Чем отличается линейное уравнение от бернулли

Дифференциальное уравнение Бернулли и методы его решения

Чем отличается линейное уравнение от бернулли

Видео:10. Уравнения БернуллиСкачать

10. Уравнения Бернулли

Решение дифференциального уравнения Бернулли приведением к линейному уравнению

Рассмотрим дифференциальное уравнение Бернулли:
(1) ,
где n ≠ 0 , n ≠ 1 , p и q – функции от x .
Разделим его на y n . При y ≠ 0 или n 0 имеем:
(2) .
Это уравнение сводится к линейному с помощью замены переменной:
.
Покажем это. По правилу дифференцирования сложной функции:
;
.
Подставим в (2) и преобразуем:
;
.
Это – линейное, относительно z , дифференциальное уравнение. После его решения, при n > 0 , следует рассмотреть случай y = 0 . При n > 0 , y = 0 также является решением уравнения (1) и должно входить в ответ.

Видео:Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.

Решение методом Бернулли

Рассматриваемое уравнение (1) также можно решить методом Бернулли. Для этого ищем решение исходного уравнения в виде произведения двух функций:
y = u·v ,
где u и v – функции от x . Дифференцируем по x :
y′ = u′ v + u v′ .
Подставляем в исходное уравнение (1):
;
(3) .
В качестве v возьмем любое, отличное от нуля, решение уравнения:
(4) .
Уравнение (4) – это уравнение с разделяющимися переменными. Решаем его и находим частное решение v = v ( x ) . Подставляем частное решение в (3). Поскольку оно удовлетворяет уравнению (4), то выражение в круглых скобках обращается в нуль. Получаем:
;
.
Здесь v – уже известная функция от x . Это уравнение с разделяющимися переменными. Находим его общее решение, а вместе с ним и решение исходного уравнения y = uv .

Видео:7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.

Примеры решений дифференциального уравнения Бернулли

Пример 1

Решить уравнение
(П1.1)

Это дифференциальное уравнение Бернулли. Решаем его методом Бернулли. Ищем решение в виде произведения двух функций: . Тогда
. Подставляем в (П1.1):
;
(П1.2) .
Одну из этих функций мы можем выбрать произвольным образом. Выберем v так, чтобы выражение в круглых скобках равнялось нулю:
(П1.3) .
Тогда подставляя (П1.3) в (П1.2), мы получим дифференциальное уравнение с разделяющимися переменными:
(П1.4) .

Сначала мы определим функцию v . Нам нужно найти любое, отличное от нуля, решение уравнения (П1.3). Решаем его. Для этого разделяем переменные и интегрируем.
;
;
;
;
.
Отсюда , или . Возьмем решение с и знаком ′плюс′. Тогда , или .

Итак, мы нашли функции u и v . Находим искомую функцию y :
.
Заменим постоянную интегрирования: . Тогда общее решение исходного уравнения (П1.1) примет вид:
.

Когда мы делили на u , то предполагали, что . Теперь рассмотрим случай . Тогда . Нетрудно видеть, что постоянная функция также является решением исходного уравнения (П1.1) ⇑.

Общее решение уравнения: .
Уравнение также имеет решение .

Пример 2

На первый взгляд, кажется, что это дифференциальное уравнение не похоже на уравнение Бернулли. Если считать x независимой переменной, а y – зависимой (то есть если y – это функция от x ), то это так. Но если считать y независимой переменной, а x – зависимой, то легко увидеть, что это – уравнение Бернулли.

Итак, считаем что x является функцией от y . Подставим в исходное уравнение и умножим на :
;
;
(П2.1) .
Это – уравнение Бернулли с n = 2 . Оно отличается от рассмотренного выше, уравнения (1), только обозначением переменных ( x вместо y ). Решаем методом Бернулли. Делаем подстановку:
x = u v ,
где u и v – функции от y . Дифференцируем по y :
.
Подставим в (П2.1):
;
(П2.2) .
Ищем любую, отличную от нуля функцию v ( y ) , удовлетворяющую уравнению:
(П2.3) .
Разделяем переменные и интегрируем:
;
;
.
Поскольку нам нужно любое решение уравнения (П2.3), то положим C = 0 :
; ; .
Возьмем решение со знаком ′плюс′:
.
Подставим в (П2.2) учитывая, что выражение в скобках равно нулю (ввиду (П2.3)):
;
;
.
Разделяем переменные и интегрируем. При u ≠ 0 имеем:
;
(П2.4) ;
.
Во втором интеграле делаем подстановку :
;
.
Интегрируем по частям:
;
.
Подставляем в (П2.4):
.
Возвращаемся к переменной x :
;
;
.

Автор: Олег Одинцов . Опубликовано: 07-08-2012 Изменено: 29-10-2020

Видео:Закон БернуллиСкачать

Закон Бернулли

Дифференциальное уравнение Бернулли

Статья раскрывает методы решения дифференциального уравнения Бернулли. В заключении будут рассмотрены решения примеров с подробным объяснением.

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Приведение к линейному уравнению 1 порядка

Дифференциальное уравнение Бернулли записывается как y ‘ + P ( x ) · y = Q ( x ) · y n . Если n = 1 , тогда его называют с разделяющими переменными. Тогда уравнение запишется как y ‘ + P ( x ) · y = Q ( x ) · y ⇔ y ‘ = Q ( x ) — P ( x ) · y .

Для того, чтобы решить такое уравнение, необходимо первоначально привести к линейному неоднородному дифференциальному уравнению 1 порядка с новой переменной вида z = y 1 — n . Проделав замену, получаем, что y = z 1 1 — n ⇒ y ‘ = 1 1 — n · z n 1 — n · z ‘ .

Отсюда вид уравнения Бернулли меняется:

y ‘ + P ( x ) · y = Q ( x ) · y n 1 1 — n · z 1 1 — n · z ‘ + P ( x ) · z 1 1 — n = Q ( x ) · z 1 1 — n z ‘ + ( 1 — n ) · P ( x ) · z = ( 1 — n ) · Q ( x )

Этот процесс вычисления и подстановки способствует приведению к линейному неоднородному дифференциальному уравнению первого порядка. В итоге проводим замену и получаем его решение.

Найти общее решение для уравнения вида y ‘ + x y = ( 1 + x ) · e — x · y 2 .

Решение

По условию имеем, что n = 2 , P ( x ) = x , Q ( x ) = ( 1 + x ) · e — x . Необходимо ввести новую переменную z = y 1 — n = y 1 — 2 = 1 y , отсюда получим, что y = 1 z ⇒ y ‘ = — z ‘ z 2 . Провести замену переменных и получить ЛНДУ первого порядка. Запишем, как

y ‘ + x y = ( 1 + x ) · e — x · y 2 — z ‘ z 2 + x z = ( 1 + x ) · e — x · 1 z 2 z ‘ — x z = — ( 1 + x ) · e — x

Следует проводить решение при помощи метода вариации произвольной постоянной.

Проводим нахождение общего решения дифференциального уравнения вида:

d z d x — x z = 0 ⇔ d z z = x d x , z ≠ 0 ∫ d z z = ∫ x d x ln z + C 1 = x 2 2 + C 2 e ln z + C 1 = e x 2 2 + C 2 z = C · e x 2 2 , C = e C 2 — C 1

Где z = 0 , тогда решение дифференциального уравнения считается z ‘ — x z = 0 , потому как тождество становится равным нулю при нулевой функции z . Данный случай записывается как z = C ( x ) · e x 2 2 , где С = 0 . Отсюда имеем, что общим решением дифференциального уравнения z ‘ — x z = 0 считается выражение z = C · e x 2 2 при С являющейся произвольной постоянной.

Необходимо варьировать переменную для того, чтобы можно было принять
z = C ( x ) · e x 2 2 как общее решение дифференциального уравнения вида z ‘ — x z = — ( 1 + x ) · e — x .

Отсюда следует, что производится подстановка вида

C ( x ) · e x 2 2 ‘ — x · C ( x ) · e x 2 2 = — ( 1 + x ) · e — x C ‘ ( x ) · e x 2 2 + C ( x ) · e x 2 2 ‘ — x · C ( x ) · e x 2 2 = — 1 + x · e — x C ‘ ( x ) · e x 2 2 + C ( x ) · x · e x 2 2 — x · C ( x ) · e x 2 2 = — ( 1 + x ) · e — x C ‘ ( x ) · e x 2 2 = — ( 1 + x ) · e — x 2 2 — x C ( x ) = ∫ — ( 1 + x ) · e — x 2 2 — x d x = ∫ e — x 2 2 — x d — x 2 2 — x = e — x 2 x — x + C 3

С 3 принимает значение произвольной постоянной. Следовательно:

z = C x · e x 2 2 = e — x 2 2 — x + C 3 · e x 2 2 = e — x + C 3 · e x 2 2

Дальше производится обратная замена. Следует, что z = 1 y считается за y = 1 z = 1 e — x + C 3 · e x 2 2 .

Ответ: это решение считается решением исходного дифференциального уравнения Бернулли.

Видео:Линейное дифференциальное уравнение. Метод БернуллиСкачать

Линейное дифференциальное уравнение. Метод Бернулли

Представление произведением функций u ( x ) и v ( x )

Имеется другой метод решения дифференциального уравнения Бернулли, который основывается на том, что функцию представляют при помощи произведения функций u ( x ) и v ( x ) .

Тогда получаем, что y ‘ = ( u · v ) ‘ = u ‘ · v + u · v ‘ . Производим подстановку в уравнение Бернулли y ‘ + P ( x ) · y = Q ( x ) · y n и упростим выражение:

u ‘ · v + u · v ‘ + P ( x ) · u · v = Q ( x ) · u · v n u ‘ · v + u · ( v ‘ + P ( x ) · v ) = Q ( x ) · u · v n

Когда в качестве функции берут ненулевое частное решение дифференциального уравнения v ‘ + P ( x ) · v = 0 , тогда придем к равенству такого вида

u ‘ · v + u · ( v ‘ + P ( x ) · v ) = Q ( x ) · ( u · v ) n ⇔ u ‘ · v = Q ( x ) · ( u · v ) n .

Отсюда следует определить функцию u .

Решить задачу Коши 1 + x 2 · y ‘ + y = y 2 · a r c t g x , y ( 0 ) = 1 .

Решение

Переходим к нахождению дифференциального уравнения вида 1 + x 2 · y ‘ = y · a r c t g x , которое удовлетворяет условию y ( 0 ) = 1 .

Обе части неравенства необходимо поделить на x 2 + 1 , после чего получим дифференциальное уравнение Бернулли y ‘ + y x 2 + 1 = y 2 · a r c t g x x 2 + 1 .

Перейдем к поиску общего решения.

Принимаем y = u · v , отсюда получаем, что y ‘ = u · v ‘ = u ‘ · v + u · v ‘ и уравнение запишем в виде

y ‘ + y x 2 + 1 = y 2 · a r c t g x x 2 + 1 u ‘ · v + u · v ‘ + u · v x 2 + 1 = u · v 2 · a r c t g x x 2 + 1 u ‘ · v + u · v ‘ + v x 2 + 1 = u 2 · v 2 · a r c t g x x 2 + 1

Проведем поиск частного решения с наличием разделяющих переменных v ‘ + v x 2 + 1 = 0 , отличных от нуля. Получим, что

d v v = — d x x 2 + 1 , v ≠ 0 ∫ d v v = — ∫ d x x 2 + 1 ln v + C 1 = — a r c t g x + C 2 v = C · e — a r c t g x , C = e C 2 — C 1

В качестве частного решения необходимо брать выражение вида v = e — a r c r g x . Преобразуем и получим, что

u ‘ · v + u · v ‘ + v x 2 + 1 = u 2 · v 2 · a r c r g x x 2 + 1 u ‘ · v + u · 0 = u 2 · v 2 · a r c t g x x 2 + 1 u ‘ = u 2 · v · a r c t g x x 2 + 1 u ‘ = u 2 · e — a r c t g x · a r c t g x x 2 + 1 ⇔ d u u 2 = e — a r c t g x · a r c t g x x 2 + 1 d x , u ≠ 0 ∫ d u u 2 = ∫ e — a r c t g x · a r c t g x x 2 + 1 d x ∫ d u u 2 = ∫ e — a r c t g x · a r c t g x d ( a r c t g x )

Имеем, что u = 0 рассматривается как решение дифференциального уравнения. Далее необходимо решить каждый из полученных интегралов по отдельности.

Интеграл с левой стороны, имеющего вид ∫ d u u 2 , необходимо найти по таблице первообразных. Получаем, что

∫ d u u 2 = — 1 u + C 3 .

Чтобы найти интеграл вида ∫ e — a r c t g x · a r c t g x d ( a r c t g x ) , принимаем значение a r c t g x = z и применяем метод интегрирования по частям. Тогда имеем, что

∫ e — a r c t g x · a r c t g x d ( a r c t g x ) = a r c t g x = z = = ∫ e — z · z d z = u 1 = z , d v 1 = e — z d z d u 1 = d z , v 1 = — e — z = = — z · e — z + ∫ e — z d z = — z · e — z — e — z + C 4 = = — e — z · ( z + 1 ) + C 4 = — e — a r c t g x · ( a r c t g x + 1 ) + C 4

— 1 u + C 3 = — e — a r c t g x · a r c t g x + 1 + C 4 1 u = e — a r c r g x · a r c t g x + 1 + C 3 — C 4 u = 1 e — a r c r g x · ( a r c t g x + 1 ) + C

Отсюда находим, что

y = u · v = e — a r c t g x e — a r c r g x · ( a r c t g x + 1 ) + C и y = 0 · v = 0 · e — a r c r g x = 0 являются решениями дифференциального уравнения Бернулли вида y ‘ + y x 2 + 1 = y 2 · a r c t g x x 2 + 1 .

На данном этапе следует переходить к поиску частного решения, которое удовлетворяет начальному условию. Получим, что

y = e — a r c t g x e — a r c t g x · a r c t g x + 1 + C , тогда запись примет вид y 0 = e — a r c t g 0 e — a r c t g 0 · a r c t g 0 + 1 + C = 1 1 + C .

Очевидно, что 1 1 + C = 1 ⇔ C = 0 . Тогда искомой задачей Коши будет являться полученное уравнение вида y = e — a r c t g x e — a r c t g x · a r c t g x + 1 + 0 = 1 a r c t g x + 1 .

Видео:Урок 133. Закон Бернулли. Уравнение БернуллиСкачать

Урок 133. Закон Бернулли. Уравнение Бернулли

Дифференциальные уравнения Бернулли в примерах решений

Дифференциальным уравнением Бернулли называется уравнение вида

Чем отличается линейное уравнение от бернулли,

Таким образом, дифференциальное уравнение Бернулли обязательно содержит функцию y в степени, отличной от нуля и единицы.

В случае, если m = 0 , уравнение является линейным, а в случае, если m = 1 , уравнение является уравнением с разделяющимися переменными.

Дифференциальное уравнение Бернулли можно решить двумя методами.

  1. Переходом с помощью подстановки к линейному уравнению.
  2. Методом Бернулли.

Переход от уравнения Бернулли к линейному уравнению.

Уравнение делим на Чем отличается линейное уравнение от бернулли:

Чем отличается линейное уравнение от бернулли,

Чем отличается линейное уравнение от бернулли.

Обозначим Чем отличается линейное уравнение от бернулли. Тогда Чем отличается линейное уравнение от бернулли, откуда Чем отличается линейное уравнение от бернулли. Переходя к новой переменной, получим уравнение

Чем отличается линейное уравнение от бернулли,

которое является линейным дифференциальным уравнение первого порядка. Его можно решить методом вариации константы Лагранжа или методом Бернулли.

Решение методом Бернулли.

Решение следует искать в виде произведения двух функций y = uv . Подставив его в дифференциальное уравнение, получим уравнение

Чем отличается линейное уравнение от бернулли.

Из слагаемых, содержащих функцию u в первой степени, вынесем её за скобки:

Чем отличается линейное уравнение от бернулли.

Приравняв выражение в скобках нулю, то есть

Чем отличается линейное уравнение от бернулли,

получим дифференциальное уравнение с разделяющимися переменными для определения функции v .

Функцию u следует находить из дифференциального уравнения

Чем отличается линейное уравнение от бернулли,

которое также является уравнение с разделяющимися переменными.

Пример 1. Решить дифференциальное уравнение Бернулли

Чем отличается линейное уравнение от бернулли.

Решение. Решим дифференциальное уравнение двумя методами.

1. Переход от уравнения Бернулли к линейному уравнению. Данное уравнение умножим на y³ :

Чем отличается линейное уравнение от бернулли.

Введём обозначение Чем отличается линейное уравнение от бернулли, тогда Чем отличается линейное уравнение от бернулли, Чем отличается линейное уравнение от бернуллии приходим к уравнению

Чем отличается линейное уравнение от бернулли

Чем отличается линейное уравнение от бернулли.

Решим его методом Бернулли. В последнее уравнение подставим z = uv , z‘ = uv + uv‘ :

Чем отличается линейное уравнение от бернулли,

Чем отличается линейное уравнение от бернулли.

Выражение в скобках приравняем нулю и решим полученное дифференциальное уравнение:

Чем отличается линейное уравнение от бернулли

Полученную функцию v подставим в уравнение:

Чем отличается линейное уравнение от бернулли

Чем отличается линейное уравнение от бернулли

2. Методом Бернулли. Ищем решение в виде произведения двух функций y = uv . Подставив его и y‘ = uv + uv‘ в данное дифференциальное уравнение, получим

Чем отличается линейное уравнение от бернулли

Выражение в скобках приравняем нулю и определим функцию v :

Чем отличается линейное уравнение от бернулли

Полученную функцию v подставим в уравнение и определим функцию u :

Чем отличается линейное уравнение от бернулли

И, наконец, найдём решение данного дифференциального уравнения:

Чем отличается линейное уравнение от бернулли

Пример 2. Решить дифференциальное уравнение Бернулли

Чем отличается линейное уравнение от бернулли.

Решение. Это уравнение, в котором m = −1 . Применив подстановку y = uv , получим

Чем отличается линейное уравнение от бернулли

Выражение в скобках приравняем нулю и определим функцию v :

Чем отличается линейное уравнение от бернулли

Полученную функцию v подставим в уравнение и определим функцию u :

Чем отличается линейное уравнение от бернулли

Таким образом, получаем решение данного дифференциального уравнения:

Чем отличается линейное уравнение от бернулли.

Пример 3. Решить дифференциальное уравнение Бернулли

Чем отличается линейное уравнение от бернулли.

Решение. Это уравнение можно решить, используя подстановку y = uv . Получаем

Чем отличается линейное уравнение от бернулли

Приравняем нулю выражение в скобках и решим полученное уравнение с разделяющимися переменными:

Чем отличается линейное уравнение от бернулли

Подставляем v в данное уравнение и решаем полученное уравнение:

Чем отличается линейное уравнение от бернулли

Чем отличается линейное уравнение от бернулли

Чем отличается линейное уравнение от бернулли

и проинтегрируем обе части уравнения:

Чем отличается линейное уравнение от бернулли

Далее используем подстановку

Чем отличается линейное уравнение от бернулли:

Чем отличается линейное уравнение от бернулли.

Чем отличается линейное уравнение от бернулли

Чем отличается линейное уравнение от бернулли

Таким образом, получаем функцию u :

Чем отличается линейное уравнение от бернулли.

и решение данного дифференциального уравнения:

Чем отличается линейное уравнение от бернулли

Пример 4. Решить задачу Коши для дифференциального уравнения

Чем отличается линейное уравнение от бернулли

при условии Чем отличается линейное уравнение от бернулли.

Решение. Перепишем уравнение, перенося в левую сторону линейные слагаемые, а в правую — нелинейные:

Чем отличается линейное уравнение от бернулли.

Это уравнение Бернулли, которое можно решить, используя подстановку y = uv , y‘ = uv + uv‘ :

Чем отличается линейное уравнение от бернулли

Выражение в скобках приравняем нулю и решим дифференциальное уравнение с разделяющимися переменными:

Чем отличается линейное уравнение от бернулли

Подставим функцию v в данное уравнение и решим полученное дифференциальное уравнение:

Чем отличается линейное уравнение от бернулли

Вычислим каждый интеграл отдельно. Первый:

Чем отличается линейное уравнение от бернулли.

Второй интеграл интегрируем по частям. Введём обозначения:

Чем отличается линейное уравнение от бернулли

Чем отличается линейное уравнение от бернулли

Приравниваем друг другу найденные значения интегралов и находим функцию u :

Чем отличается линейное уравнение от бернулли

Таким образом, общее решение данного дифференциального уравнения:

Чем отличается линейное уравнение от бернулли.

Используем начальное условие, чтобы определить значение константы:

Чем отличается линейное уравнение от бернулли

Ищем частное решение, удовлетворяющее начальному условию:

Чем отличается линейное уравнение от бернулли

В результате получаем следующее частное решение данного дифференциального уравнения:

Чем отличается линейное уравнение от бернулли.

И напоследок — пример с альтернативным обозначением производных — через дробь.

Пример 5. Решить дифференциальное уравнение Бернулли

Чем отличается линейное уравнение от бернулли.

Решение. Решим это уравнение первым из представленных в теоретической части методом — переходом к линейному уравнению. Разделив данное уравнение почленно на y³ , получим

Чем отличается линейное уравнение от бернулли.

Введём новую функцию Чем отличается линейное уравнение от бернулли. Тогда

Чем отличается линейное уравнение от бернулли.

Подставляя эти значения в уравнение, полученное на первом шаге, получим линейное уравнение:

Чем отличается линейное уравнение от бернулли.

Найдём его общий интеграл:

Чем отличается линейное уравнение от бернулли,

Чем отличается линейное уравнение от бернулли.

Подставляя эти значение в полученное линейное уравнение, получаем

Чем отличается линейное уравнение от бернулли

Чем отличается линейное уравнение от бернулли.

Приравниваем нулю выражение в скобках:

Чем отличается линейное уравнение от бернулли

Для определения функции u получаем уравнение

Чем отличается линейное уравнение от бернулли.

Чем отличается линейное уравнение от бернулли

Интегрируем по частям:

Чем отличается линейное уравнение от бернулли

Таким образом, общий интеграл данного уравнения

Чем отличается линейное уравнение от бернулли

Чем отличается линейное уравнение от бернулли.

🔥 Видео

Дифференциальные уравнения, 5 урок, Уравнение БернуллиСкачать

Дифференциальные уравнения, 5 урок, Уравнение Бернулли

Как решать линейные уравнения #математика #математика7классСкачать

Как решать линейные уравнения   #математика #математика7класс

Уравнение Бернулли Метод БернуллиСкачать

Уравнение Бернулли  Метод Бернулли

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Линейное уравнение. Что это?Скачать

Линейное уравнение. Что это?

Закон БернуллиСкачать

Закон Бернулли

Уравнения БернуллиСкачать

Уравнения Бернулли

#Дифуры I. Урок 8. Уравнение БернуллиСкачать

#Дифуры I. Урок 8. Уравнение Бернулли

Алгебра 7 Линейное уравнение с одной переменнойСкачать

Алгебра 7 Линейное уравнение с одной переменной

Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

ОГЭ Как из уравнения с дробью получить обычное линейное уравнение #огэ#огэ2023#алгебра#огэматематикаСкачать

ОГЭ Как из уравнения с дробью получить обычное линейное уравнение #огэ#огэ2023#алгебра#огэматематика
Поделиться или сохранить к себе: