Частные случаи тригонометрических уравнений арккосинус

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Узнать ещё

Знание — сила. Познавательная информация

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Формулы тригонометрических уравнений

Для удобной работы все формулы для решения простейших тригонометрических уравнений, включая частные случаи, а также таблицы арксинусов, арккосинусов, арктангенсов и арккотангенсов собраны на одной странице.

I. sin x =a

При │a│>1 это уравнение решений не имеет.

При │a│не превосходящем 1 уравнение имеет бесконечное множество решений:

Частные случаи тригонометрических уравнений арккосинус

Таблица арксинусов

Частные случаи тригонометрических уравнений арккосинус

Частные случаи тригонометрических уравнений арккосинус

II. cos x=a

При │a│>1 это уравнение решений не имеет.

При │a│не превосходящем 1 уравнение имеет бесконечное множество решений:

Частные случаи тригонометрических уравнений арккосинус

Таблица арккосинусов

Частные случаи тригонометрических уравнений арккосинус

Частные случаи тригонометрических уравнений арккосинус

Частные случаи синуса и косинуса:

Частные случаи тригонометрических уравнений арккосинус

III. tg x=a

Уравнение имеет бесконечное множество решений при любых значениях a.

Частные случаи тригонометрических уравнений арккосинус

Таблица арктангенсов

Частные случаи тригонометрических уравнений арккосинус

Частные случаи тригонометрических уравнений арккосинус

IV. ctg x = a

Уравнение имеет бесконечное множество решений при любых значениях a.

Частные случаи тригонометрических уравнений арккосинус

Таблица арккотангенсов

Частные случаи тригонометрических уравнений арккосинус

Частные случаи тригонометрических уравнений арккосинус

21 комментарий на «Формулы тригонометрических уравнений»

Отличный сайт, спасибо, помог.

Спасибо за отличную оценку!
Я рада, что сайт Вам помог.

Пожалуйста!) Успехов Вам в учебе!

Сайт действительно хороший =)
Интересно, просто, ясно.
Спасибо Вам, Светлана Иванова!

Ариша, спасибо за теплый отзыв!

Опечатка в таблице арккотангенсов )
А так все отлично, хорошая статья

Опечатку исправила. Спасибо!

Не силен в этих науках и школу прогуливал всегда!Жалею теперь об этом!Но вот беда ума не могу приложить что может значить arccos0,932 что это?с чем его едят ?И как его посчитать!Смотрю на выше написанное и не пойму как мне это применить!Помгите убогому!

Антон, разобраться в математике можно в любом возрасте, было бы желание. Но придется потрудиться (а где без этого?).
arccos 0,932 — это такое число из промежутка [0;П], косинус которого равен 0,932.
Можно открыть таблицу Брадиса и найти угол, косинус которого равен этому числу: [0,932 approx cos ]Далее, если требуется ответ представить в радианах, градусы переводим в радианы. [pi = , Rightarrow = frac<>,][ = 21 cdot frac<> = frac<><>.]Отсюда [arccos 0,932 approx frac<><>.]
Если же arccos 0,932 появился в ходе решения тригонометрического уравнения — оставляйте его в таком виде.
Например:[cos x = 0,932][x = pm arccos 0,932 + 2pi n,n in Z.]Все, дальше ничего считать не надо (запись в таком виде — точное решение, а при нахождении арккосинуса ответ станет не точным, а приближенным. Поэтому его и не принято упрощать).

Светлана спасибо вам большое за помощь)Есть еще один вопросик я весь google перекопал. Какова единица измерения числа которое получается в результате вычисления cos или sin угла например sin47.376 градусов =0,735??какая единица измерения Arccos0,735=42.692. что это за величина и какая ее единица измерения?Голова дымит, а надо знать это,а то на работу не возьмут!

Косинус угла и синус угла — это просто число (в пределах от -1 до 1). Неважно, задан угол в градусах или в радианах.
Теперь — об арксинусах и арккосинусах. Если использовать таблицу Брадиса, arccos0,735 ищем как угол, косинус которого равен 0,735. [cos approx 0,735]То есть Ваши 42.692, насколько я понимаю, градусы. Но в градусах значения арккосинуса и арксинуса не оставляют. Нужно перевести в радианы. [ = 42 cdot frac<> = frac<><>.]7П/30 радиан, радианы не пишут. Радианная мера позволяет от градусной меры угла перейти к числам, чтобы потом графики тригонометрических функций в декартовой системе координат строить можно было, например.

Спасибо вы целиком и полностью удовлетворили мой интерес!

Спасибо за шпору =), пошел сдавать

Ещё о таблицах. Точнее их отсутствии…
на калькуляторе мы получаем cos, затем arccos. Верно ли я понимаю, что значения arccos вычисляются в радианной мере, и после этого следует обязательно перевести в градусную меру? (Таблицы Брадиса, также как и любые другие, идут уже (!) с перерасчетом радианов в градусы. ) …но таблиц нет, к примеру. Некоторые on-line–научные калькуляторы имеют опцию переключения с градусов в радианы и/или наоборот; при этом по умолчанию может стоять опция (галочка) как радианной меры, так и градусной.
Вопрос: в каких случаях надобно переходить с радианов в градусы?
(функции MS Office Excel, например, предусматривают именно трёхстадийный процесс вычисления: cos, arccos, затем перевод радианов в градусы).
И ещё вопросик: Таблицы содержат значения синусов/косинусов только для острых углов в ПРЯМОУГОЛЬНОМ треугольнике?
Пример, имеется равносторонний треугольник (все стороны и углы равны), нам надо найти угол (мы его не знаем). Сторона (все три стороны равны) = 60 см. Т.е. поделив все [равные] стороны получим
sin = cos = tg = ctg = sec = cosec = 1
но по этому значению угол [каковой реально 60°] найти в таблицах невозможно. Спасибо!

Nick, прошу прощения, что затянула с ответом. Меня мучает совесть(
С калькулятором я практически не работаю, предпочитаю считать либо устно, либо письменно. Если нужно, пользуюсь таблицами Брадиса. Над нюансами вычислений с калькулятором не задумывалась.
Значения синуса и косинуса зависят только от угла, но не от вида треугольника. Мы вводим определение синуса в прямоугольном треугольнике как отношение противолежащего катета к гипотенузе, потом расширяем определение, называя синусом угла альфа ординату точки единичной окружности, полученной из точки (1;0) поворотом на угол альфа.
Синус угла в произвольном треугольнике можно найти посредством через теорему синусов, через площадь треугольника (из формулы S=1/2 ab sin α), или провести высоту и рассмотреть прямоугольный треугольник.
В таблице Брадиса значения тригонометрических функций даны только для острых углов. Для тупых углов значения находят с помошью формул приведения.

Объясните мне, пожалуйста, если п принадлежит Z, где п — , Z — .я не могу понять когда п четное, п — нечетное и что такое Z?

Тамара, семейство решений для общего случая уравнений sinx=a

Частные случаи тригонометрических уравнений арккосинус

можно разбить на два семейства решений:
1) при n=2k (то есть для чётных)

Частные случаи тригонометрических уравнений арккосинус

2) при n=2m+1 (то есть для нечётных)

Частные случаи тригонометрических уравнений арккосинус

Z — множество целых чисел, то есть 0; ±1; ±2; ±3; …

Страница интересная,но я не нашла частные случаи для тангенса и котангенса.Помогите пожалуйста(очень нужно

Евгения, формул частных случаем для тангенса и котангенса нет. Иногда частными случаями называют уравнения вида tgx=1; tgx=-1; ctgx=1; ctgx=-1, но общая формула верна и для каждого из этих случаев.

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

Алгебра

План урока:

Видео:Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

Арккосинус

Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:

Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1 1 либо а n ,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1) n окажется равным (– 1), и мы получим вторую серию.

Задание. Решите ур-ние

Задание. Запишите корни ур-ния

Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.

Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:

Ответ: 7π/3 и 8π/3.

Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние

Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:

Наконец, решениями ур-ния

Видео:Тригонометрические уравнения (Частные случаи)Скачать

Тригонометрические уравнения  (Частные случаи)

Решение уравнений tgx = a и ctgx = a

Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):

Таким образом, у ур-ния tgx = a существует очевидное решение

Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:

Задание. Решите ур-ние

Задание. Запишите формулу корней ур-ния

Далее рассмотрим ур-ние вида

Задание. Решите ур-ние

Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии

Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.

Видео:Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.

Тригонометрические уравнения — формулы, решения, примеры

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Простейшие тригонометрические уравнения

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + pi n, n in Z`

Частные случаи тригонометрических уравнений арккосинус

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| leq 1` имеет бесконечное множество решений.

Формула корней: `x=pm arccos a + 2pi n, n in Z`

Частные случаи тригонометрических уравнений арккосинус

Частные случаи для синуса и косинуса в графиках.Частные случаи тригонометрических уравнений арккосинус

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + pi n, n in Z`

Частные случаи тригонометрических уравнений арккосинус

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + pi n, n in Z`

Частные случаи тригонометрических уравнений арккосинус

Видео:Тригонометрические уравнения. Частные случаи для синуса и косинуса.Скачать

Тригонометрические уравнения. Частные случаи для синуса и косинуса.

Формулы корней тригонометрических уравнений в таблице

Для синуса:Частные случаи тригонометрических уравнений арккосинусДля косинуса:Частные случаи тригонометрических уравнений арккосинусДля тангенса и котангенса:Частные случаи тригонометрических уравнений арккосинусФормулы решения уравнений, содержащих обратные тригонометрические функции:

Частные случаи тригонометрических уравнений арккосинус

Видео:10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенства

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью тригонометрических формул преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+frac pi 6)-3sin(frac pi 3 — x)+1=0`

Решение. Используя формулы приведения, имеем:

`2cos^2(x+frac pi 6)-3cos(x+frac pi 6)+1=0`,

делаем замену: `cos(x+frac pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+frac pi 6)=1`, `x+frac pi 6=2pi n`, `x_1=-frac pi 6+2pi n`.

2. `cos(x+frac pi 6)=1/2`, `x+frac pi 6=pm arccos 1/2+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.

Ответ: `x_1=-frac pi 6+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =pi n`, `x_1=2pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ pi n`, `x/2=pi/4+ pi n`, `x_2=pi/2+ 2pi n`.

Ответ: `x_1=2pi n`, `x_2=pi/2+ 2pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x ne 0` — для первого случая, и на `cos^2 x ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x ne 0`, получим:

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+pi n`, `n in Z`
  2. `tg x=1`, `x=arctg 1+pi n`, `x_2=pi/4+pi n`, ` n in Z`.

Ответ. `x_1=arctg (-2)+pi n`, `n in Z`, `x_2=pi/4+pi n`, `n in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2pi n`, `n in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2pi n`, `n in Z`.

Ответ. `x_1=2 arctg 2+2pi n, n in Z`, `x_2=arctg 3/4+2pi n`, `n in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt `:

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `frac a<sqrt >=cos varphi`, ` frac b<sqrt > =sin varphi`, `frac c<sqrt >=C`, тогда:

`cos varphi sin x + sin varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt `, получим:

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos varphi` , `4/5=sin varphi`. Так как `sin varphi>0`, `cos varphi>0`, то в качестве вспомогательного угла возьмем `varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos varphi sin x+sin varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`x+varphi=(-1)^n arcsin 2/5+ pi n`, `n in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `frac =1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x ne 0`, `cos x ne -1`, ` x ne pi+2pi n, n in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=pi n`, `n in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=pi /2+2pi n, n in Z`.

Учитывая, что ` x ne pi+2pi n, n in Z`, решениями будут `x=2pi n, n in Z` и `x=pi /2+2pi n`, `n in Z`.

Ответ. `x=2pi n`, `n in Z`, `x=pi /2+2pi n`, `n in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

🎬 Видео

Тригонометрические уравнения. Как запомнить частные случаи.Скачать

Тригонометрические уравнения. Как запомнить частные случаи.

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=A

Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !Скачать

Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !

СЕКРЕТНЫЙ ЛАЙФХАК С ТРИГОНОМЕТРИЕЙ НА ЕГЭ #shorts #математика #егэ #огэ #тригонометрияСкачать

СЕКРЕТНЫЙ ЛАЙФХАК С ТРИГОНОМЕТРИЕЙ НА ЕГЭ #shorts #математика #егэ #огэ #тригонометрия

Преобразование выражений, содержащих арксинус, арккосинус, арктангенс и арккотангенс. 2 ч. 10 класс.Скачать

Преобразование выражений, содержащих арксинус, арккосинус, арктангенс и арккотангенс. 2 ч. 10 класс.

Частные случаи | Тригонометрические уравнения| Математика ЕГЭ | Математика10 класс |Клуб репетиторовСкачать

Частные случаи | Тригонометрические уравнения| Математика ЕГЭ | Математика10 класс |Клуб репетиторов

Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

частные случаи тригонометрических уравненийСкачать

частные случаи тригонометрических уравнений

Математика Тригонометрия АрксинусСкачать

Математика Тригонометрия  Арксинус

ТРИГОНОМЕТРИЯ ЗА 7 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 7 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике
Поделиться или сохранить к себе: