Линейное уравнение ax + b = 0
Решение заключается в выполнении математической операции x = -b/a
Уравнение 10х + 5 = 0
Тогда x = -5 / 10 = -1/2 = -0.5
Быстро выполнить эту математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.
На этой странице представлен самый простой онлайн калькулятор решения любого линейного уравнения. С помощью этого калькулятора вы в один клик сможете быстро вычислить корень линейного уравнения.
Видео:Линейное уравнение с одной переменной. 6 класс.Скачать
Как решить линейное уравнение? Уравнение прямой? Что такое линейные уравнения?
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Линейное уравнение — это уравнение вида ax+b=0 ,
где a и b некоторые числа,
x – переменная стоящая в числителе, находящаяся в первой степени.
Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ
Что является решением уравнения?
Решением уравнения является нахождение всех его корней или доказательство их отсутствия.
Примеры линейных уравнений:
3x+5=0
x+1=5
2x=0
7x=7
3x+1=x
x^2+4x+4=0 | (полное квадратное уравнение оно решается по дискриминанту. Как решаются такие уравнение можно узнать здесь.) |
1/x+2=0 | (уравнение гиперболы) |
√(x-1)=1 | (иррациональное уравнение) |
Чем отличаются линейные уравнения от не линейных?
У линейных уравнений x всегда находится в первой степени в числители. Если одно из условий не выполняется то уравнение нелинейное.
Как решаются линейные уравнения?
Все что связано с переменной x переносим в одну сторону, а обычные числа в другую. Это называется: “Неизвестные в одну сторону известные в другую”. В итоге корень уравнения будет равен x=-b/a. Рассмотрим на примере:
ПРАКТИЧЕСКАЯ ЧАСТЬ
2x+2=0 (здесь неизвестное это 2x его мы оставляем в левой стороне, а 2 переносим через равно в правую сторону, при переносе через равно знак с + меняется на -)
2x=-2 | : 2 (далее нам нужно получить просто x без коэффициента 2, поэтому мы все уравнение делим на 2, получим 2x:2=-2:2 )
x=-1 (получили корень уравнения)
2x+2=0 (здесь неизвестное это 2x его мы оставляем в левой стороне, а 2 переносим через равно в правую сторону, при переносе через равно знак с + меняется на -)
2x=-2 | : 2 (далее нам нужно получить просто x без коэффициента 2, поэтому мы все уравнение делим на 2, получим 2x:2=-2:2 )
x=-1
Сделаем проверку уравнения подставим вместо переменной x полученный корень:
2*(-1)+2=0
-2+2=0
0=0
Решено верно
2x-6=4x (здесь неизвестное это 2x и 4x. 4х нужно перенести в левую часть уравнения, а -6 переносим через равно в правую сторону, при переносе через равно знак у -6 меняется с – на +, а у 4х знак меняется с + на -)
2x-4x=6 (при вычитании 2x-4x=-2x)
-2x=6 | : (-2) (далее нам нужно получить просто x без коэффициента -2, поэтому мы все уравнение делим на -2, получим -2x:(-2)=6:(-2) )
x= -3
Сделаем проверку уравнения подставим вместо переменной x полученный корень:
2*(-3)-6=4*(-3)
-6-6=-12
-12=-12
Решено верно
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Решение простых линейных уравнений
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Алгебра 7 класс. Линейное уравнение с одной переменной ax=b.Скачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Видео:Решение линейного уравнения ax=b. Сколько корней может быть у линейного уравнения. Алгебра 7 класс.Скачать
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
🎥 Видео
Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать
Решение биквадратных уравнений. 8 класс.Скачать
Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать
Решение матричных уравненийСкачать
7 класс, 8 урок, Линейное уравнение с двумя переменными и его графикСкачать
Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
Сложные уравнения. Как решить сложное уравнение?Скачать
Занятие 1. График линейной функции y=kx+bСкачать
Урок 85 График линейного уравнения ax + by = c с двумя переменными (7 класс)Скачать
Неполные квадратные уравнения. Алгебра, 8 классСкачать
Линейные уравненияСкачать
Как решают уравнения в России и СШАСкачать
Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать