Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
- Описание презентации по отдельным слайдам:
- Охрана труда
- Охрана труда
- Библиотечно-библиографические и информационные знания в педагогическом процессе
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- График линейной функции, его свойства и формулы
- Понятие функции
- Понятие линейной функции
- Свойства линейной функции
- Построение линейной функции
- Решение задач на линейную функцию
- Линейная функция — определение и вычисление с примерами решения
- Основное свойство линейной функции
- Задачи на прямую
- Общее уравнение прямой. Неявная линейная функция
- Система двух уравнений первой степени
- Примеры применения линейной функции
- 💡 Видео
Описание презентации по отдельным слайдам:
Линейная функция и линейные уравнения вокруг нас
Работу выполнили учащиеся 7 «Б» класса
МОУ «Гимназия 4» г.о. Электросталь
Перова Анастасия, Демич Ливия,
Кислякова Екатерина, Чурилин Даниил,
Санников Тимур
под руководством
учителя математики Бродецкой Т. А.
2013г.
1. Линейное уравнение
с одной переменной
2. Алгоритм решения линейного уравнения. Примеры уравнений
3. Примеры решения задач с помощью линейных уравнений
4. Линейная функция
5. Частные случаи линейной функции
6. Прямая пропорциональность
7. Линейная функция и линейные уравнения вокруг нас
8. Используемая литература
Содержание:
Линейное уравнение с одной переменной.
Линейное уравнение с одной переменной — это уравнение вида ax = b, где х – переменная, a и b – некоторые числа.
Например: 3х+15=0;
6,4х=0,4;
— х = — 3,7.
Линейное уравнение с одной переменной
имеет единственный корень,
если a≠0;
2) имеет бесконечное множество корней, если a=0; b=0;
3) не имеет корней, если a=0; b≠0.
1 случай: ax = b, a≠0
Примеры:
2 случай: ax = b, a=0, b=0
3 случай: ax = b, a=0, b ≠ 0
Например:
Алгоритм решения уравнений, сводящихся к линейным.
1. Раскрыть скобки в уравнении, если они есть.
2. Перенести слагаемые с переменной в одну часть уравнения, а слагаемые без переменной – в другую часть уравнения, изменив при этом их знаки.
3. Привести подобные слагаемые.
4. Найти корень уравнения.
5. Выполнить проверку.
6. Записать ответ.
Примеры уравнений,
сводящихся к линейным.
Примеры уравнений,
сводящихся к линейным.
Примеры уравнений,
сводящихся к линейным.
Примеры уравнений,
сводящихся к линейным.
Решение задач с помощью линейных уравнений.
Линейная функция —
функция вида
y=kx+b, где x – независимая
переменная,
k и b – некоторые числа.
Коэффициент k
называется
угловым
коэффициентом
прямой.
Свойства линейной функции
1. Область определения – любое число.
2. Область значений – любое число.
3. При прямая образует острый угол с осью абсцисс.
4. При прямая образует тупой угол с осью абсцисс.
5. При прямая параллельна оси абсцисс.
6. График линейной функции проходит через точку (0;в).
7. При прямая
проходит через начало
координат.
Взаимное расположение
графиков линейных функций
Частные случаи
линейной функции.
функция вида
y=kx, где x – независимая
переменная,
k – число, k .
.
Например:
зависимость пути S от времени t при постоянной скорости v .
Свойства прямой пропорциональности
Область определения – любое число.
Область значений – любое число.
При прямая расположена в 1 и 3 координатной четверти, образует острый угол с осью абсцисс.
При прямая расположена во 2 и 4 координатной четверти, образует тупой угол с осью абсцисс.
График проходит через начало координат.
Переменные х и у
изменяются прямо
пропорционально
на всей числовой прямой.
Линейная функция в пословицах
Используемая литература.
Учебник «Алгебра – 7», под ред. С.А.Теляковского. Москва «Просвещение» 2011г.
Учебник «Алгебра — 7», ред. Мордкович А.Г.
Дидактический материал «Самостоятельные и контрольные работы. Алгебра, геометрия – 7». А. П. Ершова, В. В. Голобородько, А. С.Ершова. Москва «Илекса», 2011г.
Дидактический материал «Алгебра – 7», под ред. Л.И. Звавич и др.
«Задачи по алгебре 6 – 8 класс», ред. Д.К. Фадеев и др.
Интернет – ресурсы. http://ru.math.wikia.com/wiki/ ,
шаблон презентации Ранько Е. А.
Интернет-ресурсы
Мудрая сова
Линейка, карандаш, ластик
Циркуль
Подставка
Фон «тетрадная клетка»
Курс повышения квалификации
Охрана труда
- Сейчас обучается 114 человек из 42 регионов
Курс профессиональной переподготовки
Охрана труда
- Сейчас обучается 233 человека из 54 регионов
Курс профессиональной переподготовки
Библиотечно-библиографические и информационные знания в педагогическом процессе
- Сейчас обучается 352 человека из 64 регионов
Ищем педагогов в команду «Инфоурок»
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Дистанционные курсы для педагогов
«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»
Свидетельство и скидка на обучение каждому участнику
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 587 366 материалов в базе
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»
Свидетельство и скидка на обучение каждому участнику
Другие материалы
- 23.12.2020
- 94
- 0
- 08.12.2020
- 280
- 11
- 02.12.2020
- 89
- 0
- 19.11.2020
- 81
- 0
- 03.10.2020
- 72
- 0
- 24.09.2020
- 94
- 0
- 01.09.2020
- 220
- 1
- 21.08.2020
- 76
- 0
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 20.05.2020 97
- PPTX 2.4 мбайт
- 2 скачивания
- Оцените материал:
Настоящий материал опубликован пользователем Гулькова Ксения Юрьевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 1 год и 1 месяц
- Подписчики: 0
- Всего просмотров: 25746
- Всего материалов: 233
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Минобрнауки создаст для вузов рекомендации по поддержке молодых семей
Время чтения: 1 минута
В Курганской области дистанционный режим для школьников продлили до конца февраля
Время чтения: 1 минута
Ленобласть распределит в школы прибывающих из Донбасса детей
Время чтения: 1 минута
Инфоурок стал резидентом Сколково
Время чтения: 2 минуты
В ростовских школах рассматривают гибридный формат обучения с учетом эвакуированных
Время чтения: 1 минута
Рособрнадзор не планирует переносить досрочный период ЕГЭ
Время чтения: 0 минут
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Только на 23 февраля!
Получите новую
специальность
по низкой цене
Цена от 1220 740 руб. Промокод на скидку Промокод скопирован в буфер обмена ПП2302 Выбрать курс Все курсы профессиональной переподготовки
Видео:Линейная функция и ее график. 7 класс.Скачать
График линейной функции, его свойства и формулы
О чем эта статья:
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Понятие функции
Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции. |
---|
Задать функцию значит определить правило, следуя которому по значениям независимой переменной можно найти соответствующие значения функции. Вот какими способами ее можно задать:
Табличный способ помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
Словесный способ.
Графический способ — наглядно. Его мы и разберем в этой статье.
График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу. |
---|
Видео:Линейное уравнение с двумя переменными и его график. График линейной функции - 7 класс алгебраСкачать
Понятие линейной функции
Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент. |
---|
Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.
Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.
Если известно конкретное значение х, можно вычислить соответствующее значение у.
Нам дана функция: у = 0,5х — 2. Значит:
если х = 0, то у = -2;
если х = 2, то у = -1;
если х = 4, то у = 0 и т. д.
Для удобства результаты можно оформлять в виде таблицы:
х | 0 | 2 | 4 |
y | -2 | -1 | 0 |
Графиком линейной функции является прямая. Для ее построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.
Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.
k и b — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.
Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты k и b.
Функция | Коэффициент k | Коэффициент b |
---|---|---|
y = 2x + 8 | k = 2 | b = 8 |
y = −x + 3 | k = −1 | b = 3 |
y = 1/8x − 1 | k = 1/8 | b = −1 |
y = 0,2x | k = 0,2 | b = 0 |
Может показаться, что в функции y = 0,2x нет числового коэффициента b, но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа y = kx + b есть коэффициенты k и b.
Видео:Линейная Функция — как БЫСТРО построить график и получить 5-куСкачать
Свойства линейной функции
Область определения функции — множество всех действительных чисел.
Множеством значений функции является множество всех действительных чисел.
График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
Функция не имеет ни наибольшего, ни наименьшего значений.
Четность и нечетность линейной функции зависят от значений коэффициентов k и b:
b ≠ 0, k = 0, значит, y = b — четная;
b = 0, k ≠ 0, значит, y = kx — нечетная;
b ≠ 0, k ≠ 0, значит, y = kx + b — функция общего вида;
b = 0, k = 0, значит, y = 0— как четная, так и нечетная функция.
Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.
График функции пересекает оси координат:
ось абсцисс ОХ — в точке (−b/k; 0);
ось ординат OY — в точке (0; b).
x = −b/k — является нулем функции.
Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.
Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.
Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0 функция принимает отрицательные значения на промежутке (−∞; −b/k) и положительные значения на промежутке (−b/k; +∞).
При k 0, то этот угол острый, если k
Видео:ЛИНЕЙНАЯ ФУНКЦИЯ y=kx график линейной функции 7 и 8 классСкачать
Построение линейной функции
В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида у = kx + b, достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.
Например, чтобы построить график функции y = 1/3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:
В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:
если k > 0, то график наклонен вправо;
если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
если b 0, то график функции y = kx + b выглядит так:
0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>
Если k > 0 и b > 0, то график функции y = kx + b выглядит так:
0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>
Если k > 0 и b
В задачах 7 класса можно встретить график уравнения х = а. Он представляет собой прямую линию, которая параллельна оси ОY все точки которой имеют абсциссу х = а.
Важно понимать, что уравнение х = а не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует определению функции.
Например, график уравнения х = 3:
Условие параллельности двух прямых:
График функции y = k1x + b1 параллелен графику функции y = k2x + b2, если k1 = k2.
Условие перпендикулярности двух прямых:
График функции y = k1x + b1 перпендикулярен графику функции y = k2x + b2, если k1k2 = −1 или k1 = −1/k2.
Точки пересечения графика функции y = kx + b с осями координат:
С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
Координаты точки пересечения с осью OY: (0; b).
С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = −b/k.
Координаты точки пересечения с осью OX: (−b/k; 0).
Видео:Линейная функция и её график. Алгебра, 7 классСкачать
Решение задач на линейную функцию
Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!
Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.
В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
Таким образом, нам надо построить график функции y = -4x — 10
Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
Поставим эти точки в координатной плоскости и соединим прямой:
Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).
Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.
Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.
Вычтем из второго уравнения системы первое, и получим k = 3.
Подставим значение k в первое уравнение системы, и получим b = -2.
Ответ: уравнение прямой y = 3x — 2.
Видео:ВАЖНЫЕ СВОЙСТВА Линейной Функции, как определить с помощью графика?Скачать
Линейная функция — определение и вычисление с примерами решения
Содержание:
Рассмотрим уравнение с двумя неизвестными
где и —заданные числа. Этому уравнению удовлетворяет бесконечное множество пар чисел и .
удовлетворяют следующие пары:
Для того чтобы найти пару чисел, удовлетворяющих уравнению , нужно придать произвольное числовое значение и подставить в уравнение , тогда получит определенное числовое значение. Например, если . Очевидно, что пара чисел и удовлетворяет уравнению. Так же и в случае уравнения (1) можно придать произвольное числовое значение и получить для соответствующее числовое значение.
Так как в данном уравнении может принимать любое числовое значение, то его называют переменной величиной. Поскольку выбор этого числового значения ничем не ограничен, то называют независимой переменной величиной или аргументом.
Для получаются также различные значения, но уже в зависимости от выбранного значения ; поэтому называют зависимым переменным или функцией.
Функцию , определяемую уравнением (1), называют линейной функцией.
Пример:
Вычислить значения линейной функции, определяемой уравнением , при следующих значениях независимого переменного: .
Решение:
Если ; если ; если .
Покажем, что если принять пару чисел и , удовлетворяющих уравнению (1), за абсциссу и ординату точки, то геометрическим местом этих точек будет прямая линия (рис. 14).
В самом деле, рассмотрим точку и точки и , координаты которых удовлетворяют уравнению (1), т. е. . Обозначим проекции точек , и на ось через , и , тогда , Проведем из точки прямую, параллельную оси . При этом получим
Предположим, что точки и , не лежат на родной прямой. Соединяя точку с точками , и , получим два прямоугольных треугольника и , из которых имеем:
Но так как и удовлетворяют уравнению (1), то
Выражения и являются отношениями противоположных катетов к прилежащим для углов и . Следовательно, и — а поэтому и так как углы острые. Это значит, что точки и лежат на одной прямой. Но мы предположили, что эти точки не лежат на одной прямой. Таким образом, мы пришли к противоречию, а это и доказывает, что точки и лежат на одной прямой. Обозначим угол через . Этот угол образован прямой с положительным направлением оси .
Так как и — произвольные точки, координаты которых удовлетворяют уравнению (1), то можно сделать следующее заключение: любая точка, координаты которой удовлетворяют уравнению (1), лежит на прямой, отсекающей на оси отрезок и образующей с положительным направлением оси угол такой, что .
Число называется начальной ординатой, число — угловым коэффициентом прямой.
Предыдущие рассуждения позволяют сделать вывод: линейная функция определяет на плоскости прямую, у которой начальная ордината равна , а угловой коэффициент .
Например, линейная функция определяет на координатной плоскости прямую, отсекающую на оси отрезок —4 и наклоненную к оси под углом в 60°, так как .
Если имеем определенную прямую, отсекающую на оси отрезок и наклоненную к оси под углом тангенс которого равен , то, взяв произвольную абсциссу, найдем на указанной прямой только одну точку, имеющую эту абсциссу, т. е. по заданному найдется только одна точка, а следовательно, и одно значение .
Очевидно, имеет место и такое предложение: Всякой прямой, отсекающей на оси отрезок и наклоненной к оси под углом, тангенс которого равен числу , соответствует линейная функция .
Координаты любой, точки, лежащей на указанной прямой, удовлетворяют уравнению (1), поэтому уравнение называют уравнением прямой.
Таким образом, всякая линейная функция является уравнением некоторой прямой.
Отметим частные случаи.
1. Пусть , т. е. линейная функция определяется уравнением
Прямая, определяемая этим уравнением, проходит через начало координат. Здесь пропорционален , т. е. если увеличить (уменьшить) в несколько раз, то и увеличится (уменьшится) во столько же раз.
2. Пусть , т. е. , откуда . Линейная функция определяется уравнением
Этому уравнению соответствует прямая, параллельная оси и отстоящая от нее на расстояние .
На основании всего сказанного в этом параграфе легко решаются следующие задачи.
Пример:
Даны точки и . Нужно узнать, лежат ли эти точки на прямой, уравнение которой имеет вид
Решение:
Если точка лежит на прямой, то ее координаты должны удовлетворять уравнению прямой. Поэтому для решения задачи подставим координаты точки в уравнение, получим . Это тождество, следовательно, точка лежит на прямой. Подставляя координаты точки , получаем . Отсюда видно, что точка не лежит на прямой.
Пример:
Построить прямую, уравнение которой
Решение:
Чтобы построить прямую, надо знать, например, две ее точки. Поэтому дадим произвольное значение, например , и найдем из уравнения значение . Значит, точка лежит на прямой. Это первая точка. Теперь дадим какое-нибудь другое значение, например , и вычислим у из уравнения . Получим. Точка лежит на прямой. Это вторая точка. Строим точки и (рис. 15) и проводим через них прямую, это и есть искомая прямая.
Видео:Математический анализ, 13 урок, Наибольшее и наименьшее значение функции на отрезкеСкачать
Основное свойство линейной функции
Рассмотрим линейную функцию . Найдем значение этой функции при :
Здесь первое и второе значения различны, они отличаются друг от друга на величину Величину разности , на которую изменяется при переходе от к , назовем приращением независимого переменного . Эту величину часто будем обозначать через , так что . Найдем, насколько изменилось значение при изменении , на . Для этого вычтем из значение :
т. е. приращение линейной функции пропорционально приращению независимого переменного.
Это и есть основное свойство линейной функции.
Заметим, что , может быть больше, а может быть и меньше, чем . Поэтому может быть как положительным, так и отрицательным числом, иначе говоря, приращение независимого переменного может быть любого знака. То же самое относится и к приращению функции, т. е. к величине.
Пример:
Найдем приращение функции , если приращение независимого переменного .
Решение:
По основному свойству . Приращение этой же функции , если , будет равно . В этом случае приращения независимого переменного и функции отрицательны, т. е. в этом случае и независимое переменное и функция не увеличиваются, а уменьшаются.
Пример:
Найдем приращение функции при изменении на . Решение:
Задачи на прямую
Пример:
Найти угол между двумя прямыми, заданными уравнениями
Решение:
При пересечении прямых образуются четыре попарно равных угла. Найдя один из них, легко найти и другие. На рис. 16 прямые обозначены соответственно (1) и (2).
Угол является внешним по отношению к треугольнику , поэтому он равен сумме двух внутренних углов треугольника, с ним не смежных, т. е. откуда Но углы и , непосредственно неизвестны, а известны их тангенсы. Поэтому напишем
Пример:
Найти угол между прямыми, заданными уравнениями . Здесь ;
Решение:
Применяя формулу (1), получим:
Если же будем считать, что то
Получены два ответа: сначала найден острый угол между заданными прямыми, а затем — тупой.
Если заданы две параллельные прямые, то углы и , равны, как соответственные, следовательно, тангенсы их тоже равны
Таким образом, мы приходим к выводу: если прямые параллельны, то их угловые коэффициенты равны.
Если прямые перпендикулярны, то угол между ними равен 90°, т. е. . Но тангенс прямого угла не существует, поэтому формула (1) не должна давать ответа, а это может быть только в том случае, когда знаменатель равен нулю (на нуль делить нельзя):
Это и есть условие перпендикулярности двух прямых. Это условие удобно запомнить в следующей формулировке: если две прямые перпендикулярны, то их угловые коэффициенты обратны по величине и противоположны по знаку.
Пример:
Найдем угол между прямыми, заданными уравнениями Здесь угловые коэффициенты (первый равен 3, а второй ) обратны по величине и противоположны по знаку.
Решение:
Следовательно, рассматриваемые прямые перпендикулярны.
Пример:
Даны две точки: , где , (т. е. эти точки не лежат на одной прямой, параллельной оси ). Написать уравнение прямой, проходящей через точки и .
Решение:
Искомая прямая не параллельна оси , поэтому ее уравнение можно написать в виде . Значит, для решения задачи надо определить числа и . Так как прямая проходит через точки , и , то координаты этих точек должны удовлетворять уравнению , т. е.
В уравнениях и все числа, кроме и , известны, поэтому эти уравнения можно рассматривать как систему уравнений относительно и .
Решая систему, находим:
Подставляя найденные выражения в уравнение , получим
Это и есть уравнение прямой, проходящей через две точки, не расположенные на прямой, параллельной оси . Полученному уравнению можно придать форму, удобную для запоминания, а именно:
Пример:
Написать уравнение прямой, проходящей через данную точку и образующей с осью угол .
Решение:
Прежде всего найдем угловой коэффициент искомой прямой: он равен тангенсу угла . Обозначим . Значит, уравнение прямой можно написать в виде , где пока число неизвестно.
Так как прямая должна проходить через точку , то координаты точки удовлетворяют этому уравнению, т. е.
Находим отсюда неизвестное , получим . Подставляя найденное в уравнение , будем иметь
Это и есть уравнение прямой, проходящей через точку в заданном направлении.
Если в уравнении (4) менять направление, не меняя точку , то получим уравнение всех прямых, проходящих через заданную точку. Уравнение , в котором переменное, а и не меняются, называется уравнением пучка прямых, проходящих через точку .
Пример:
Напишем уравнение прямой, проходящей через точку и образующей с осью угол 45°.
Решение:
Так как , то угловой коэффициент равен 1; . Уравнение прямой запишется в виде
Общее уравнение прямой. Неявная линейная функция
Рассмотрим уравнение первой степени с двумя неизвестными
Решим его относительно :
т. е. мы получили линейную функцию, где ,
Уравнения (1) и (2) равносильны, поэтому пара чисел и , удовлетворяющих уравнению (2), будет удовлетворять и уравнению (1). Так как уравнению (2) соответствует некоторая прямая, то эта же прямая будет соответствовать и уравнению (1).
Координаты любой точки, лежащей на этой прямой, удовлетворяют уравнению (1), поэтому будем называть его также уравнением прямой. Рассмотрим особо случай, когда , так как на нуль делить нельзя. Уравнение (1) примет вид или , откуда . Поэтому, каков бы ни был всегда равен . Это имеет место для прямой, параллельной оси ; в самом деле, на ней можно найти точку с любой ординатой, но все точки этой прямой имеют одну и ту же абсциссу. Таким образом, любому уравнению первой степени соответствует некоторая прямая. Придавая в уравнении (1) коэффициентам А, В и С различные значения, можно получить любое уравнение первой степени. Поэтому уравнение (1) называют общим уравнением прямой.
Из уравнения (1) (если ) можно определить , т. е. получить линейную функцию; поэтому говорят, что уравнение (1) определяет неявно линейную функцию или что уравнение (1) есть неявная линейная функция.
Система двух уравнений первой степени
Напомним, что две прямые, расположенные на плоскости, могут или пересекаться, или быть параллельными (т. е. не пересекаться), или сливаться (в этом случае можно сказать, что они пересекаются в каждой своей точке). Рассмотрим систему двух уравнений
Каждое из этих уравнений является уравнением прямой. Решить систему — это значит найти значения и , которые удовлетворяют и первому и второму уравнениям. Но так как и определяют точку, то следовательно, решить систему—это значит найти точку, лежащую и на первой и на второй прямых, т. е. найти точку пересечения прямых.
Пример:
Найдем точку пересечения двух прямых:
Решение:
Решая эту систему, получим: т. е. прямые пересекаются в точке (1, 2) (рис. 17).
Пример:
Найдем точку пересечения двух прямых:
Решение:
Решая эту систему, получим: Последнее равенство нелепо, значит, прямые не пересекаются, т. е. они параллельны.
Пример:
Найдем точку пересечения данных прямых
Решение:
Решая эту систему, получим:
Полученное равенство всегда справедливо, т. е. справедливо при любом значении . Это значит, что две прямые пересекаются в каждой своей точке, что может быть только тогда, когда они сливаются.
Заметим, что два уравнения, рассматриваемые в этом примере, являются равносильными, поэтому они и представляют одну и ту же прямую.
Примеры применения линейной функции
Линейная функция встречается в формулировках многих физических законов и технических задач. Приведем примеры.
Пример:
Если точка движется равномерно по прямой, то ее расстояние от выбранной точки (от начала координат) выражается при помощи уравнения , где — начальное расстояние, —скорость, — время; это, как мы уже знаем, есть линейная функция.
Пример:
Закон Ома записывается в виде , где — напряжение, — сопротивление и —ток. Если не изменяется, то является линейной функцией тока .
Пример:
Если стоимость провоза единицы товара по железной дороге равна руб. за километр, то стоимость провоза единиц товара на км равна
Если же стоимость товара на месте равна руб., то после перевозки за него надо заплатить
Здесь — линейная функция .
Линейная функция встречается в различных областях, но, где бы она ни встречалась, ее всегда можно рассматривать как уравнение прямой. Этим обстоятельством часто пользуются при решении задач.
Пример:
Два города А и В, расстояние между которыми равно 300 км, находятся на одной железнодорожной магистрали. На этой же магистрали между городами А к В надо выбрать пункт С, в котором предполагается устроить склад нефти для снабжения указанных городов. Надо выбрать пункт С так, чтобы общая стоимость перевозок нефти для снабжения города А и города В была наименьшей. Известно, что город А потребляет 400 т нефти, а город В —200 т. Перевозка одной тонны нефти на один километр обходится в руб.
Решение:
Обозначим расстояние от А до предполагаемого пункта С через . Тогда расстояние от города В до С равно 300 — . Стоимость перевозки одной тонны нефти из С в А равна руб., а перевозки 400 т—400 руб. Аналогично перевозка нефти из С в В будет стоить руб. Стоимость всех перевозок, которую обозначим через , будет выражаться так:
Это линейная функция. Если примем за абсциссу, а за ординату точки, то полученная линейная функция опредеяет уравнение некоторой прямой. Угловой коэффициент ее равен , т. е. положителен, следовательно, эта прямая образует с осью острый угол и поэтому с увеличением независимого переменного поднимается вверх. По смыслу задачи величина заключена между 0 и 300, т. е. . При величина у принимает значение 60000а, а при — значение 120000а. Ясно, что 60 000а есть наименьшее из возможных значений, 120 000а— наибольшее.
Так как пункт С надо выбрать так, чтобы стоимость была наименьшей, то его следует расположить в городе А; если же этого сделать нельзя по каким-либо соображениям, то, чем ближе расположить его к А, тем выгодней.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Квадратичная функция
- Тригонометрические функции
- Производные тригонометрических функции
- Производная сложной функции
- Функции нескольких переменных
- Комплексные числ
- Координаты на прямой
- Координаты на плоскости
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
💡 Видео
Сверхсветовая скорость во ВселеннойСкачать
Линейная функция. Нахождение формулы линейной функцииСкачать
Занятие 1. График линейной функции y=kx+bСкачать
7 класс, 8 урок, Линейное уравнение с двумя переменными и его графикСкачать
Урок ГРАФИК ЛИНЕЙНОЙ ФУНКЦИИ 7 КЛАСССкачать
Взял POCO X6 и ЭТО СКАЗОЧНЫЙ Смартфон но ЕСТЬ НЮАНС! 🔥 Лучше Poco F5 😱?Скачать
Линейная функция и ее график. 7 класс.Скачать
Построить график ЛИНЕЙНОЙ функции и найти:Скачать
Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать
Линейное уравнение. Что это?Скачать