Чем отличается уравнение бойля мариотта от уравнения пуассона

Показатели адиабаты: определение и процесс

Чем отличается уравнение бойля мариотта от уравнения пуассона

При изучении поведения газов в физике много внимания уделяется изопроцессам, то есть таким переходам между состояниями системы, во время которых сохраняется один термодинамический параметр. Тем не менее, существует газовый переход между состояниями, который не является изопроцессом, но который играет важную роль в природе и технике. Речь идет об адиабатическом процессе. В данной статье рассмотрим его подробнее, акцентируя внимание на том, что такое показатель адиабаты газа.

Содержание
  1. Адиабатический процесс
  2. Уравнение Пуассона для адиабаты идеального газа
  3. Что такое показатель адиабаты?
  4. Теплоемкости CP и CV
  5. Величина γ для газа идеального одноатомного
  6. Зависимость γ от числа степеней свободы
  7. Показатель адиабаты для смеси газов
  8. Уравнение состояния идеального газа — основные понятия, формулы и определение с примерами
  9. Уравнение состояния идеального газа
  10. Уравнение Клапейрона
  11. Изопроцессы
  12. Какой процесс называют изотермическим. Закон Бойля — Мариотта
  13. Какой процесс называют изобарным. Закон Гей-Люссака
  14. Закон Гей-Люссака
  15. Изохорный процесс. Закон Шарля
  16. Закон Шарля
  17. Пример №1
  18. Пример №2
  19. Объединенный газовый закон и изопроцессы
  20. теория по физике 🧲 молекулярная физика, МКТ, газовые законы
  21. Объединенный газовый закон применительно к изопроцессам
  22. Изотермический процесс. Закон Бойля — Мариотта.
  23. Изохорный процесс. Закон Шарля.
  24. Изобарный процесс. Закон Гей-Люссака.
  25. Графики изопроцессов
  26. 🔥 Видео

Видео:9. Уравнение ПуассонаСкачать

9. Уравнение Пуассона

Адиабатический процесс

Чем отличается уравнение бойля мариотта от уравнения пуассона

Согласно термодинамическому определению, под адиабатическим процессом понимают такой переход между начальным и конечным состояниями системы, в результате которого не существует обмена теплом между внешней средой и изучаемой системой. Такой процесс возможен при наличии следующих двух условий:

  • теплопроводность между внешней средой и системой по той или иной причине является низкой;
  • скорость процесса велика, поэтому обмен теплом не успевает происходить.

В технике адиабатный переход используют как для разогрева газа при его резком сжатии, так и для его охлаждения во время быстрого расширения. В природе рассматриваемый термодинамический переход проявляет себя, когда воздушная масса поднимается или опускается по склону холма. Такие подъемы и спуски приводят к изменению точки росы в воздухе и к возникновению осадков.

Видео:29. Адиабатический процесс. Уравнение ПуассонаСкачать

29. Адиабатический процесс. Уравнение Пуассона

Уравнение Пуассона для адиабаты идеального газа

Чем отличается уравнение бойля мариотта от уравнения пуассона

Идеальный газ представляет собой систему, в которой частицы движутся хаотично с большими скоростями, не взаимодействуют друг с другом и являются безразмерными. Такая модель является очень простой с точки зрения ее математического описания.

Согласно определению адиабатного процесса, можно записать следующее выражение в соответствии с первым законом термодинамики:

Иными словами, газ, расширяясь или сжимаясь, совершает работу P*dV за счет соответствующего изменения своей внутренней энергии dU.

В случае идеального газа, если воспользоваться уравнением его состояния (закон Клапейрона-Менделеева), то можно получить следующее выражение:

Это равенство называется уравнением Пуассона. Люди, которые знакомы с физикой газов, заметят, что если величина γ будет равна 1, то уравнение Пуассона перейдет в закон Бойля-Мариотта (изотермический процесс). Однако такое преобразование уравнений невозможно, поскольку γ для любого типа идеального газа больше единицы. Величина γ (гамма) называется показателем адиабаты идеального газа. Рассмотрим подробнее его физический смысл.

Чем отличается уравнение бойля мариотта от уравнения пуассона

Видео:ЛР-10-2-01 Проверка закона Бойля-МариоттаСкачать

ЛР-10-2-01 Проверка закона Бойля-Мариотта

Что такое показатель адиабаты?

Показатель γ, который появляется в уравнении Пуассона для газа идеального, представляет собой отношение теплоемкости при постоянном давлении к аналогичной величине, но уже при постоянном объеме. В физике теплоемкостью называют величину теплоты, которую нужно передать данной системе или забрать у нее, чтобы она изменила свою температуру на 1 Кельвин. Будем обозначать символом CP изобарную теплоемкость, а символом CV — изохорную. Тогда для γ справедливо равенство:

Поскольку γ всегда больше одного, то он показывает, во сколько раз изобарная теплоемкость изучаемой газовой системы превышает аналогичную изохорную характеристику.

Видео:Газовые законы. Изопроцессы | Физика 10 класс #34 | ИнфоурокСкачать

Газовые законы. Изопроцессы | Физика 10 класс #34 | Инфоурок

Теплоемкости CP и CV

Чтобы определить показатель адиабаты, следует хорошо понимать смысл величин CP и CV. Для этого проведем следующий мысленный эксперимент: представим, что газ находится в закрытой системе в сосуде с твердыми стенками. Если нагревать сосуд, то все сообщенное тепло в идеальном случае перейдет во внутреннюю энергию газа. В такой ситуации будет справедливо равенство:

Величина CV определяет количество теплоты, которое следует передать системе, чтобы изохорно нагреть ее на 1 К.

Теперь предположим, что газ находится в сосуде с подвижным поршнем. В процессе нагрева такой системы поршень будет перемещаться, обеспечивая поддержание постоянного давления. Поскольку энтальпия системы в таком случае будет равна произведению изобарной теплоемкости на изменение температуры, то первый закон термодинамики примет вид:

Отсюда видно, что CP>CV, так как в случае изобарного изменения состояний необходимо расходовать тепло не только на повышение температуры системы, а значит, и ее внутренней энергии, но и на выполнение газом работы при его расширении.

Видео:Урок 157. Изопроцессы и их графики. Частные газовые законыСкачать

Урок 157. Изопроцессы и их графики. Частные газовые законы

Величина γ для газа идеального одноатомного

Чем отличается уравнение бойля мариотта от уравнения пуассона

Самой простой газовой системой является одноатомный идеальный газ. Предположим, что мы имеет 1 моль такого газа. Напомним, что в процессе изобарного нагрева 1 моль газа всего на 1 Кельвин, он совершает работу, равную величине R. Этим символом принято обозначать универсальную газовую постоянную. Она равна 8,314 Дж/(моль*К). Применяя последнее выражение в предыдущем пункте для данного случая, получаем такое равенство:

Откуда можно определить значение изохорной теплоемкости CV:

Известно, что для одного моль одноатомного газа значение изохорной теплоемкости составляет:

Из последних двух равенств следует значение показателя адиабаты:

Отметим, что величина γ зависит исключительно от внутренних свойств самого газа (от многоатомности его молекул) и не зависит от количества вещества в системе.

Видео:Газовые законыСкачать

Газовые законы

Зависимость γ от числа степеней свободы

Выше было записано уравнение для изохорной теплоемкости одноатомного газа. Появившийся в нем коэффициент 3/2 связан с количеством степеней свободы у одного атома. У него существует возможность двигаться только в одном из трех направлений пространства, то есть существуют только поступательные степени свободы.

Чем отличается уравнение бойля мариотта от уравнения пуассона

Если система образована двухатомными молекулами, то к трем поступательным добавляются еще две вращательные степени. Поэтому выражение для CV приобретает вид:

Тогда значение γ будет равно:

Отметим, что на самом деле существует у двухатомной молекулы еще одна колебательная степень свободы, но при температурах в несколько сотен Кельвин она не задействуется и не вносит вклад в теплоемкость.

Если молекулы газа состоят из более, чем двух атомов, тогда у них будет 6 степеней свободы. Показатель адиабаты при этом будет равен:

Таким образом, при увеличении числа атомов в молекуле газа величина γ уменьшается. Если построить график адиабаты в осях P-V, то можно заметить, что кривая для одноатомного газа будет вести себя более резко, чем для многоатомного.

Видео:Адиабатный процесс. 10 класс.Скачать

Адиабатный процесс. 10 класс.

Показатель адиабаты для смеси газов

Чем отличается уравнение бойля мариотта от уравнения пуассона

Выше мы показали, что величина γ от химического состава газовой системы не зависит. Однако она зависит от количества атомов, которое составляет ее молекулы. Предположим, что система состоит из N компонент. Атомная доля компонента i в смеси равна ai. Тогда для определения показателя адиабаты смеси можно использовать следующее выражение:

Где γi — это величина γ для i-го компонента.

Например, это выражение можно применить для определения γ воздуха. Поскольку он состоит на 99 % из двухатомных молекул кислорода и азота, то его показатель адиабаты должен быть очень близок к значению 1,4, что подтверждается при экспериментальном определении этой величины.

Видео:Решение задач по теме: закон Бойля-МариоттаСкачать

Решение задач по теме: закон Бойля-Мариотта

Уравнение состояния идеального газа — основные понятия, формулы и определение с примерами

Содержание:

Уравнение состояния идеального газа:

Уравнения Клапейрона и Менделеева — клапейрона; законы Шарля, Гей-Люссака, Бойля — Мариотта, Авогадро, Дальтона, — пожалуй, такого количества «именных» законов нет ни в одном разделе физики. за каждым из них — кропотливая работа в лабораториях, тщательные измерения, длительные аналитические размышления и точные расчеты. нам намного проще. Мы уже знаем основные положения теории, и «открыть» все вышеупомянутые законы нам не составит труда.

Видео:Урок 172. Применение 1 закона термодинамики для различных процессовСкачать

Урок 172. Применение 1 закона термодинамики для различных процессов

Уравнение состояния идеального газа

Давление газа полностью определяется его температурой и концентрацией молекул: p=nkT. Запишем данное уравнение в виде: pV = NkT. Если состав и масса газа известны, число молекул газа можно найти из соотношения Чем отличается уравнение бойля мариотта от уравнения пуассона

Произведение числа Авогадро Чем отличается уравнение бойля мариотта от уравнения пуассонана постоянную Больцмана k называют универсальной газовой постоянной (R): R=Чем отличается уравнение бойля мариотта от уравнения пуассонаk 8,31 Дж/ (моль⋅К). Заменив в уравнении (*) Чем отличается уравнение бойля мариотта от уравнения пуассонаk на R, получим уравнение состояния идеального газа (уравнение Менделеева — Клапейрона):

Чем отличается уравнение бойля мариотта от уравнения пуассона

Обратите внимание! Состояние данного газа некоторой массы однозначно определяется двумя его макроскопическими параметрами; третий параметр можно найти из уравнения Менделеева — Клапейрона.

Уравнение Клапейрона

С помощью уравнения Менделеева — Клапейрона можно установить связь между макроскопическими параметрами газа при его переходе из одного состояния в другое. Пусть газ, имеющий массу m и молярную массу М, переходит из состояния (Чем отличается уравнение бойля мариотта от уравнения пуассона) в состояние (Чем отличается уравнение бойля мариотта от уравнения пуассона) (рис. 30.1).

Чем отличается уравнение бойля мариотта от уравнения пуассона

Для каждого состояния запишем уравнение Менделеева — Клапейрона: Чем отличается уравнение бойля мариотта от уравнения пуассонаРазделив обе части первого уравнения на Чем отличается уравнение бойля мариотта от уравнения пуассона, а второго — на Чем отличается уравнение бойля мариотта от уравнения пуассона, получим: Чем отличается уравнение бойля мариотта от уравнения пуассонаЧем отличается уравнение бойля мариотта от уравнения пуассона. Правые части этих уравнений равны; приравняв левые части, получим уравнение Клапейрона:

Чем отличается уравнение бойля мариотта от уравнения пуассона

Для данного газа некоторой массы отношение произведения давления на объем к температуре газа является неизменным.

Изопроцессы

Процесс, при котором один из макроскопических параметров данного газа некоторой массы остается неизменным, называют изопроцессом. Поскольку состояние газа характеризуется тремя макроскопическими параметрами, возможных изопроцессов тоже три: происходящий при неизменной температуре; происходящий при неизменном давлении; происходящий при неизменном объеме. Рассмотрим их.

Какой процесс называют изотермическим. Закон Бойля — Мариотта

Пузырек воздуха, поднимаясь со дна глубокого водоема, может увеличиться в объеме в несколько раз, при этом давление внутри пузырька падает, поскольку вследствие дополнительного гидростатического давления воды (Чем отличается уравнение бойля мариотта от уравнения пуассона) давление на глубине больше атмосферного. Температура же внутри пузырька практически не изменяется. В данном случае имеем дело с процессом изотермического расширения.

Чем отличается уравнение бойля мариотта от уравнения пуассона

Рис. 30.2. Изотермическое сжатие газа. Если медленно опускать поршень, температура газа под поршнем будет оставаться неизменной и равной температуре окружающей среды. Давление газа при этом будет увеличиваться

Изотермический процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменной температуре.

Пусть некий газ переходит из состояния (Чем отличается уравнение бойля мариотта от уравнения пуассона) в состояние (Чем отличается уравнение бойля мариотта от уравнения пуассонаЧем отличается уравнение бойля мариотта от уравнения пуассонаT), то есть температура газа остается неизменной (рис. 30.2). Тогда согласно уравнению Клапейрона имеет место равенство pЧем отличается уравнение бойля мариотта от уравнения пуассона. После сокращения на T получим: Чем отличается уравнение бойля мариотта от уравнения пуассона.

Закон Бойля — Мариотта:

Для данного газа некоторой массы произведение давления газа на его объем остается постоянным, если температура газа не изменяется:

Чем отличается уравнение бойля мариотта от уравнения пуассона

Графики изотермических процессов называют изотермами. Как следует из закона Бойля — Мариотта, при неизменной температуре давление газа данной массы обратно пропорционально его объему: Чем отличается уравнение бойля мариотта от уравнения пуассона. Эту зависимость в координатах p, V можно представить в виде гиперболы (рис. 30.3, а). Поскольку при изотермическом процессе температура газа не изменяется, в координатах p, T и V, T изотермы перпендикулярны оси температур (рис. 30.3, б, в).

Чем отличается уравнение бойля мариотта от уравнения пуассонаЧем отличается уравнение бойля мариотта от уравнения пуассона

Какой процесс называют изобарным. Закон Гей-Люссака

Изобарный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном давлении.

Пусть некий газ переходит из состояния (Чем отличается уравнение бойля мариотта от уравнения пуассона) в состояние (Чем отличается уравнение бойля мариотта от уравнения пуассона), то есть давление газа остается неизменным (рис. 30.4). Тогда имеет место равенство Чем отличается уравнение бойля мариотта от уравнения пуассона. После сокращения на p получим: Чем отличается уравнение бойля мариотта от уравнения пуассона

Чем отличается уравнение бойля мариотта от уравнения пуассона

Рис. 30.4. Изобарное расширение газа. Если газ находится под тяжелым поршнем массой M и площадью S, который может перемещаться практически без трения, то при увеличении температуры объем газа будет увеличиваться, а давление газа будет оставаться неизменным и равным pЧем отличается уравнение бойля мариотта от уравнения пуассона

Закон Гей-Люссака

Для данного газа некоторой массы отношение объема газа к температуре остается постоянным, если давление газа не изменяется:

Чем отличается уравнение бойля мариотта от уравнения пуассона

Графики изобарных процессов называют изобарами. Как следует из закона Гей-Люссака, при неизменном давлении объем газа данной массы прямо пропорционален его температуре: V = const⋅T. График данной зависимости — прямая, проходящая через начало координат (рис. 30.5, а). По графику видно, что с приближением к абсолютному нулю объем идеального газа должен уменьшиться до нуля. Понятно, что это невозможно, поскольку реальные газы при низких температурах превращаются в жидкости. В координатах p, V и p, T изобары перпендикулярны оси давления (рис. 30.5, б, в).

Чем отличается уравнение бойля мариотта от уравнения пуассонаЧем отличается уравнение бойля мариотта от уравнения пуассона

Изохорный процесс. Закон Шарля

Если газовый баллон сильно нагреется на солнце, давление в нем повысится настолько, что баллон может взорваться. В данном случае имеем дело с изохорным нагреванием.

Изохорный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном объеме.

Пусть некий газ переходит из состояния (Чем отличается уравнение бойля мариотта от уравнения пуассона) в состояние (Чем отличается уравнение бойля мариотта от уравнения пуассона), то есть объем газа не изменяется (рис. 30.6). В этом случае имеет место равенство Чем отличается уравнение бойля мариотта от уравнения пуассона. После сокращения на V получим: Чем отличается уравнение бойля мариотта от уравнения пуассона

Чем отличается уравнение бойля мариотта от уравнения пуассона

Рис. 30.6. Изохорное нагревание газа. Если газ находится в цилиндре под закрепленным поршнем, то с увеличением температуры давление газа тоже будет увеличиваться. Опыт показывает, что в любой момент времени отношение давления газа к его температуре неизменно: Чем отличается уравнение бойля мариотта от уравнения пуассона

Закон Шарля

Для данного газа некоторой массы отношение давления газа к его температуре остается постоянным, если объем газа не изменяется:

Чем отличается уравнение бойля мариотта от уравнения пуассона

Графики изохорных процессов называют изохорами. Из закона Шарля следует, что при неизменном объеме давление газа данной массы прямо пропорционально его температуре: p T = ⋅ const . График этой зависимости — прямая, проходящая через начало координат (рис. 30.7, а). В координатах p, V и V, T изохоры перпендикулярны оси объема (рис. 30.7, б, в).

Чем отличается уравнение бойля мариотта от уравнения пуассонаЧем отличается уравнение бойля мариотта от уравнения пуассона

Пример №1

В вертикальной цилиндрической емкости под легкоподвижным поршнем находится 2 моль гелия и 1 моль молекулярного водорода. Температуру смеси увеличили в 2 раза, и весь водород распался на атомы. Во сколько раз увеличился объем смеси газов?

Чем отличается уравнение бойля мариотта от уравнения пуассона

Анализ физической проблемы. Смесь газов находится под легкоподвижным поршнем, поэтому давление смеси не изменяется:Чем отличается уравнение бойля мариотта от уравнения пуассона, но использовать закон Бойля — Мариотта нельзя, так как вследствие диссоциации (распада) молярная масса и число молей водорода увеличились в 2 раза: Чем отличается уравнение бойля мариотта от уравнения пуассона

Решение:

Воспользуемся уравнением состояния идеального газа: pV = νRT. Запишем это уравнение для состояний смеси газов до и после распада: Чем отличается уравнение бойля мариотта от уравнения пуассона Чем отличается уравнение бойля мариотта от уравнения пуассонаРазделив уравнение (2) на уравнение (1) и учитывая, что Чем отличается уравнение бойля мариотта от уравнения пуассонаполучим: Чем отличается уравнение бойля мариотта от уравнения пуассонагде Чем отличается уравнение бойля мариотта от уравнения пуассонаЧем отличается уравнение бойля мариотта от уравнения пуассонаНайдем значение искомой величины: Чем отличается уравнение бойля мариотта от уравнения пуассона

Ответ: примерно в 2,7 раза.

Пример №2

На рис. 1 представлен график изменения состояния идеального газа неизменной массы в координатах V, T. Представьте график данного процесса в координатах p, V и p, T.

Решение:

1. Выясним, какой изопроцесс соответствует каждому участку графика (рис. 1).

Чем отличается уравнение бойля мариотта от уравнения пуассона

Зная законы, которым подчиняются эти изопроцессы, определим, как изменяются макроскопические параметры газа. Участок 1–2: изотермическое расширение; T = const, V ↑, следовательно, по закону Бойля — Мариотта p ↓. Участок 2–3: изохорное нагревание; V = const, T ↑, следовательно, по закону Шарля p ↑ . Участок 3–1: изобарное охлаждение; p = const , T ↓, следовательно, по закону Гей-Люссака V ↓ .

2. Учитывая, что точки 1 и 2 лежат на одной изотерме, точки 1 и 3 — на одной изобаре, а точки 2 и 3 на одной изохоре, и используя результаты анализа, построим график процесса в координатах p, V и p, T (рис. 2)

Чем отличается уравнение бойля мариотта от уравнения пуассона

  1. Из соотношения p=nkT можно получить ряд важных законов, большинство из которых установлены экспериментально.
  2. Уравнение состояния идеального газа (уравнение Менделеева — Клапейрона): Чем отличается уравнение бойля мариотта от уравнения пуассона— универсальная газовая постоянная.
  3. Уравнение Клапейрона: Чем отличается уравнение бойля мариотта от уравнения пуассона
  4. Законы, которым подчиняются изопроцессы, то есть процессы, при которых один из макроскопических параметров данного газа некоторой массы остается неизменным:

Чем отличается уравнение бойля мариотта от уравнения пуассона

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Температура в физике
  • Парообразование и конденсация
  • Тепловое равновесие в физике
  • Изопроцессы в физике
  • Абсолютно упругие и неупругие столкновения тел
  • Механизмы, работающие на основе правила моментов
  • Идеальный газ в физике
  • Уравнение МКТ идеального газа

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)Скачать

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)

Объединенный газовый закон и изопроцессы

теория по физике 🧲 молекулярная физика, МКТ, газовые законы

Объединенный газовый закон был открыт экспериментально. Он также является следствием основного уравнения состояния идеального газа. Согласно ему:

При постоянной массе газа и его неизменной молярной массе отношение произведения давления на объем к его абсолютной температуре остается величиной постоянной:

p V T . . = c o n s t и л и p 1 V 1 T 1 . . = p 2 V 2 T 2 .

Видео:Физика # 26. Закон Бойля-МариоттаСкачать

Физика # 26. Закон Бойля-Мариотта

Объединенный газовый закон применительно к изопроцессам

Объединенный газовый закон объединяет три независимых газовых закона: Бойля — Мариотта, Шарля и Гей-Люссака. Газовые законы действуют в частных случаях — изопроцессах.

Изопроцессы — термодинамические процессы, во время которых количество вещества и один из параметров состояния: давление, объём, температура или энтропия — остаётся неизменным.

Изотермический процесс. Закон Бойля — Мариотта.

Изотермический процесс — термодинамический процесс, происходящий в системе при постоянной температуре и массе:

Для изотермического процесса действует закон Бойля — Мариотта:

Закон Бойля — Мариотта

Для газа данной массы произведение газа на его объем постоянно, если температура газа не меняется.

Изохорный процесс. Закон Шарля.

Изохорный процесс — термодинамический процесс, происходящий в системе при постоянном объеме и массе:

Для изохорного процесса действует закон Шарля:

Для газа данной массы отношение давления к температуре постоянно, если объем не меняется.

p T . . = c o n s t ( p 1 T 1 . . = p 2 T 2 . . )

Изобарный процесс. Закон Гей-Люссака.

Изобарный процесс — термодинамический процесс, происходящий в системе при постоянном давлении и массе:

Для газа данной массы отношение объема к температуре постоянно, если давление газа не меняется.

V T . . = c o n s t ( V 1 T 1 . . = V 2 T 2 . . )

Пример №1. Идеальный газ изобарно нагревают так, что его температура изменяется на ∆T = 240 К, а давление — в 1,6 раза. Масса газа постоянна. Найдите начальную температуру газа по шкале Кельвина.

Так как газ нагревают, то:

Запишем закон Шарля применительно к данному случаю:

p T 1 . . = 1 , 6 p 240 + T 1 . .

Сделаем некоторые преобразования и вычислим начальную температуру:

p T 1 . . = 1 , 6 p 240 + T 1 . .

240 + T 1 = 1 , 6 T 1

T 1 = 240 0 , 6 . . = 400 ( К )

Подсказки к задачам на газовые законы

Газ под невесомым поршнем:

p — давление газа;

pатм — давление, оказываемое на газ со стороны поршня.

На невесомый поршень действует сила:

p = p а т м + F S . .

F — сила, действующая на поршень;

S — площадь поршня.

На невесомый поршень поставили груз. В данном случае на поршень дополнительно будет действовать сила тяжести:

p = p а т м + F т я ж S . . = p а т м + M g S . .

Fтяж — сила тяжести, действующая на поршень со стороны груза;

g — ускорение свободного падения.

Газ под массивным поршнем. В данном случае на него дополнительно будет действовать сила тяжести поршня:

p = p а т м + m g S . .

m — масса поршня.

На массивный поршень поставили груз. В данном случае на поршень дополнительно будут действовать силы тяжести со стороны поршня и груза:

p = p а т м + M g S . . + m g S . .

На массивный поршень действует сила. В данном случае газ сдавливается как атмосферным давлением, так и силой тяжести поршня, а также силой, которая на него действует:

p = p а т м + m g S . . + F S . .

Газ, находящийся в цилиндре под массивным поршнем, находится в лифте, ускорение которого направлено вверх. Когда ускорение движения лифта противоположно направлено ускорению свободного падения, вес тел увеличивается. Поэтому:

p = p а т м + m g S . . + m a S . .

a — модуль ускорения, с которым движется лифт.

Газ, находящийся в цилиндре под массивным поршнем, находится в лифте, ускорение которого направлено вниз. Когда ускорение движения лифта направлено в сторону вектора ускорения свободного падения, вес тел уменьшается. Поэтому:

p = p а т м + m g S . . − m a S . .

«Пузырек у поверхности воды» — на пузырек действует только атмосферное давоение:

«Пузырек на глубине» — на пузырек действует атмосферное давление и давление столба жидкости:

ρ — плотность жидкости; h — глубина, на которой находится пузырек.

Газ, находящийся в горизонтальной пробирке, отделен от атмосферы столбиком ртути. Объем газа можно вычислить, используя параметры пробирки:

V1— объем газа; l1 — длина части пробирки, которую занимает газ; S — площадь поперечного сечения пробирки. Давление газа равно атмосферному давлению:

Пробирку поворачивают открытым концом вверх. В этом случае кроме атмосферного давления на газ давит давление со стороны ртути:

Объем газа можно вычислить, используя параметры пробирки:

Пробирку поворачивают открытым концом вниз. В этом случае сумма давлений газа и ртути в пробирке равна атмосферному давлению. Отсюда давление газа равно:

Объем газа можно вычислить, используя параметры пробирки:

Чем отличается уравнение бойля мариотта от уравнения пуассона
Чем отличается уравнение бойля мариотта от уравнения пуассона
Чем отличается уравнение бойля мариотта от уравнения пуассона
Чем отличается уравнение бойля мариотта от уравнения пуассона
Чем отличается уравнение бойля мариотта от уравнения пуассона
Чем отличается уравнение бойля мариотта от уравнения пуассона
Чем отличается уравнение бойля мариотта от уравнения пуассона
Чем отличается уравнение бойля мариотта от уравнения пуассона
Чем отличается уравнение бойля мариотта от уравнения пуассона
Чем отличается уравнение бойля мариотта от уравнения пуассона
Чем отличается уравнение бойля мариотта от уравнения пуассона
Чем отличается уравнение бойля мариотта от уравнения пуассона
Чем отличается уравнение бойля мариотта от уравнения пуассона
Шар или понтон поднимается вверх в воздухе или жидкостиАрхимедова сила больше силы тяжести:

Пример №2. Поршень площадью 10 см 2 массой 5 кг может без трения перемещаться в вертикальном цилиндрическом сосуде, обеспечивая при этом герметичность. Сосуд с поршнем, заполненный газом, покоится на полу неподвижного лифта при атмосферном давлении 100 кПа, при этом расстояние от нижнего края поршня до дна сосуда 20 см. Каким станет это расстояние, когда лифт поедет вверх с ускорением, равным 2 м/с 2 ? Изменение температуры газа не учитывать.

10 см 2 = 10 –3 м 2

100 кПа = 10 5 Па

Составим уравнения для 1 и 2 случая. Когда лифт находится в покое, давление газа равно сумме атмосферного давления и давления, оказываемое массивным поршнем:

p 1 = p а т м + m g S . .

Когда лифт начал двигаться, появилось дополнительное давление, связанное с увеличением веса поршня при ускоренном движении вверх:

p 2 = p а т м + m g S . . + m a S . .

Так как изменением температуры можно пренебречь, можно считать, что это процесс изотермический. Следовательно:

Объемы в 1 и 2 случае будут определяться формулами:

h1 — расстояние от нижнего края поршня до дна сосуда в первом случае. h2 — та же самая величина, но во втором случае (искомая величина).

Запишем закон Бойля — Мариотта для обоих случаев с учетом объемов:

p 1 V 1 = S h 1 ( p а т м + m g S . . )

p 2 V 2 = S h 2 ( p а т м + m g S . . + m a S . . )

Так как это изотермический процесс, правые части уравнений можно приравнять:

S h 1 ( p а т м + m g S . . ) = S h 2 ( p а т м + m g S . . + m a S . . )

Видео:Физика - Газовые законы. Уравнение идеального газа.Скачать

Физика - Газовые законы. Уравнение идеального газа.

Чем отличается уравнение бойля мариотта от уравнения пуассона

Видео:Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

Графики изопроцессов

Изопроцессы можно изобразить графически в координатах (p;V), (V;T) и (p;T). Рассмотрим все виды графиком для каждого из процессов.

ИзопроцессГрафик в координатах (p;V)График в координатах (V;T)График в координатах (p;T)
Изотермический (график — изотерма)Чем отличается уравнение бойля мариотта от уравнения пуассона

Изотерма в координатах (p;V) — гипербола. Чем ближе изотерма к началу координат и осям, тем меньшей температуре она соответствует.

Характер изменения переменных величин хорошо виден на графике.

Чем отличается уравнение бойля мариотта от уравнения пуассона

Изотерма в координатах (V;T) — прямая, перпендикулярная оси OT и параллельная оси OV. Чем ближе изотерма к оси OV, тем меньшей температуре она соответствует.

С увеличением объема давление уменьшается.

Чем отличается уравнение бойля мариотта от уравнения пуассона

Изотерма в координатах (p;T) — прямая, перпендикулярная оси OT и параллельная оси Op. Чем ближе изотерма к оси Op, тем меньшей температуре она соответствует.

С увеличением давления объем уменьшается.

Изохорный (график — изохора)Чем отличается уравнение бойля мариотта от уравнения пуассона

Изохора в координатах (p;V) — прямая, перпендикулярная оси OV и параллельная оси Op. Чем ближе изохора к оси Op, тем меньшему объему она соответствует.

С увеличением давления увеличивается температура.

Чем отличается уравнение бойля мариотта от уравнения пуассона

Изохора в координатах (V;T) — прямая, перпендикулярная оси OV и параллельная оси OT. Чем ближе изохора к оси OT, тем меньшему объему она соответствует.

С увеличением температуры увеличивается давление.

Чем отличается уравнение бойля мариотта от уравнения пуассона

Изохора в координатах (p;T) — прямая, исходящая из начала координат. Чем меньше угол наклона изохоры к оси OT, тем меньшему объему она соответствует.

Характер изменения переменных величин хорошо виден на графике.

Изобарный (график — изобара)Чем отличается уравнение бойля мариотта от уравнения пуассона

Изобара в координатах (p;V) — прямая, перпендикулярная оси Op и параллельная оси OV. Чем ближе изобара к оси OV, тем меньшему давлению она соответствует.

С увеличением объема температура растет.

Чем отличается уравнение бойля мариотта от уравнения пуассона

Изобара в координатах (V;T) — прямая, исходящая из начала координат. Чем меньше угол наклона изобары к оси OT, тем меньшему давлению она соответствует.

Характер изменения переменных величин хорошо виден на графике.

Чем отличается уравнение бойля мариотта от уравнения пуассона

Изобара в координатах (p;T) — прямая, перпендикулярная оси Op и параллельная оси OT. Чем ближе изобара к оси OT, тем меньшему давлению она соответствует.

С увеличением температуры объем растет.

Пример №3. На рисунке представлен график циклического процесса. Вычертить его в координатах (p;T).

Чем отличается уравнение бойля мариотта от уравнения пуассона

Определим характер изменения величин:

  • Процесс 1–2. Гипербола — это изотерма. Следовательно T12 = const. В координатах (p;T) изотерма будет выглядеть как прямая, перпендикулярная оси OT.
  • Процесс 2–3. Прямая линия, перпендикулярная оси Op — это изобара. Следовательно p23 = const. В координатах (p;T) изобара будет выглядеть как прямая, перпендикулярная оси Op.
  • Процесс 3–1. Прямая линия, перпендикулярная оси OV — это изохора. Следовательно V31 = const. В координатах (p;T) изохора будет выглядеть как прямая, выходящая из начала координат.

Теперь, зная, какими будут графики всех величин в координатах (p;T), можно построить сам график. Он примет следующий

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Чем отличается уравнение бойля мариотта от уравнения пуассона

Чем отличается уравнение бойля мариотта от уравнения пуассонаНа графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.

Алгоритм решения

Решение

График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

Запишем уравнение Менделеева — Клапейрона:

Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

ν R = p 1 V 1 T 1 . . = p 2 V 2 T 2 . .

Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

pазбирался: Алиса Никитина | обсудить разбор | оценить

1 моль идеального газа изохорно охлаждают на 200 К, при этом его давление уменьшается в 2 раза. Какова первоначальная абсолютная температура газа?

🔥 Видео

Изопроцессы. Графики изопроцессов. Закон Дальтона. 2 часть. 10 класс.Скачать

Изопроцессы. Графики изопроцессов. Закон Дальтона. 2 часть. 10 класс.

Физика. Термодинамика: Адиабатный процесс. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. Термодинамика: Адиабатный процесс. Центр онлайн-обучения «Фоксфорд»

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»

Основы молекулярной физики | уравнение КлапейронаСкачать

Основы молекулярной физики | уравнение Клапейрона

62. Уравнение Клапейрона-МенделееваСкачать

62. Уравнение Клапейрона-Менделеева

Газовые законы от bezbotvy. Физика 10 классСкачать

Газовые законы от bezbotvy. Физика 10 класс

Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать

Урок 156. Уравнение состояния идеального газа. Квазистатические процессы
Поделиться или сохранить к себе: