Линейное уравнение ax + b = 0
Решение заключается в выполнении математической операции x = -b/a
Уравнение 10х + 5 = 0
Тогда x = -5 / 10 = -1/2 = -0.5
Быстро выполнить эту математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.
На этой странице представлен самый простой онлайн калькулятор решения любого линейного уравнения. С помощью этого калькулятора вы в один клик сможете быстро вычислить корень линейного уравнения.
Видео:Алгебра 7 класс. Линейное уравнение с одной переменной ax=b.Скачать
Как решить линейное уравнение? Уравнение прямой? Что такое линейные уравнения?
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Линейное уравнение — это уравнение вида ax+b=0 ,
где a и b некоторые числа,
x – переменная стоящая в числителе, находящаяся в первой степени.
Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ
Что является решением уравнения?
Решением уравнения является нахождение всех его корней или доказательство их отсутствия.
Примеры линейных уравнений:
3x+5=0
x+1=5
2x=0
7x=7
3x+1=x
x^2+4x+4=0 | (полное квадратное уравнение оно решается по дискриминанту. Как решаются такие уравнение можно узнать здесь.) |
1/x+2=0 | (уравнение гиперболы) |
√(x-1)=1 | (иррациональное уравнение) |
Чем отличаются линейные уравнения от не линейных?
У линейных уравнений x всегда находится в первой степени в числители. Если одно из условий не выполняется то уравнение нелинейное.
Как решаются линейные уравнения?
Все что связано с переменной x переносим в одну сторону, а обычные числа в другую. Это называется: “Неизвестные в одну сторону известные в другую”. В итоге корень уравнения будет равен x=-b/a. Рассмотрим на примере:
ПРАКТИЧЕСКАЯ ЧАСТЬ
2x+2=0 (здесь неизвестное это 2x его мы оставляем в левой стороне, а 2 переносим через равно в правую сторону, при переносе через равно знак с + меняется на -)
2x=-2 | : 2 (далее нам нужно получить просто x без коэффициента 2, поэтому мы все уравнение делим на 2, получим 2x:2=-2:2 )
x=-1 (получили корень уравнения)
2x+2=0 (здесь неизвестное это 2x его мы оставляем в левой стороне, а 2 переносим через равно в правую сторону, при переносе через равно знак с + меняется на -)
2x=-2 | : 2 (далее нам нужно получить просто x без коэффициента 2, поэтому мы все уравнение делим на 2, получим 2x:2=-2:2 )
x=-1
Сделаем проверку уравнения подставим вместо переменной x полученный корень:
2*(-1)+2=0
-2+2=0
0=0
Решено верно
2x-6=4x (здесь неизвестное это 2x и 4x. 4х нужно перенести в левую часть уравнения, а -6 переносим через равно в правую сторону, при переносе через равно знак у -6 меняется с – на +, а у 4х знак меняется с + на -)
2x-4x=6 (при вычитании 2x-4x=-2x)
-2x=6 | : (-2) (далее нам нужно получить просто x без коэффициента -2, поэтому мы все уравнение делим на -2, получим -2x:(-2)=6:(-2) )
x= -3
Сделаем проверку уравнения подставим вместо переменной x полученный корень:
2*(-3)-6=4*(-3)
-6-6=-12
-12=-12
Решено верно
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Решение простых линейных уравнений
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Линейное уравнение с одной переменной. 6 класс.Скачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Видео:7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
🔥 Видео
Алгебра 7 Линейное уравнение с одной переменнойСкачать
Решение линейного уравнения ax=b. Сколько корней может быть у линейного уравнения. Алгебра 7 класс.Скачать
Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать
Решение биквадратных уравнений. 8 класс.Скачать
Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
Решение матричных уравненийСкачать
7 класс, 8 урок, Линейное уравнение с двумя переменными и его графикСкачать
Неполные квадратные уравнения. Алгебра, 8 классСкачать
Занятие 1. График линейной функции y=kx+bСкачать
Сложные уравнения. Как решить сложное уравнение?Скачать
Линейные уравненияСкачать
Урок 85 График линейного уравнения ax + by = c с двумя переменными (7 класс)Скачать
Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать
Как решают уравнения в России и СШАСкачать