помощью двух теорем векторного анализа: теоремы Остроградского-Гаусса и теоремы Стокса.

    Рассмотрим теорему Остроградского-Гаусса .

    Пусть для характеристики какого-либо поля выбран вектор . Тогда поток вектора через произвольную замкнутую поверхность S, мысленно проведенную в этом поле, равен интегралу от дивергенции вектора , взятому по объему V, ограниченному замкнутой поверхностью S:

    (4.1.1)

    Операция дивергенции над произвольным вектором сводится к пространственной производной вида:

    (4.1.2)

    где ax, ay, az — проекции вектора на оси прямоугольной декартовой системы координат.

    Рассмотрим теорему Стокса .

    Пусть для характеристики какого-либо поля выбран вектор . Тогда циркуляция вектора вдоль произвольного замкнутого контура L, мысленно проведенного в этом поле, равна потоку вектора rot через поверхность S, ограниченную замкнутым контуром L:

    (4.1.3)

    Векторная операция rot в декартовых координатах выражается так:

    (4.1.4)

    Первое уравнение Максвелла

    Это уравнение представляет собой обобщение закона электромагнитной индукции Фарадея:

    (4.1.5)

    Однако для произвольного контура выполняется взаимосвязь:

    (4.1.6)

    Поскольку в общем случае , то для не изменяющегося во времени контура имеет место соотношение:

    (4.1.7)

    Сравнивая (4.1.5) и (4.1.7) с учетом (4.1.6), для произвольного контура L, мысленно проведенного в переменном магнитном поле, можно записать:

    (4.1.8)

    Используя теорему Стокса, преобразуем (4.1.5):

    (4.1.9)

    Сравнивая подинтегральные выражения в (4.1.7) и в правой части (4.1.9), получим окончательно первое уравнение Максвелла в дифференциальной форме:

    (4.1.10)

    Физический смысл этого уравнения: переменное магнитное поле индуцирует вихревое электрическое поле.

    Второе уравнение Максвелла

    Используем теорему Гаусса для диэлектриков:

    (4.1.11)

    где — вектор электрической индукции, — вектор поляризации диэлектрика.

    Продифференцируем (4.1.11) по времени:

    (4.1.12)

    Если поверхность S — неподвижна и не деформируется, то изменение во времени потока вектора электрической индукции может быть связано только с изменением по времени самого вектора электрической индукции:

    (4.1.13)

    Правая часть этой формулы имеет размерность тока, следовательно, величина имеет размерность плотности тока. Максвелл предложил назвать эту величину плотностью тока смещения :

    (4.1.14)

    Введя представление о токе смещения, Максвелл по-новому подошел к рассмотрению условия замкнутости цепей электрического тока. Как известно, цепи постоянного тока должны быть замкнутыми. Однако для цепей переменного тока это условие уже не является обязательным. Например, при зарядке и разрядке конденсатора постоянный электрический ток протекает по проводнику, соединяющему обкладки, но не проходит через диэлектрик, находящийся между обкладками. Следовательно, цепь не замкнута. Однако, с точки зрения Максвелла, для переменного тока такая цепь замыкается благодаря току смещения, который протекает через такой участок, где нет проводника, т.е. через диэлектрик. На таком участке благодаря наличию переменного тока смещения обязательно возникает переменное магнитное поле. Однако действие тока смещения, приводящее к возникновению магнитного поля, нельзя отделить от действия обычного тока проводимости. Например, для прямолинейного тока проводимости можно записать:

    (4.1.15)

    Линии магнитного поля направлены по касательным к концентрическим окружностям, окружающим проводник с током. Найдем циркуляцию магнитного поля по замкнутому контуру в виде окружности радиуса r:

    (4.1.16)

    Следовательно, магнитное поле прямолинейного проводника — вихревое (циркуляция вектора магнитного поля по замкнутому контуру не равна нулю).

    Максвелл предположил, что в правой части соотношения (4.1.16) следует добавить ток смещения:

    (4.1.17)

    где ток смещения легко вычислить, используя (4.1.14):

    (4.1.18)

    Силу тока проводимости можно также представить в виде:

    (4.1.19)

    Согласно теореме Стокса для магнитного поля, имеем:

    (4.1.20)

    Подставляя (4.1.18) и (4.1.19) в (4.1.17) и сравнивая подинтегральные выражения в правой и левой частях, получаем второе уравнение Максвелла:

    (4.1.21)

    При отсутствии тока проводимости, тем не менее, может существовать переменное магнитное поле, обусловленное только током смещения:

    (4.1.22)

    Третье уравнение Максвелла

    Максвелл обобщил теорему Гаусса для диэлектриков (4.1.11), предположив, что она справедлива для любого электрического поля, как стационарного, так и переменного. Запишем уравнение (4.1.11) в виде:

    (4.1.23)

    где ρсвоб — объемная плотность свободных зарядов, расположенных в объеме V, ограниченном замкнутой поверхностью S.

    Тогда, используя теорему Остроградского-Гаусса для вектора электрической индукции, получим:

    (4.1.24)

    Сравнивая подинтегральные выражения в (4.1.23) и (4.1.24), получим третье уравнение Максвелла:

    (4.1.25)

    Четвертое уравнение Максвелла

    Поскольку поток вектора магнитной индукции равен нулю:

    (4.1.26)

    то, используя теорему Остроградского-Гаусса для вектора магнитной индукции, легко получить четвертое уравнение Максвелла:

    (4.1.27)

    Такое равенство определяется отсутствием магнитных зарядов.

    Итак, полная система уравнений Максвелла в дифференциальной форме включает в себя четыре дифференциальных уравнения:

    (4.1.28)

    Эту систему необходимо дополнить материальными уравнениями , которые характеризуют электрические, и магнитные свойства конкретных сред (веществ).

    В случае изотропных несегнетоэлектрических и неферромагнитных сред и макроскопических токов, подчиняющихся закону Ома, эти уравнения в системе СИ имеют вид:

    (4.1.29)

    где ε0 и μ0 — электрическая и магнитная постоянные, ε и μ — относительная диэлектрическая и магнитная проницаемости среды, σ — удельная электропроводность вещества.

    4.1.2. Свойства электромагнитных волн

    Электромагнитной волной называется распространяющееся в пространстве с определенной скоростью электромагнитное поле. Как следует из уравнений Максвелла, переменное электрическое поле непременно порождает переменное магнитное поле, которое затем индуктирует переменное электрическое поле. Поэтому следует говорить о неразрывной связи переменных электрического и магнитного полей, называя это явление электромагнитным полем . Очевидно, что такой процесс должен происходить, циклически повторяясь, в течение неограниченного времени, если нет поглощения.

    Существование электромагнитных волн непосредственно следует их уравнений Максвелла. Для области пространства, не содержащей свободных электрических зарядов и макроскопических токов, эти уравнения приобретают вид:

    (4.1.30)

    Используя материальные уравнения (4.1.29), эти уравнения можно представить в виде:

    (4.1.31)

    Если записать эти уравнения в проекциях на оси декартовой системы координат, то получим:

    (4.1.33)
    (4.1.34)

    Используя первое из уравнений (4.1.33), можно получить:

    (4.1.35)

    Следовательно, компонента Ех удовлетворяет волновому уравнению:

    (4.1.36)

    Если ввести обозначение для дифференциальной операции:

    (4.1.37)

    то волновое уравнение (4.1.37) можно представить в компактном виде:

    (4.1.38)

    Аналогичные уравнения могут быть получены и для всех других компонент электрического и магнитного полей. Суммируя результаты, окончательно можно представить волновые уравнения для электрического и магнитного полей в векторном виде:

    (4.1.39)

    Таким образом, переменное электромагнитное поле распространяется в среде в виде волн, фазовая скорость которых равна:

    (4.1.40)

    где

    (4.1.41)

    есть скорость электромагнитной волны в вакууме.

    Оказалось, что с = 3·10 8 м/с, что совпадает со скоростью света в вакууме. Поэтому Максвелл задолго до экспериментального обнаружения электромагнитных волн (Г. Герц, 1888 г.) высказал гипотезу о том, что свет — это тоже электромагнитная волна.

    Прямой проверкой можно показать, что решениями уравнений (4.1.39) служат плоские синусоидальные волны, которые удобно представить в форме Эйлера:

    (4.1.42)

    где ω — циклическая частота; — волновой вектор, перпендикулярный фронту плоской волны и задающий направление распространения волны; — радиус-вектор, задающий точки пространства.

    Операция ротора может быть сведена к векторному произведению, например:

    (4.1.43)

    Тогда, используя решения (4.1.42), с помощью (4.1.43) имеем:

    (4.1.44)

    следовательно, применение этой операции сводится к векторному произведению.

    Рассмотрим сейчас операцию:

    (4.1.45)

    Наконец, операцию дивергенции можно представить так:

    (4.1.46)

    Применяя результаты (4.1.44), (4.1.45) и (4.1.46) к уравнениям Максвелла (4.1.31), имеем:

    или, окончательно:

    (4.1.47)

    Из двух последних уравнений (4.1.47) следует, что , что указывает на поперечность электромагнитной волны. Из первого уравнения (4.1.47) ясно, что вектор Н как результат векторного произведения, должен быть перпендикулярен плоскости, в которой лежат вектора и . Аналогично, из второго уравнения (4.1.47) следует, что вектор электрического поля должен быть перпендикулярен плоскости, в которой лежат вектора и . Окончательно получается, что для любой электромагнитной волны вектора , и составляют тройку ортогональных векторов (Рис. 4.1.1).

    4.1.3. Шкала электромагнитных волн

    В зависимости от частоты ν = ω/2π или длины волны в вакууме λ0 = с/ν, а также способа излучения и регистрации различают несколько видов электромагнитных волн:

    • радиоволны;
    • оптическое излучение;
    • рентгеновское излучение;
    • гамма-излучение.

    Радиволнами называются электромагнитные волны, у которых длина волны в вакууме λ0 > 5·10 -5 м (ν 12 Гц). Весь диапазон радиоволн принято делить на 9 поддиапазонов (Табл. 4.1.1).

    Типы радиоволн

    Название диапазона радиоволнДлина волны, мЧастота, Гц
    СверхдлинныеБолее 10 4Менее 3·10 4
    Длинные10 4 ÷ 10 33·10 4 ÷ 3·10 5
    Средние10 3 ÷ 10 23·10 5 ÷ 3·10 6
    Короткие10 2 ÷ 103·10 6 ÷ 3·10 7
    Метровые10 ÷ 13·10 7 ÷ 3·10 8
    Дециметровые1 ÷ 0,13·10 8 ÷ 3·10 9
    Сантиметровые0,1 ÷ 0,013·10 9 ÷ 3·10 10
    Миллиметровые10 -2 ÷ 10 -33·10 10 ÷ 3·10 11
    Субмиллиметровые10 -3 ÷ 5·10 -53·10 11 ÷ 6·10 12

    Оптическим излучением или светом называются электромагнитные волны, у которых длина волны в вакууме лежит в диапазоне 10 нм >λ0 > 1 мм (границы условны). К оптическому излучению относят инфракрасное, видимое и ультрафиолетовое излучения.

    Инфракрасным (ИК) называются электромагнитные волны, испускаемые нагретыми телами, у которых длина волны в вакууме лежит в диапазоне 1 мм > λ0 > 770 нм.

    Видимым излучением (светом) называются электромагнитные волны, у которых длины волны в вакууме лежат в диапазоне 770 нм > λ0 > 380 нм. Свет способен вызывать зрительные ощущения в человеческом глазе.

    Ультрафиолетовым излучением (УФ) называются электромагнитные волны, у которых длины волны в вакууме лежат в диапазоне 380 нм > λ0 > 10 нм.

    Рентгеновским излучением (рентгеновскими лучами) называются электромагнитные волны, которые возникают при взаимодействии заряженных частиц и фотонов с атомами вещества. Оно характеризуется длинами волны в вакууме в диапазоне с условными границами (10-100 нм) > λ0 > (0,01-1 пм).

    Гамма-излучением (γ-лучами) называются электромагнитные волны с длинами волны в вакууме 0,1 нм > λ0. Это излучение испускается возбужденными атомными ядрами при радиоактивных превращениях и ядерных реакциях, а также возникает при распаде частиц, аннигиляции пар «частица-античастица» и других процессах.

    4.1.4. Световая волна

    Свет представляет собой сложное явление: в одних случаях он ведет себя как электромагнитная волна, в других — как поток особых частиц (фотонов).

    В электромагнитной волне колеблются векторы электрического и магнитного полей. Как показывает опыт, физиологическое, фотохимическое, фотоэлектрическое и другие действия света вызываются наличием колебаний электрического вектора, который называют в этом случае световым вектором . Его изменения в пространстве и времени задаются уравнением плоской волны:

    (4.1.48)

    Здесь r — расстояние, отсчитываемое вдоль направления распространения волны.

    Отношение скорости световой волны в вакууме с к ее фазовой скорости v в некоторой прозрачной среде называется абсолютным показателем преломления этой среды:

    (4.1.49)

    Показатель преломления связан с относительными диэлектрической и магнитной проницаемостями соотношением:

    (4.1.50)

    Для подавляющего большинства прозрачных веществ величина μ &#8776 1. Поэтому можно считать, что выполняется:

    (4.1.51)

    Значения показателя преломления характеризуют оптическую плотность среды. Среда с большим n будет более оптически плотной.

    Длины волн видимого света в вакууме заключены в пределах:

    (4.1.52)

    В веществе длины волн будут другими. В случае колебаний с частотой ν длина волны света в вакууме равна:

    (4.1.53)

    Используя соотношение (4.1.49), имеем для длины света в веществе формулу:

    (4.1.54)

    Частоты видимого света лежат в пределах:

    (4.1.55)

    Модуль среднего по времени потока энергии, переносимого волной, называется интенсивностью света I в данной точке пространства. Интенсивность пропорциональна квадрату амплитуды волны:

    I ∼ A 2(4.1.56)

    Световая волна, как и другие электромагнитные волны, является поперечной, т.е. направления колебаний электрического и магнитного векторов перпендикулярны к направлению ее распространения. В естественном свете присутствуют все направления колебаний электрического и магнитного векторов. Если в волне присутствуют колебания электрического вектора только в одной плоскости (а магнитного вектора в перпендикулярной плоскости), такую волну называют плоскополяризованной (линейно поляризованной) . Есть и более сложные случаи поляризации волн — круговая и эллиптическая. В случае круговой поляризации электрический и магнитный векторы вращаются по кругу с частотой изменения волны.

    4.1.5. Геометрическая оптика

    Длины воспринимаемых глазом световых волн очень малы (∼10 -7 м), поэтому распространение видимого света в первом приближении можно рассматривать, отвлекаясь от его волновой природы и полагая, что свет распространяется вдоль некоторых прямых линий, называемых лучами. В предельном случае, когда длина волны света λ→0, законы оптики можно сформулировать на языке геометрии.

    Основу геометрической оптики составляют 4 закона:

    1. закон прямолинейного распространения света;
    2. закон независимости световых лучей;
    3. закон отражения света;
    4. закон преломления света.

    Закон прямолинейного распространения света утверждает, что в однородной среде свет распространяется прямолинейно . Этот закон является приближенным: при прохождении света через очень малые отверстия, размеры которых сравнимы с диной волны света, наблюдается отклонение от прямолинейности, тем большее, чем меньше отверстие.

    Закон независимости световых лучей утверждает, что лучи при пересечении не возмущают друг друга . Это означает, что пересечение лучей не мешает каждому из них распространяться независимо друг от друга. Этот закон справедлив при не слишком больших интенсивностях световых волн.

    В основу геометрической оптики был положен принцип Ферма : свет распространяется по такому пути, для прохождения которого ему требуется минимальное время .

    Пусть для прохождения участка ds свету требуется время dt = ds/v, где v — скорость света в данной точке среды. Поскольку v = c/n, то получим:

    (4.1.57)

    Следовательно, время τ, необходимое для прохождения пути от точки 1 до точки 2 (Рис. 4.1.2), равно:

    (4.1.58)

    Рис. 4.1.2. К принципу Ферма

    Имеющая размерность длины величина

    (4.1.59)

    называется оптической длиной пути . В однородной среде оптическая длина пути равна произведению геометрической длины пути на показатель преломления:

    (4.1.60)

    Следовательно,

    (4.1.61)

    Пропорциональность времени прохождения оптической длине пути дает возможность сформулировать принцип Ферма так: свет распространяется по такому пути, оптическая длина которого минимальна.

    Из принципа Ферма вытекает обратимость световых лучей. Действительно, оптический путь, который минимален при движении света из точки 1 в точку 2, окажется минимальным и в случае распространения света в обратном направлении.

    Получим с помощью принципа Ферма законы отражения и преломления света. Пусть свет попадает из точки А в точку В, отразившись от поверхности MN (Рис. 4.1.3).

    Рис. 4.1.3. Закон отражения света как следствие принципа Ферма

    Прямой путь из А в В прегражден экраном Э. Среда, в которой распространяется луч, однородна, поэтому минимальность оптической длины пути сводится к минимальности геометрической длины пути. Геометрическая длина произвольно взятого пути равна АО’B = A’O’B, поскольку вспомогательная точка A’ является зеркальным отражением точки А, и АО’ = A’O’. Из Рис. 4.1.3 видно, что наименьшей длиной обладает путь луча, отразившегося в точке О, для которой угол отражения равен углу падения. При удалении точки O’ от точки О геометрическая длина пути неограниченно возрастает, что противоречит принципу Ферма. Этот результат можно записать так:

    (4.1.62)

    Соотношение (4.1.62) выражает закон отражения света : отраженный луч лежит в одной плоскости с падающим лучом и нормалью, восстановленной в точке падения; угол отражения равен углу падения.

    Найдем точку, в которой должен преломиться луч, распространяясь от А к В, чтобы оптическая длина пути была минимальной (Рис. 4.1.4).

    Рис. 4.1.4. К расчету закона преломления света из принципа Ферма

    Для произвольного луча оптическая длина пути равна:

    (4.1.63)

    Чтобы найти минимальное значение оптической длины пути, продифференцируем L по х и приравняем производную к нулю:

    (4.1.64)

    Множители при n1 и n2 равны, соответственно, sinθ и sinθ». Поэтому получаем соотношение:

    (4.1.65)

    которое выражает закон преломления света. Используя взаимосвязь показателей преломления с фазовыми скоростями распространения света в средах, можно записать соотношение (4.1.65) в виде:

    (4.1.66)

    Следовательно, закон преломления света гласит: преломленный луч лежит в одной плоскости с падающим лучом и нормалью; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных веществ.

    В (4.1.66) n12 — относительный показатель преломления второго вещества по отношению к первому. Из (4.1.65) видно, что при переходе света из оптически более плотной среды в оптически менее плотную луч удаляется от нормали к поверхности раздела сред. Увеличение угла падения сопровождается более быстрым ростом угла преломления, и при достижении некоторого предельного угла падения угол преломления будет равным 90°:

    (4.1.67)

    Отсюда:

    (4.1.68)

    При углах падения, лежащих в пределах от θпред пред до 90°, преломленной волны не существует, вся энергия падающей волны переходит в энергию отраженной волны. Это явление называется полным внутренним отражением.

    Показатели преломления некоторых веществ при λ=0,589 мкм

    ВеществоПоказатель
    преломления
    ВеществоПоказатель
    преломления
    Воздух1,0003Стекло (крон)1,515
    Вода1,333Стекло (флинт)1,752
    Спирт (этиловый)1,362Алмаз2,420

    Во многих оптических приборах для преломления света используются стеклянные призмы. На Рис. 4.1.5 показан ход луча монохроматического света в призме.

    Рис. 4.1.5. Ход лучей в призме

    После двукратного преломления луч оказывается отклоненным от первоначального положения на угол δ ( угол отклонения ). Угол θ, заключенный между преломляющими гранями, называется преломляющим углом . Угол δ зависит от преломляющего угла θ и показателя преломления призмы. Эта зависимость может быть легко показана для призмы с малым преломляющим углом θ (тонкой призмы) в случае малого угла падения α. Исходя из закона преломления и принимая значение показателя преломления воздуха равным единице, можно записать:

    (4.1.69)

    При малых углах α и θ углы α1, γ и γ1 также малы. Поэтому вместо (4.1.69) можно приближенно записать:

    (4.1.70)

    Из четырехугольника BQDE, в котором углы при В и D — прямые, найдем, что угол BED равен 180° — θ. Тогда из четырехугольника BСDE находим:

    (4.1.71)

    Отсюда

    (4.1.72)

    Угол δ из треугольника BED равен:

    (4.1.73)

    Подставляя в (4.1.72) результаты (4.1.73) и (4.1.70), получим окончательно:

    (4.1.74)

    4.1.6. Преломление в линзе

    В практических применениях большое значение имеет преломление света на сферической границе раздела двух сред. Основная деталь оптических приборов — линза — обычно представляет собой стеклянное тело, ограниченное с двух сторон сферическими поверхностями. В частном случае одна из поверхностей линзы может быть плоской. Такую поверхность можно рассматривать как сферическую с бесконечно большим радиусом кривизны.

    Линзы могут быть изготовлены не только из стекла, а из любого прозрачного вещества с показателем преломления, превышающим единицу, например, из кварца, каменной соли, пластмасс и других материалов. Поверхности линз могут быть и более сложной формы — цилиндрические, параболические и т.д.

    Рассмотрим линзу, ограниченную двумя сферическими преломляющими поверхностями PO1Q и PO2Q (Рис. 4.1.6).

    Рис. 4.1.6. Тонкая линза

    Центр первой преломляющей поверхности PO1Q лежит в точке С1, центр второй поверхности PO2Q — в точке С2. Будем считать, что расстояние O1O2 мало по сравнению с O1С1 или O2С2. В таком случае точки O1 и O2 можно считать практически совпадающими с точкой О — оптического центра линзы. Всякая прямая, проходящая через оптический центр, называется оптической осью линзы. Та из осей, которая проходит через центры обеих преломляющих поверхностей, называется главной оптической осью , остальные — побочными осями .

    Луч, идущий по какой-либо оптической оси, проходя через тонкую линзу, не меняет своего направления. Лучи, идущие параллельно главной оптической оси, после преломления в линзе пересекаются в одной точке F, расположенной на главной оптической оси и называемой главным фокусом .

    Покажем, что лучи, исходящие под небольшими углами α из некоторой точки А, лежащей на главной оптической оси, собираются линзой в одну точку А1, расположенную также на этой оптической оси и называемую изображением точки А (Рис. 4.1.7).

    Рис. 4.1.7. Преломление в тонкой линзе

    Построим плоскости, касательные к поверхностям линзы в точках М и N (в местах падения луча на линзу и его выхода из линзы), и проведем в эти точки радиусы R1 и R2 кривизны поверхностей линзы. Тогда луч AMNA1 можно рассматривать как луч, преломленный в тонкой призме с преломляющим углом θ. Учитывая малость углов α, β, α1, β1 и толщины линзы, можно записать:


    (4.1.75)

    где а и b — расстояния от источника света А и от его изображения А1 до оптического центра линзы.

    Из треугольников АНА1 и ВЕВ1 следует, что:

    (4.1.76)

    Принимая во внимание формулы (4.1.75), получим:

    (4.1.77)

    Учтено, что для тонкой линзы h1 ≈ h2 ≈ h. Поскольку, согласно формуле (4.1.74) для тонкой призмы выполняется: θ = (n-1)δ, то, с помощью (4.1.77) имеем формулу линзы :

    (4.1.78)

    В эту формулу не входит величина h, что означает, что расстояние b не зависит от от положения точки М. Следовательно, все лучи, исходящие из точки А, соберутся после преломления разными частями линзы в одной точке А1 .

    Если точка А находится бесконечно далеко от линзы (а = ∞), т.е. если лучи падают на линзу параллельно главной оптической оси, то, согласно формуле (4.1.78), имеем:

    (4.1.79)

    Величина b = f называется фокусным расстоянием линзы :

    (4.1.80)

    Фокусом линзы называется точка, в которой после преломления собираются все лучи, падающие на линзу параллельно главной оптической оси.

    Принимая во внимание (4.1.80), формулу линзы (4.1.78) можно сейчас переписать так:

    (4.1.81)

    Величина, обратная фокусному расстоянию, называется оптической силой линзы :

    (4.1.82)

    Оптическая сила выражается в диоптриях (дп). 1 дп — оптическая сила линзы с фокусным расстоянием в 1 м.

    4.1.7. Принцип Гюйгенса

    В приближении геометрической оптики свет за преградой не должен проникать в область геометрической тени. В действительности световая волна распространяется во всем пространстве за преградой, проникая проникать в область геометрической тени, причем это проникновение будет тем более существенным, чем меньше размеры отверстия. При диаметре отверстия или ширине щели, сравнимых с длиной волны, приближение геометрической оптики становится совершенно неприменимым.

    Качественно поведение света за преградой с отверстием может быть объяснено с помощью принципа Гюйгенса . Согласно принципу Гюйгенса каждая точка, до которой доходит волновое движение, служит центром вторичных волн; огибающая этих волн дает положение фронта волны в следующий момент времени. Пусть на плоскую преграду с отверстием падает параллельный ей фронт волны (Рис. 4.1.8).

    Рис. 4.1.8. К принципу Гюйгенса

    Согласно Гюйгенсу, каждая точка выделяемого отверстием участка волнового фронта служит центром вторичных волн, которые в однородной и изотропной среде будут сферическими. Построив огибающую вторичных волн, можно убедиться в том, что за отверстием волна проникает в область геометрической тени, огибая края преграды.

    4.1.8. Интерференция световых волн

    Если в среде распространяются одновременно несколько электромагнитных волн, то волны просто накладываются друг на друга, не возмущая одна другую. Это утверждение, подкрепленное опытом, называется принципом суперпозиции.

    В случае, когда колебания электрического и магнитного векторов в каждой из волн происходят так, что между соответственными векторами в разных волнах имеется постоянный во времени и в пространстве фазовый сдвиг, такие волны называются когерентными . Очевидно, что условие когерентности может существовать лишь для волн, которые имеют одинаковые частоты и, соответственно, длины волны.

    При сложении когерентных волн возникает явление интерференции , заключающееся в том, что электромагнитные волны в одних точках пространства усиливают, а в других ослабляют друг друга.

    Пусть две волны одинаковой частоты, распространяющиеся в одном направлении, возбуждают в некоторой точке пространства колебания:

    (4.1.83)

    Эти векторы можно представить как вращающиеся с частотой ω вокруг общего начала коор-динат. Поскольку сдвиг фаз различен, в какой-либо момент времени эти вектора займут различные положения (Рис. 4.1.9).

    Рис. 4.1.9. К расчету интерференции волн

    Используя теорему косинусов, получим амплитуду результирующего колебания:

    (4.1.84)

    Если сдвиг фаз между когерентными колебаниями равен нулю (волны — в фазе), то амплитуда результирующей волны максимальна и равна A = A1 + A2. Пусть амплитуды этих волн равны. В этом случае имеем амплитуду результирующей волны:

    (4.1.85)

    Если сдвиг фаз между когерентными колебаниями равен ±π (волны — в противофазе), то амплитуда результирующей волны минимальна и равна A = A1 — A2. Если амплитуды этих волн равны, то в этом случае они гасят друг друга:

    (4.1.86)

    Когерентные световые волны можно получить, разделив, например, с помощью зеркал волну, излучаемую одним источником, на две. Если заставить эти волны пройти разные пути, а затем наложить их друг на друга, будет наблюдаться интерференция. Пусть такое разделение происходит в точке О (Рис. 4.1.10).

    Рис. 4.1.10. Образование когерентных волн

    До точки Р первая волна пройдет в среде с показателем преломления n1 путь S1, вторая волна пройдет в среде с показателем преломления n2 путь S2. Если в точке О фаза колебания была равна ωt, то первая волна возбудит в точке Р колебание

    (4.1.87)

    а вторая волна — колебание

    (4.1.88)

    поскольку фазовые скорости волн в средах равны, соответственно: . Следовательно, разность фаз волн в точке Р будет равна:

    (4.1.89)

    Поскольку выполняется:

    (4.1.90)

    то, подставляя (4.1.90) в (4.1.8), для сдвига фаз имеем выражение:

    (4.1.91)

    где

    (4.1.92)

    есть величина, называемая оптической разностью хода и равная разности оптических длин проходимых волнами путей в средах с различными показателями преломления.

    Из (4.1.91) следует, что если оптическая разность хода равна целому числу длин волн в вакууме:

    (4.1.93)

    то разность фаз оказывается кратной 2π, и колебания, возбуждаемые в точке Р обеими волнами, будут происходить в фазе. Следовательно, (4.1.93) является условием интерференционного максимума.

    Если Δ равна полуцелому числу длин волн в вакууме:

    (4.1.94)

    то разность фаз оказывается равной δ = ±(2m + 1)π, и колебания, возбуждаемые в точке Р обеими волнами, будут происходить в противофазе. Следовательно, (4.1.94) является условием интерференционного минимума.

    4.1.9. Дифракция световых волн

    Дифракцией называется совокупность явлений, связанных с отклонениями от законов геометрической оптики. В частности, вследствие дифракции происходит огибание световыми волнами препятствий и проникновение света в область геометрической тени.

    Между интерференцией и дифракцией нет существенного физического различия.

    Свет, идущий от небольшого яркого источника через круглое отверстие (Рис. 4.1.11) должен по правилам геометрической оптики дать на экране резко ограниченный светлый кружок на темном фоне.

    Рис. 4.1.11. Дифракция от круглого отверстия

    Такая картина наблюдается при обычных условиях опыта. Но если расстояние от отверстия до экрана в несколько тысяч раз превосходит размеры отверстия, то образуется более сложная картина, которая состоит из совокупности светлых и темных концентрических колец.

    Интересный случай дифракции осуществляется с помощью дифракционной решетки, которая представляет собой пластинку, на поверхности которой чередуются узкие параллельные прозрачные и непрозрачные полоски. Сумму ширины прозрачной и непрозрачной полосок называют периодом решетки. Пусть на решетку падает монохроматический свет с длиной волны λ (Рис. 4.1.12). Фронт волны параллелен плоскости решетки.

    Рис. 4.1.12. Дифракционная решетка

    Разности хода лучей, идущих от соответствующих точек отверстий, например от правых краев (точки А, А1, А2, . ), или от левых краев (точки В, В1, В2, . ) имеют одно и то же значение:

    Для того, чтобы все пучки усиливали друг друга, необходимо, чтобы разность хода равнялась целому числу длин волн:

    (4.1.95)

    где m — целое число.

    Это условие позволяет определить те значения углов φ и соответствующие направления, в которых будут наблюдаться максимумы света длины волны λ.

    Для данной длины волны может наблюдаться несколько максимумов. Направление, соответствующее m = 0, есть φ = 0. Это — направление первоначального пучка. Соответствущий максимум носит название максимума нулевого порядка. При m = 1 имеем: sinφ1 = λ/d, при m = –1 имеем: sinφ’1 = –λ/d, т.е. имеется два максимума первого порядка, расположенных симметрично по обеим сторонам от нулевого максимума. Аналогично располагаются максимумы второго, третьего и т.д. порядков.

    Отсюда следует, что для волн разной длины λ положения максимумов нулевого порядка совпадают , а положения максимумов первого, второго и т.д. порядков различны: чем больше λ, тем больше соответствующие углы.

    Если на решетку падает белый свет, то в плоскости экрана получается ряд цветных изображений щели. На месте нулевого максимума будет изображение щели в белом свете, а по обе стороны от него развернутся цветные полосы от фиолетового к красному концу.

    Чем больше общий размер решетки, т.е. чем больше полосок она содержит, тем выше ее качество: увеличение числа полосок увеличивает количество пропускаемого решеткой света (максимумы становятся ярче), и улучшает разрешение близких волн (максимумы становятся резче).

    Зная период дифракционной решетки, ее можно использовать для определения длины световой волны, измерив величину угла φ, определяющего положение максимума данного порядка. В этом случае имеем:

    (4.1.96)

    Измерение длины световой волны с помощью дифракционной решетки принадлежит к числу наиболее точных методов.

    4.1.10. Поляризация световых волн

    Поляризованным называется свет, в котором направления колебаний электрического и магнитного векторов упорядочены каким-либо образом. В естественном свете колебания происходят в различных направлениях, быстро и беспорядочно сменяя друг друга.

    Различают свет эллиптически поляризованный, поляризованный по кругу, плоскополяризованный. В случае эллиптической или круговой поляризаций электрический и магнитный векторы вращаются в пространстве с частотой, равной частоте волны, причем концы этих векторов описывают либо эллипс, либо круг. Вращение может происходить как по, так и против часовой стрелки. Если вектор вращается в пространстве как правый винт, то поляризацию называют правой, и левой — если вектор вращается в пространстве как левый винт.

    Важный частный случай — плоская поляризация. В этом случае вектор электрического поля колеблется в плоскости, проходящей через направление распространения волны и этот вектор. Такую плоскость называют плоскостью колебаний . Вектор магнитного поля колеблется в плоскости, также проходящей через направление распространения волны и этот вектор, но данная плоскость — плоскость поляризации — составляет с плоскостью колебаний прямой угол (Рис. 4.1.13).

    Рис. 4.1.13. Структура плоскополяризованной световой волны

    Плоскополяризованный свет можно получить из естественного с помощью устройств, которые называются поляризаторами . Эти устройства свободно пропускают волны с колебаниями, плоскость которых совпадает с плоскостью пропускания поляризатора, и задерживают все другие волны.

    Пусть на поляризатор падает плоскополяризованный свет амплитуды А0 и интенсивности I0. Сквозь устройство пройдет составляющая колебания с амплитудой А|| = А0cosφ, где угол φ — угол между плоскостью колебаний падающего света и плоскостью пропускания поляризатора (Рис. 4.1.14).

    Рис. 4.1.14. Прохождение плоскополяризованного света через поляризатор

    Следовательно, интенсивность прошедшего света определяется выражением:

    (4.1.97)

    Это соотношение носит название закона Малюса.

    Пусть на пути естественного луча стоят два поляризатора, плоскости пропускания которых составляют угол φ. Из первого поляризатора выйдет плоскополяризованный свет, интенсивность которого I0 составит половину интенсивности естественного неполяризованного света Iест. Используя закон Малюса, получаем:

    (4.1.98)

    Максимальная интенсивность получается при φ = 0 (плоскости пропускания поляризаторов параллельны). При φ = 90° интенсивность равна нулю — скрещенные поляризаторы не пропускают свет.

    4.1.11. Вращение плоскости
    поляризации световых волн

    Некоторые вещества, называемые оптически активными, обладают способностью вызывать вращение плоскости поляризации проходящего через них плоскополяризованного света. К числу таких веществ относятся кристаллы кварц, киноварь и др, некоторые жидкости (скипидар, никотин), растворы оптически активных веществ в оптически неактивных растворителях (водные растворы сахара, винной кислоты и др.)

    Угол поворота плоскости поляризации в твердых веществах пропорционален пути l, пройденному лучом в кристалле:

    (4.1.99)

    где α — постоянная оптического вращения, различная для разных веществ.

    В растворах угол поворота плоскости поляризации пропорционален пути l, пройденному светом в растворе и концентрации с активного вещества:

    (4.1.100)

    Здесь [α] — удельная постоянная вращения.

    В зависимости от направления вращения вещества подразделяются на право- и левовращающие. Существуют правый и левый кварц, правый и левый сахар и т.д. Молекулы или кристаллы одной модификации являются зеркальным отражением молекул или кристаллов другой модификации.

    Если между двумя скрещенными поляризаторами поместить оптически активное вещество, то поле зрения просветляется. Чтобы снова затемнить его, надо повернуть один из поляризаторов на угол, определяемый соотношениями (4.1.99) или (4.11.100). Таким методом можно измерить концентрацию активного вещества в растворе, в частности, концентрацию сахара.

    © ФГОУ ВПО Красноярский государственный аграрный университет, 2015

    📽️ Видео

    Билеты №18 и 19 "Теорема о циркуляции магнитного поля. Граничные условия"Скачать

    Билеты №18 и 19 "Теорема о циркуляции магнитного поля. Граничные условия"

    ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений МаксвеллаСкачать

    ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений  Максвелла

    Теорема о циркуляции вектора магнитной индукции. Магнитный поток.Скачать

    Теорема о циркуляции вектора магнитной индукции. Магнитный поток.

    Лекция №9. Уравнения МаксвеллаСкачать

    Лекция №9. Уравнения Максвелла

    Доказательство теоремы о циркуляции вектора В - Дополнение-1 к лекции 7Скачать

    Доказательство теоремы о циркуляции вектора В - Дополнение-1 к лекции 7

    3 14 Уравнения МаксвеллаСкачать

    3 14  Уравнения Максвелла

    Лекция 2.3. Теорема о циркуляцииСкачать

    Лекция 2.3. Теорема о циркуляции

    53. Теорема о циркуляции вектора индукцииСкачать

    53. Теорема о циркуляции вектора индукции

    Чирцов А.С. "Бессильные линии". Уравнения Максвелла. Электромагнитные волны. Оператор. Производная.Скачать

    Чирцов А.С. "Бессильные линии". Уравнения Максвелла. Электромагнитные волны. Оператор. Производная.

    Урок 383. Вихревое электрическое поле. Ток смещенияСкачать

    Урок 383. Вихревое электрическое поле. Ток смещения

    Теорема о циркуляции вектора Н.МагнетикСкачать

    Теорема о циркуляции вектора Н.Магнетик

    Вывод уравнений МаксвеллаСкачать

    Вывод уравнений Максвелла

    теорема о циркуляцииСкачать

    теорема о циркуляции

    Лекция 15: Магнитное поле. Закон полного тока или теорема о циркуляции магнитного поля.Скачать

    Лекция 15:  Магнитное поле. Закон полного тока или теорема о циркуляции магнитного поля.

    Лекция №19 "Уравнения Максвелла"Скачать

    Лекция №19 "Уравнения Максвелла"
    Поделиться или сохранить к себе: