Чему равен икс в уравнении на примере

Решение простых линейных уравнений

Чему равен икс в уравнении на примере

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Чему равен икс в уравнении на примере

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Чему равен икс в уравнении на примере

Видео:РЕШАЕМ УРАВНЕНИЕ х – 173 = 600 – 270. Примеры | МАТЕМАТИКА 4 классСкачать

РЕШАЕМ УРАВНЕНИЕ х – 173 = 600 – 270. Примеры | МАТЕМАТИКА 4 класс

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить: Чему равен икс в уравнении на примере

  1. Чему равен икс в уравнении на примере
  2. 3(3х — 4) = 4 · 7х + 24
  3. 9х — 12 = 28х + 24
  4. 9х — 28х = 24 + 12
  5. -19х = 36
  6. х = 36 : (-19)
  7. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Что такое корень уравнения

Корнем уравнения называют число, подстановка которого в уравнение вместо переменной (обычно (x)), дает одинаковые значения выражений справа и слева от знака равно.

Решая, например, уравнение (2x+1=x+4) находим ответ: (x=3). Если подставить тройку вместо икса, получатся одинаковые значения слева и справа:

И никакое другое число, кроме тройки такого равенства нам не даст. Значит, число (3) – единственный корень уравнения.

Еще раз: корень – это НЕ ИКС! Икс – это переменная , а корень – это число , которое превращает уравнение в верное равенство (в примере выше – тройка). И при решении уравнений мы это неизвестное число (или числа) ищем.

Пример : Является ли (5) корнем уравнения (x^-2x-15=0)?
Решение : Подставим (5) вместо икса:

По обе стороны от равно — одинаковые значения (ноль), значит 5 действительно корень.

Матхак : на контрольных таким способом можно проверить верно ли вы нашли корни.

Пример : Какое из чисел (0, pm1, pm2), является корнем для (2x^+15x+22=0)?
Решение : Проверим подстановкой каждое из чисел:

проверяем (0):(2cdot0^+15cdot0+22=0)
(0+0+22=0)
(22=0) — не сошлось, значит (0) не подходит
проверяем (1):(2cdot1^+15cdot1+22=0)
(2+15+22=0)
(39=0) — опять не сошлось, то есть и (1) не корень
проверяем (-1):(2cdot(-1)^+15cdot(-1)+22=0)
(2-15+22=0)
(9=0) — снова равенство неверное, (-1) тоже мимо
проверяем (2):(2cdot2^+15cdot2+22=0)
(2cdot4+30+22=0)
(60=0) — и вновь не то, (2) также не подходит
проверяем (-2):(2cdot(-2)^+15cdot(-2)+22=0)
(2cdot4-30+22=0)
(0=0) — сошлось, значит (-2) — корень уравнения

Очевидно, что решать уравнения перебором всех возможных значений – безумие, ведь чисел бесконечно много. Потому были разработаны специальные методы нахождения корней. Так, например, для линейных уравнений достаточно одних только равносильных преобразований , для квадратных – уже используются формулы дискриминанта и т.д. Каждому типу уравнений – свой метод.

Видео:Как найти Х в уравнении с дробью. Уравнений с дробями. Как решить дробное уравнение. Пропорция.Скачать

Как найти Х в уравнении с дробью. Уравнений с дробями. Как решить дробное уравнение. Пропорция.

Ответы на часто задаваемые вопросы

Вопрос: Может ли корень уравнения быть равен нулю?
Ответ: Да, конечно. Например, уравнение (3x=0) имеет единственный корень — ноль. Можете проверить подстановкой.

Вопрос: Когда в уравнении нет корней?
Ответ: В уравнении может не быть корней, если нет таких значений для икса, которые сделают уравнение верным равенством. Яркий примером тут может быть уравнение (0cdot x=5). Это уравнение не имеет корней, так как значение икса здесь не играет роли (из-за умножения на ноль) — все равно левая часть будет всегда равна нулю. А ноль не равен пятерке. Значит, корней нет.

Вопрос: Что значит «найдите меньший корень уравнения»?
Ответ: Это значит, что нужно решить уравнение, и в ответ указать его меньший корень. Например, уравнение (x^2-5x-6=0) имеет два корня: (x_1=-1) и (x_2=6). Меньший из корней: (-1). Вот его и надо будет записать в ответ. Если бы спрашивали про больший корень, то надо было бы записать (6).

Видео:Простые уравнения. Как решать простые уравнения?Скачать

Простые уравнения. Как решать простые уравнения?

Как объяснить уравнения с х (икс) школьнику в 4 классе?

Автор: Творческая Анна

Недавно звонит мама школьника, с которым я занимаюсь и просит объяснить математику ребёнку, т.к он не понимает, а она не него кричит и разговор с сыном не выходит.

У меня не математический склад ума, творческим людям это не свойственно, но я сказала, что посмотрю что они проходят и попробую. И вот что получилось.

Я взяла лист бумаги формата А4, обычный белый, фломастеры, карандаш в руки и начала выделять, то что стоит понять, запомнить, обратить внимание. И чтобы было видно, куда эта цифра переходит и как меняется.

Чему равен икс в уравнении на примере

Объяснение примеров с левой стороны, на правую сторону.

Видео:РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать

РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ  2 КЛАСС МАТЕМАТИКА

Пример № 1

Пример уравнения для 4 класса со знаком плюс.

Самым первым действием смотрим, что мы можем сделать в этом уравнении? Тут мы можем выполнить умножение. Умножаем 80*7 получаем 560. Переписываем ещё раз.

Х + 320 = 560 (выделила цифры зеленым маркером).

Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.

Х = 560 – 320. Минус ставим потому что при переносе числа, знак что перед ним меняется на противоположный. Выполняем вычитание.

Х = 240 Обязательно делаем проверку. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.

Проверка:

240 + 320 = 80*7 Складываем числа, с другой стороны умножаем.

Всё верно! Значит мы решили уравнение правильно!

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Пример № 2

Пример уравнения для 4 класса со знаком минус.

Первым действием смотрим, что мы можем сделать в этом уравнении? В данном примере мы можем разделить. Производим деление 240 разделить на 3 получаем 80. Переписываем уравнение ещё раз.

Х – 180 = 80 (выделила цифры зеленым маркером).

Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.

Х = 80 + 180 Знак плюс ставим потому что при переносе числа, знак что был перед цифрой меняется на противоположный. Считаем.

Х = 260 Выполняем проверочную работу. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.

Проверка:

Видео:Чему равен х? Найди ошибкуСкачать

Чему равен х? Найди ошибку

Пример № 3

Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.

400 – х = 275 + 25 Складываем числа.

400 – х = 300 Числа разделены знаком равенства, х является отрицательным. Чтобы сделать его положительным, нам нужно перенести его через знак равно, собираем числа в одной стороне, х в другой.

400 — 300 = х Цифра 300 была положительной, при переносе в другую сторону поменяла знак и стал минус. Считаем.

Т.к не принято так писать, а первым в уравнении должен быть х, просто меняем их местами.

Проверка:

400 – 100 = 275 + 25 Считаем.

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Пример № 4

Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.

72 – х = 18 * 3 Выполняем умножение. Переписываем пример.

72 – х = 54 Выстраиваем числа в одну сторону, х в другую. Цифра 54 меняет знак на противоположный, т.к перепрыгивает через знак равно.

72 – 54 = х Считаем.

18 = х Меняем местами, для удобства.

Проверка:

Видео:УРАВНЕНИЕ 4 КЛАСС МАТЕМАТИКА УЧИМСЯ РЕШАТЬ УРАВНЕНИЯ МЕТОДИКА ОБУЧЕНИЯ РЕШАЕМ УРАВНЕНИЯ #уравнениеСкачать

УРАВНЕНИЕ  4 КЛАСС МАТЕМАТИКА УЧИМСЯ РЕШАТЬ УРАВНЕНИЯ МЕТОДИКА ОБУЧЕНИЯ  РЕШАЕМ УРАВНЕНИЯ #уравнение

Пример № 5

Пример уравнения с х с вычитанием и сложением для 4 класса.

Х – 290 = 470 + 230 Складываем.

Х – 290 = 700 Выставляем числа с одной стороны.

Х = 700 + 290 Считаем.

Проверка:

990 – 290 = 470 + 230 Выполняем сложение.

Видео:Решение уравнений - математика 6 классСкачать

Решение уравнений - математика 6 класс

Пример № 6

Пример уравнения с х на умножение и деление для 4 класса.

15 * х = 630/70 Выполняем деление. Переписываем уравнение.

15 * х = 90 Это тоже самое, что 15х = 90 Оставляем х с одной стороны, числа с другой. Данное уравнение принимает следующий вид.

Х = 90/15 при переносе цифры 15 знак умножения меняется на деление. Считаем.

Проверка:

15*6 = 630 / 7 Выполняем умножение и вычитание.

Видео:РЕШЕНИЕ УРАВНЕНИЙ ЛЕГКО ! 1 КЛАСС МАТЕМАТИКА УРАВНЕНИЯ - ПЕТЕРСОН / ОБЪЯСНЕНИЕ КАК РЕШАТЬ УРАВНЕНИЯСкачать

РЕШЕНИЕ УРАВНЕНИЙ ЛЕГКО ! 1 КЛАСС МАТЕМАТИКА УРАВНЕНИЯ - ПЕТЕРСОН / ОБЪЯСНЕНИЕ КАК РЕШАТЬ УРАВНЕНИЯ

Теперь озвучиваем основные правила:

  1. Умножаем, складываем, делим или вычитаем;

Выполняем то, что можно сделать, уравнение станет немного короче.

Х в одну сторону, цифры в другую.

Неизвестную переменную в одну сторону (не всегда это х, может быть и другая буква), числа в другую.

При переносе х или цифры через знак равенства, их знак меняется на противоположный.

Если было число положительным, то при переносе перед цифрой ставим знак минус. И наоборот, если число или х было со знаком минус, то при переносе через равно ставим знак плюс.

  • Если в конце уравнение начинается с числа, то просто меняем местами.
  • Всегда делаем проверку!
  • При выполнении домашнего задания, классной работы, тестов, всегда можно взять лист и написать вначале на нём и сделать проверку.

    Дополнительно находим подобные примеры в интернете, дополнительных книгах, методичках. Проще не менять цифры, а брать уже готовые примеры.

    Чем больше ребёнок будет решать сам, заниматься самостоятельно, тем быстрее усвоит материал.

    Если ребенок не понимает примеры с уравнением, стоит объяснить пример и сказать, чтобы остальные делал по образцу.

    Данное подробное описание, как объяснить уравнения с х школьнику для:

    • родителей;
    • школьников;
    • репетиторов;
    • бабушек и дедушек;
    • учителей;

    Детям нужно все делать в цвете, разными мелками на доске, но увы не все так делают.

    Чему равен икс в уравнении на примере

    Видео:Как решать уравнения без применения правил?Скачать

    Как решать уравнения без применения правил?

    Из своей практики

    Мальчик писал так, как хотел, вопреки существующим правилам по математике. При проверке уравнения были разные цифры и одно число (с левой стороны) не равнялось другому (то что с правой стороны), он тратил время на поиски ошибки.

    При вопросе, почему он так делает? Был ответ, что он пытается угадать и думает, а вдруг сделает правильно.

    В данном случае нужно каждый день (через день) решать подобные примеры. Довести действия до автоматизма и конечно все дети разные, дойти может не с первого занятия.

    Если у родителей нет времени, а часто это так, потому что родители зарабатывают денежные средства, то лучше найти репетитора в своём городе, который сможет объяснить пройденный материал ребёнку.

    Сейчас век ЕГЭ, тестов, контрольных работ, есть дополнительные сборники и методички. Делая за ребёнка домашние задания, родители должны помнить, что на экзамене в школе их не будет. Лучше объяснить доходчиво ребёнку 1 раз, чтобы ребёнок смог самостоятельно решать примеры.

    🔥 Видео

    Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать

    Алгебра 8 класс (Урок№19 - Уравнение х² = а.)

    Как решать уравнения с дробью? #shortsСкачать

    Как решать уравнения с дробью? #shorts

    Уравнения со скобками - 5 класс (примеры)Скачать

    Уравнения со скобками - 5 класс (примеры)

    Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

    Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

    Решить уравнение - Математика - 6 классСкачать

    Решить уравнение - Математика - 6 класс
    Поделиться или сохранить к себе: