Частное решение неоднородной системы линейных алгебраических уравнений

Как найти общее и частное решение системы линейных уравнений

Частное решение неоднородной системы линейных алгебраических уравнений

Частное решение неоднородной системы линейных алгебраических уравнений

Пример 2. Исследовать совместность, найти общее и одно частное решение системы
Частное решение неоднородной системы линейных алгебраических уравнений

Решение. Переставим первое и второе уравнения, чтобы иметь единицу в первом уравнении и запишем матрицу B.
Частное решение неоднородной системы линейных алгебраических уравнений
Получим нули в четвертом столбце, оперируя первой строкой:
Частное решение неоднородной системы линейных алгебраических уравнений
Теперь получим нули в третьем столбце с помощью второй строки:
Частное решение неоднородной системы линейных алгебраических уравнений
Частное решение неоднородной системы линейных алгебраических уравненийТретья и четвертая строки пропорциональны, поэтому одну из них можно вычеркнуть, не меняя ранга:
Третью строку умножим на (–2) и прибавим к четвертой:
Частное решение неоднородной системы линейных алгебраических уравнений
Видим, что ранги основной и расширенной матриц равны 4, причем ранг совпадает с числом неизвестных, следовательно, система имеет единственное решение:
-x1=-3 → x1=3; x2=3-x1 → x2=0; x3=1-2x1 → x3=5.
x4 = 10- 3x1 – 3x2 – 2x3 = 11.

Пример 3. Исследовать систему на совместность и найти решение, если оно существует.
Частное решение неоднородной системы линейных алгебраических уравнений

Решение. Составляем расширенную матрицу системы.
Частное решение неоднородной системы линейных алгебраических уравнений
Частное решение неоднородной системы линейных алгебраических уравненийПереставляем первые два уравнения, чтобы в левом верхнем углу была 1:
Умножая первую строку на (-1), складываем ее с третьей:
Частное решение неоднородной системы линейных алгебраических уравнений
Умножим вторую строку на (-2) и прибавим к третьей:
Частное решение неоднородной системы линейных алгебраических уравнений
Система несовместна, так как в основной матрице получили строку, состоящую из нулей, которая вычеркивается при нахождении ранга, а в расширенной матрице последняя строка останется, то есть rB > rA.

Задание. Исследовать данную систему уравнений на совместность и решить ее средствами матричного исчисления.
Решение

Пример. Доказать совместимость системы линейных уравнений и решить ее двумя способами: 1) методом Гаусса; 2) методом Крамера. (ответ ввести в виде: x1,x2,x3)
Решение:doc:doc:xls
Ответ: 2,-1,3.

Пример. Дана система линейных уравнений. Доказать ее совместность. Найти общее решение системы и одно частное решение.
Решение
Ответ:x3 = — 1 + x4 + x5; x2 = 1 — x4; x1 = 2 + x4 — 3x5

Задание. Найти общее и частное решения каждой системы.
Решение. Исследуем эту систему по теореме Кронекера-Капелли.
Выпишем расширенную и основную матрицы:

1114020
342301
23-33-21
x1x2x3x4x5

Здесь матрица А выделена жирным шрифтом.
Приведем матрицу к треугольному виду. Будем работать только со строками, так как умножение строки матрицы на число, отличное от нуля, и прибавление к другой строке для системы означает умножение уравнения на это же число и сложение с другим уравнением, что не меняет решения системы.
Умножим 1-ую строку на (3). Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:

0-140-36-1
342301
23-33-21

Умножим 2-ую строку на (2). Умножим 3-ую строку на (-3). Добавим 3-ую строку к 2-ой:

0-140-36-1
0-113-36-1
23-33-21

Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:

0027000
0-113-36-1
23-33-21

Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на обратной диагонали), причем этот минор принадлежит как основной матрице, так и расширенной, следовательно rang(A) = rang(B) = 3. Поскольку ранг основной матрицы равен рангу расширенной, то система является совместной.
Этот минор является базисным. В него вошли коэффициенты при неизвестных x1,x2,x3, значит, неизвестные x1,x2,x3 – зависимые (базисные), а x4,x5 – свободные.
Преобразуем матрицу, оставляя слева только базисный минор.

0027000
0-113-13-6
23-31-32
x1x2x3x4x5

Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:
27x3 =
— x2 + 13x3 = — 1 + 3x4 — 6x5
2x1 + 3x2 — 3x3 = 1 — 3x4 + 2x5
Методом исключения неизвестных находим:
Получили соотношения, выражающие зависимые переменные x1,x2,x3 через свободные x4,x5, то есть нашли общее решение:
x3 = 0
x2 = 1 — 3x4 + 6x5
x1 = — 1 + 3x4 — 8x5
Придавая свободным неизвестным любые значения, получим сколько угодно частных решений. Система является неопределенной, т.к. имеет более одного решения.

Задание. Решить систему уравнений.
Ответ😡2 = 2 — 1.67x3 + 0.67x4
x1 = 5 — 3.67x3 + 0.67x4
Придавая свободным неизвестным любые значения, получим сколько угодно частных решений. Система является неопределенной

Пример. Проверить совместность линейной системы уравнений и в случае совместности решить ее: а) по формулам Крамера; б) методом Гаусса.
Решение: Проверяем совместность системы с помощью теоремы Кронекера — Капелли. Согласно теореме Кронекера — Капелли, из того, что следует несовместность исходной системы.
Ответ: система не совместна.
Решение

Видео:Решение неоднородных линейных систем. ТемаСкачать

Решение неоднородных линейных систем. Тема

Частное решение неоднородной системы линейных алгебраических уравнений

Пусть задана неоднородная система линейных алгебраических уравнений размерности m × n .

Матрица Частное решение неоднородной системы линейных алгебраических уравнений называется расширенной матрицей системы, если наряду с коэффициентами при неизвестных, она содержит столбец свободных членов. Следовательно, размерность Частное решение неоднородной системы линейных алгебраических уравнений равна m × (n+1) .

Исследование любой системы линейных алгебраических уравнений начинается с преобразования ее расширенной матрицы методом Гаусса , который основан на следующих элементарных преобразованиях:

– перестановка строк матрицы;

– умножение строк матрицы на действительное отличное от руля число;

– поэлементное сложение строк матрицы;

– вычеркивание нулевой строки;

– транспонирование матрицы (в этом случае преобразования производятся по столбцам).

Элементарные преобразования приводят первоначальную систему к системе, ей эквивалентной. Системы называются эквивалентными, если они имеют одно и то же множество решений.

Рангом матрицы называется наивысший порядок отличных от нуля ее миноров. Элементарные преобразования ранга матрицы не меняют.

На вопрос о наличии решений у неоднородной системы линейных уравнений отвечает следующая теорема.

Теорема 1.3 (теорема Кронекера-Капелли). Неоднородная система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу ее главной матрицы, то есть Частное решение неоднородной системы линейных алгебраических уравнений

Обозначим количество строк, оставшихся в матрице после метода Гаусса, через r (соответственно, в системе остается r уравнений). Эти строки матрицы называются базисными.

Если r = n , то система имеет единственное решение (является совместной определенной), ее матрица элементарными преобразованиями приводится к треугольному виду. Такую систему можно решить также методом Крамера и с помощью обратной матрицы .

Если r n (количество переменных в системе больше количеств а уравнений), матрица элементарными преобразованиями приводится к ступенчатому виду. Такая система имеет множество решений и является совместной неопределенной. В данном случае для нахождения решений системы необходимо выполнить ряд операций.

1. Оставить в левых частях уравнений системы r неизвестных (базисные переменные), остальные n r неизвестных перенести в правые части (свободные переменные). После разделения переменных на базисные и свободные система принимает вид:

2. Из коэффициентов при базисных переменных составить минор (базисный минор), который должен быть отличен от нуля.

3. Если базисный минор системы (1.10) равен нулю, то одну из базисных переменных следует заменить на свободную; полученный базисный минор снова проверить на отличие от нуля.

4. Применяя формулы (1.6) метода Крамера, считая правые части уравнений их свободными членами, найти выражение базисных переменных через свободные в общем виде. Полученный при этом упорядоченный набор переменных системы является ее общим решением.

5. Придавая свободным переменным в (1.10) произвольные значения, вычислить соответствующие значения базисных переменных. Получаемый при этом упорядоченный набор значений всех переменных называется частным решением системы, соответствующим данным значениям свободных переменных. Система имеет бесконечное множество частных решений.

6. Получить базисное решение системы – частное решение, получаемое при нулевых значениях свободных переменных.

Заметим, что количество базисных наборов переменных системы (1.10) равно числу сочетаний из n элементов по r элементов Cn r . Так как каждому базисному набору переменных соответствует свое базисное решение, следовательно, количество базисных решений у системы также равно Cn r .

Пусть строки матрицы обозначены соответственно l 1 ; l 2 ;…; ln . Строка l называется линейной комбинацией строк l 1 ; l 2 ;…; ln матрицы, если она равна сумме произведений этих строк на произвольные действительные числа, то есть , Частное решение неоднородной системы линейных алгебраических уравнений .

Однородная система уравнений всегда совместна, так как имеет хотя бы одно – нулевое (тривиальное) решение. Для того чтобы однородная система n линейных уравнений с n переменными имела ненулевые решения, необходимо и достаточно, чтобы ее главный определитель был равен нулю. Это означает, что ранг r ее главной матрицы меньше числа n неизвестных ( r n ) . В этом случае исследование однородной системы уравнений на общее и частные решения проводится аналогично исследованию неоднородной системы. Решения однородной системы уравнений обладают важным свойством: если известны два различных решения однородной системы линейных алгебраических уравнений, то их линейная комбинация также является решением этой системы. Нетрудно убедиться в справедливости следующей теоремы.

Теорема 1.4. Общее решение неоднородной системы уравнений представляет собой сумму общего решения соответствующей однородной системы и некоторого частного решения неоднородной системы уравнений Частное решение неоднородной системы линейных алгебраических уравнений

Пример 1.7. Исследовать заданную систему уравнений и найти одно частное решение:

Решение. Выпишем расширенную матрицу системы и применим к ней элементарные преобразования:

Частное решение неоднородной системы линейных алгебраических уравнений

Частное решение неоднородной системы линейных алгебраических уравнений

Так как r ( A ) =2 и Частное решение неоднородной системы линейных алгебраических уравнений , то по теореме 1.3 (Кронекера-Капелли) заданная система линейных алгебраических уравнений совместна. Количество переменных n =2 , т.е. r n , значит, система является неопределённой. Количество базисных наборов переменных системы равно Частное решение неоднородной системы линейных алгебраических уравнений . Следовательно, базисными могут быть 6 комплектов переменных: < x 1 ; x 2 >, < x 1 ; x 3 >, < x 1 ; x 4 >, < x 2 ; x 3 >, < x 2 ; x 4 >, < x 3 ; x 4 > . Рассмотрим один из них < x 1 ; x 2 > . Тогда систему, полученную в результате метода Гаусса, можно переписать в виде Частное решение неоднородной системы линейных алгебраических уравнений . Главный определитель Частное решение неоднородной системы линейных алгебраических уравнений . С помощью метода Крамера ищем общее решение системы.

По формулам (1.6) имеем

Данное выражение базисных переменных через свободные представляет собой общее решение системы:

При конкретных значениях свободных переменных из общего решения получаем частное решение системы. Например, частное решение Частное решение неоднородной системы линейных алгебраических уравнений соответствует значениям свободных переменных x 3 = x 4 = 17 . При x3=0 x4=0 получаем базисное решение системы Частное решение неоднородной системы линейных алгебраических уравнений

Видео:Неоднородная система линейных уравненийСкачать

Неоднородная система линейных уравнений

Лекция 7. Раздел 7.4
Решение неоднородных систем линейных алгебраических уравнений.

Выясним, чем отличается решение произвольной неоднородной системы алгебраических уравнений от решения однородной системы.

Определение. Однородная система линейных алгебраических уравнений называется соответствующей неоднородной системе, если коэффициенты при неизвестных у них одинаковые, а свободные члены неоднородной системы заменены нолями.

Рассмотрим произвольную совместную неоднородную систему линейных алгебраических уравнений:

Частное решение неоднородной системы линейных алгебраических уравнений

Пусть у нее в общем случае Частное решение неоднородной системы линейных алгебраических уравнений, то есть имеется бесконечное множество решений.

Теорема 7.4.1. Сумма любого решения неоднородной системы линейных алгебраических уравнений с любым решением соответствующей ей однородной системы является решением неоднородной системы.

Доказательство. Возьмем произвольное решение неоднородной системы

Частное решение неоднородной системы линейных алгебраических уравнений

и произвольное решение соответствующей ей однородной системы

Частное решение неоднородной системы линейных алгебраических уравнений.

Рассмотрим их сумму Частное решение неоднородной системы линейных алгебраических уравнений.

Если данная сумма является решением неоднородной системы, то она должна превратить в тождество любое ее уравнение:

Частное решение неоднородной системы линейных алгебраических уравнений

что и требовалось доказать.

Теорема 7.4.2. Разность любых двух решений неоднородной системы линейных алгебраических уравнений является решением соответствующей однородной системы.

Доказательство. Возьмем два произвольных решения неоднородной системы линейных алгебраических уравнений:

Частное решение неоднородной системы линейных алгебраических уравненийи Частное решение неоднородной системы линейных алгебраических уравнений.

Составим их разность Частное решение неоднородной системы линейных алгебраических уравнений.

Подставим полученную разность в любое уравнение неоднородной системы:

Частное решение неоднородной системы линейных алгебраических уравнений

Так как левая часть уравнения обратилась в ноль, значит, Частное решение неоднородной системы линейных алгебраических уравненийявляется решением однородной системы, что и требовалось доказать.

Из теоремы 7.4.2 следует, что если Частное решение неоднородной системы линейных алгебраических уравнений, то Частное решение неоднородной системы линейных алгебраических уравнений. Иначе говоря, взяв какое-то одно решение неоднородной системы линейных алгебраических уравнений Частное решение неоднородной системы линейных алгебраических уравненийи прибавляя к нему разные решения соответствующей однородной системы Частное решение неоднородной системы линейных алгебраических уравнений, получим разные решения неоднородной системы, что подтверждается теоремой 7.4.1.

Следствие. Общее решение неоднородной системы линейных алгебраических уравнений равно сумме какого-то частного ее решения и общего решения соответствующей однородной системы.

🎬 Видео

Неоднородные системы линейных уравненийСкачать

Неоднородные системы линейных уравнений

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Общее, частное, базисное решение системы линейных уравнений Метод ГауссаСкачать

Общее, частное, базисное решение системы линейных уравнений Метод Гаусса

15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

ФСР системы линейных уравнений. Алгоритм ГауссаСкачать

ФСР системы линейных уравнений. Алгоритм Гаусса

Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать

Решение системы уравнений методом Гаусса. Бесконечное множество решений

Базисные решения систем линейных уравнений (03)Скачать

Базисные решения систем линейных уравнений (03)

Решение однородных и неоднородных систем линейных уравнений. Нахождение ФСР.Скачать

Решение однородных и неоднородных систем линейных уравнений. Нахождение ФСР.

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Видеоурок "Однородные системы линейных уравнений"Скачать

Видеоурок "Однородные системы линейных уравнений"

§30 Системы линейных алгебраических уравненийСкачать

§30 Системы линейных алгебраических уравнений

Фундаментальная система решений системы линейных уравнений ФСР СЛАУСкачать

Фундаментальная система решений системы линейных уравнений ФСР СЛАУ

ФСР. Система однородных уравнений. Общее решениеСкачать

ФСР.  Система однородных уравнений.  Общее решение

Теорема Кронекера - Капелли. Критерий совместности СЛАУ. Общее решение слу. Частное решение системыСкачать

Теорема Кронекера - Капелли. Критерий совместности СЛАУ. Общее решение слу. Частное решение системы

Видеоурок "Нахождение частных решений по виду правой части"Скачать

Видеоурок "Нахождение частных решений по виду правой части"
Поделиться или сохранить к себе: