Частное решение неоднородного уравнения с правой частью специального вида

Уравнения с правой частью специального вида

Общее решение yОН линейного неоднородного дифференциального уравнения L(y)=b(x) есть сумма общего решения yОО соответствующего однородного уравнения L(y) = 0 и какого — либо частного решения yЧН исходного неоднородного уравнения. Для уравнений с постоянными коэффициентами и правой частью специального вида это частное решение может быть найдено достаточно просто.

Функцию Частное решение неоднородного уравнения с правой частью специального вида, где Pj(x) — некоторые полиномы (многочлены), назовём квазиполиномом. По теореме о наложении решений, если yj , j=1,2. m — решения уравнений L(y) = bj(x), то Частное решение неоднородного уравнения с правой частью специального видаесть решение уравнения Частное решение неоднородного уравнения с правой частью специального вида. Поэтому, не умаляя общности, будем считать, что правая часть уравнения L(y) = b(x) с постоянными коэффициентами имеет вид b(x) = P(x)e λx . В частности, если λ=α+βi — комплексное число, то наиболее общей правой частью указанного типа является функция

Частное решение неоднородного уравнения с правой частью специального вида(1)

у которой P(x)и Q(x)- некоторые полиномы. Справедлив следующий результат.

Теорема. Линейное дифференциальное уравнение

Частное решение неоднородного уравнения с правой частью специального вида

с постоянными коэффициентами и правой частью вида (1) имеет частное решение

Частное решение неоднородного уравнения с правой частью специального вида,

где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x) , S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x) , Q(x).

Видео:Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1

Решение линейных дифференциальных уравнений с постоянными коэффициентами со специальной неоднородной частью

Частное решение неоднородного уравнения с правой частью специального вида

Видео:16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать

16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами

Определение общего решения по известному частному решению

Рассмотрим линейное неоднородное дифференциальное уравнение с постоянными коэффициентами n-го порядка:
(1) ,
где – действительные числа; – действительная функция. Если известно частное (любое) решение уравнения (1), то можно найти его общее решение по формуле:
,
где – общее решение однородного уравнения:
.

Если неоднородная часть может быть представлена в виде суммы функций:
,
то частное решение также может быть представлено в виде суммы частных решений:
,
каждое из которых удовлетворяет уравнению с правой частью в виде одной из функций :
.

Как правило, легче найти частные решения от более простых неоднородных частей, а затем получить частное решение для всего уравнения суммированием полученных частных решений.

Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Метод решения линейных ДУ с постоянными коэффициентами со специальной неоднородной частью

Рассмотрим линейное неоднородное уравнение со специальной неоднородной частью в виде комбинации многочленов, экспоненты, синусов и косинусов:
(2) ,
где – многочлены степеней и , соответственно:
;
;
– известные коэффициенты.

Это уравнение можно решить общим методом понижения порядка. Однако существует более простой способ, основанный на том, что частное решение такого уравнения имеет определенный вид. Суть этого метода заключается в следующем.

Вначале ищем общее решение однородного уравнения:
(3) .

Далее устанавливаем вид частного решения исходного уравнения (2). Оно выражается через многочлены, экспоненту, синусы и косинусы, которые входят в частное решение с неизвестными коэффициентами. Установив вид частного решения, подставляем в уравнение (2). Приравнивая левую и правую части, находим неизвестные коэффициенты.

После этого общее решение исходного уравнения (2) равно сумме общего решения однородного уравнения плюс частное решение неоднородного:
.

Видео:19. Метод вариации произвольных постоянных. Линейные неоднородные диф уравнения 2-го порядкаСкачать

19. Метод вариации произвольных постоянных. Линейные неоднородные диф уравнения 2-го порядка

Установление вида частного решения

Установим вид частного решения уравнения (2). Для этого вначале ищем решение однородного уравнения (3) в виде . В результате, для k , получаем уравнение, которое называется характеристическим уравнением:
(4) .
Решаем это уравнение. Получаем n корней . Тогда характеристическое уравнение (4) можно представить в виде произведения множителей:
(5) .

Часть корней (или все) в (5) могут быть комплексными. Поэтому выразим корень через действительную и мнимую части:
.
Для действительного корня .

Некоторые корни в (5) могут быть кратными:
.
Здесь p – кратность корня. Кратный корень кратности p входит в произведение (5) в виде множителя .

Если среди корней характеристического уравнения (4) нет корня со значением
,
то частное решение уравнения (2) имеет вид:
,
где – наибольшее из и .
,

– многочлены степени s с неизвестными коэффициентами , которые подлежат определению подстановкой в уравнение (2).

Если среди корней характеристического уравнения (4) есть корень кратности p со значением

то частное решение уравнения (2) имеет вид:
,
где также – наибольшее из и .
,

– многочлены степени s с неизвестными коэффициентами .

Когда вид частного решения установлен, подставляем Y в уравнение (2) и находим неизвестные коэффициенты , приравнивая левую и правую части уравнения. После чего получаем общее решение уравнения (2):
.

Видео:Видеоурок "Нахождение частных решений по виду правой части"Скачать

Видеоурок "Нахождение частных решений по виду правой части"

Частные случаи

Неоднородность в виде многочлена

Теперь рассмотрим некоторые более простые виды специальной неоднородности. Начнем с неоднородной части в виде многочлена:
,
где – многочлен степени s . Этот случай принадлежит к общему виду специальной неоднородности (2), в котором . Основываясь на вышеизложенном, получаем следующие правила составления вида частного решения.

Если среди корней характеристического уравнения (4) нет нулевого корня
,
то частное решение имеет вид:
.
То есть оно является многочленом степени s с неопределенными коэффициентами .

Если характеристическое уравнение (4) имеет нулевой корень кратности p :
,
то частное решение имеет вид:
.

Неоднородность в виде произведения экспоненты и многочлена

Теперь рассмотрим неоднородную часть в виде произведения многочлена степени s и экспоненты:
.
Этот случай принадлежит к общему виду (2), в котором .

Если среди корней характеристического уравнения нет действительного корня со значением α :
,
то частное решение является произведением многочлена степени s и экспоненты:
.

Если характеристическое уравнение (4) имеет действительный корень α кратности p :
,
то частное решение имеет вид:
.

Неоднородность в виде суммы произведений многочленов на косинус и синус

Наконец рассмотрим неоднородную часть в виде суммы произведений многочленов степеней на косинус и синус:
.
Этот случай принадлежит к общему виду (2), в котором .

Если среди корней характеристического уравнения нет чисто мнимого корня со значением iβ :
,
то частное решение является суммой произведений многочленов, косинуса и синуса:
,
где – наибольшее из и .
,

– многочлены степени s с неизвестными коэффициентами .

Если характеристическое уравнение (4) имеет чисто мнимый корень iβ кратности p :
,
то частное решение имеет вид:
.
То есть частное решение как и в предыдущем случае, но умноженное на .

Автор: Олег Одинцов . Опубликовано: 30-07-2013 Изменено: 14-09-2020

Видео:ЛНДУ II п. со спец. правой ч. (sin, cos)Скачать

ЛНДУ II п.  со спец.  правой ч.  (sin, cos)

Частное решение неоднородного уравнения с правой частью специального вида

Случай для линейного неоднородного дифференциального уравнения с постоянными коэффициентами и с правой частью имеющей вид полинома от x степени m

Для уравнения с постоянными коэффициентами в случае, когда правая часть имеет специальный вид, удается найти частное решение методом неопределенных коэффициентов (методом подбора частных решений).

Рассмотрим этот метод для уравнения n-го порядка вида

где a1, …, an — действительные числа, α — действительное число, Pm (x) — полином от x степени m, которая может быть равной нулю, так что этот полином может вырождаться в число, отличное от нуля.

Метод неопределенных коэффициентов состоит в том, что задается вид частного решения с неопределенными коэффициентами, которые определяются подстановкой в данное уравнение. Вид частного решения уравнения зависит от того, совпадает ли число α с корнями характеристического уравнения:

    Если α не является корнем характеристического уравнения, то частное решение имеет вид

где Qm (x) — полином степени m с коэффициентами, подлежащими определению.

Если α является корнем характеристического уравнения кратности k, то

т. е. частное решение приобретает множитель x k .

Случай для линейного неоднородного дифференциального уравнения с постоянными коэффициентами и с правой частью имеющей вид:

где α и b — действительные числа, P1 и P2 — полиномы от x, старшая степень которых равна m, так что один из них обязательно имеет степень m, а степень другого не превосходит m, и он может быть даже тождественно равен нулю.

Составим комплексное число α + ib, где действительная часть α есть коэффициент показателя множителя e αx , а мнимая часть b — коэффициент аргумента bx функций cos bx и sin bx.

Укажем вид частного решения уравнения (14.2) в двух случаях:

    Если число α + ib не является корнем характеристического уравнения, то

где Q1 и Q2 — полиномы степени m с неопределенными коэффициентами; причем надо брать оба эти полинома даже в том случае, когда один из полиномов P1 и P2 тождественно равен нулю.

Если число α + ib есть корень характеристического уравнения кратности k, то

т. е. частное решение приобретает множитель x k .

ПРИМЕР 15.2. Найти общее решение уравнения
y′′ − 2y′ + y = 8e3x .
РЕШЕНИЕ. Сначала рассмотрим соответствующее однородное уравнение
y′′ − 2y′ + y = 0.
Так как его характеристическое уравнение λ2 − 2λ +1 = 0 имеет корни
λ1,2 =1, то общее решение однородного уравнения будет иметь вид
y C ex C xex = 1 + 2 .
Теперь найдем частное решение неоднородного уравнения. Правая
часть является произведением числа и показательной функции e3x :

f (x) = 8e3x ⇒ α = 3, β = 0, s = 0.
При этом число α ±βi = 3 не является корнем характеристического урав-
нения. Поэтому частное решение y

неоднородного уравнения надо искать
в виде

y = Ae3x ,
где A – неизвестный коэффициент.
Имеем:

y′′ = 9Ae3x .
Подставим

y′′ в неоднородное уравнение и получим
9Ae3x − 2⋅3Ae3x + Ae3x = 8e3x ,
⇒ 4Ae3x = 8e3x ,
⇒ 4A = 8 или A = 2.
Таким образом,

y = 2e3x – частное решение неоднородного уравне-
ния, а его общее решение имеет вид
( 1 2 )
y = C ex + C xex + 2e3x .

🎬 Видео

Математика без Ху!ни. Линейные неоднородные дифференциальные уравнения 2 порядка.Скачать

Математика без Ху!ни. Линейные неоднородные дифференциальные уравнения 2 порядка.

7. ДУ. ЛНДУ с правой частью спец вида (4270 Берман Г.Н)Скачать

7. ДУ. ЛНДУ с правой частью спец вида (4270 Берман Г.Н)

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.

18. Линейные неоднородные дифференциальные уравнения 2 порядка с постоянными коэффициентами. часть 3Скачать

18. Линейные неоднородные дифференциальные уравнения 2 порядка с постоянными коэффициентами. часть 3

Общее и частное решение дифференциального уравненияСкачать

Общее и частное решение дифференциального уравнения

1. ЛНДУ с постоянными коэффициентами и правой частью специального вида.Скачать

1. ЛНДУ с постоянными коэффициентами и правой частью специального вида.

8. ДУ. ЛНДУ с правой частью спец вида(4285 Берман)Скачать

8. ДУ. ЛНДУ с правой частью спец вида(4285 Берман)

Линейные неоднородные ДУ с правой частью специального вида | Лекция 11 | Математика: Диффуры | СтримСкачать

Линейные неоднородные ДУ с правой частью специального вида | Лекция 11 | Математика: Диффуры | Стрим

Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

17. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами Ч2Скачать

17. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами Ч2

Практика 13 Частное решение неоднородного ЛДУ с постоянными коэффициентамиСкачать

Практика 13  Частное решение неоднородного ЛДУ с постоянными коэффициентами

Линейные неоднородные ДУ 2 порядка с постоянными коэффициентами и с правой частью специального видаСкачать

Линейные неоднородные ДУ 2 порядка с постоянными коэффициентами и с правой частью специального вида

2. ЛНДУ с правой частью в виде квазиполинома. Вычисление неопределенных коэффициентов.Скачать

2. ЛНДУ с правой частью в виде квазиполинома. Вычисление неопределенных коэффициентов.
Поделиться или сохранить к себе: