Алгоритм решения рациональных уравнений 10 класс

Видео:Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnlineСкачать

Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnline

Рациональные уравнения с примерами решения

Содержание:

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Рациональные уравнения. Равносильные уравнения

два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.

Так, например, равносильными будут уравнения Алгоритм решения рациональных уравнений 10 класс

Уравнения Алгоритм решения рациональных уравнений 10 класс— не равносильны, так как корнем первого уравнения является число 10, а корнем второго — число 9.

Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.

1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;

2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;

3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.

Алгоритм решения рациональных уравнений 10 класс

Левая и правая части каждого из них являются рациональными выражениями.

Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.

В первых двух из записанных выше уравнений левая и правая части являются целыми выражениями. Такие уравнения называют целыми рациональными уравнениями. Если хотя бы одна часть уравнения — дробное выражение, то его называют дробным рациональным уравнением. Третье из записанных выше уравнений является дробным рациональным.

Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.

Применение условия равенства дроби нулю

Напомним, что Алгоритм решения рациональных уравнений 10 класскогда Алгоритм решения рациональных уравнений 10 класс

Пример №202

Решите уравнение Алгоритм решения рациональных уравнений 10 класс

Решение:

С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду Алгоритм решения рациональных уравнений 10 классгде Алгоритм решения рациональных уравнений 10 класси Алгоритм решения рациональных уравнений 10 класс— целые рациональные выражения. Имеем:

Алгоритм решения рациональных уравнений 10 класс

Окончательно получим уравнение: Алгоритм решения рациональных уравнений 10 класс

Чтобы дробь Алгоритм решения рациональных уравнений 10 классравнялась нулю, нужно, чтобы числитель Алгоритм решения рациональных уравнений 10 классравнялся нулю, а знаменатель Алгоритм решения рациональных уравнений 10 классне равнялся нулю.

Тогда Алгоритм решения рациональных уравнений 10 классоткуда Алгоритм решения рациональных уравнений 10 классПри Алгоритм решения рациональных уравнений 10 классзнаменатель Алгоритм решения рациональных уравнений 10 классСледовательно, Алгоритм решения рациональных уравнений 10 класс— единственный корень уравнения.

Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:

Алгоритм решения рациональных уравнений 10 класс

Значит, решая дробное рациональное уравнение, можно:

1) с помощью тождественных преобразований привести уравнение к виду Алгоритм решения рациональных уравнений 10 класс

2) приравнять числитель Алгоритм решения рациональных уравнений 10 класс к нулю и решить полученное целое уравнение;

3) исключить из его корней те, при которых знаменатель Алгоритм решения рациональных уравнений 10 класс равен нулю, и записать ответ.

Использование основного свойства пропорции

Если Алгоритм решения рациональных уравнений 10 классто Алгоритм решения рациональных уравнений 10 классгде Алгоритм решения рациональных уравнений 10 класс

Пример №203

Решите уравнение Алгоритм решения рациональных уравнений 10 класс

Решение:

Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Алгоритм решения рациональных уравнений 10 классИмеем: Алгоритм решения рациональных уравнений 10 классто есть ОДЗ переменной Алгоритм решения рациональных уравнений 10 класссодержит все числа, кроме 1 и 2.

Сложив выражения в правой части уравнения, приведем его к виду: Алгоритм решения рациональных уравнений 10 классполучив пропорцию: Алгоритм решения рациональных уравнений 10 класс

По основному свойству пропорции имеем:

Алгоритм решения рациональных уравнений 10 класс

Решим это уравнение:

Алгоритм решения рациональных уравнений 10 классоткуда Алгоритм решения рациональных уравнений 10 класс

Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.

Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:

Алгоритм решения рациональных уравнений 10 класс

Таким образом, для решения дробного рационального уравнения можно:

1) найти область допустимых значений (ОДЗ) переменной в уравнении;

2) привести уравнение к виду Алгоритм решения рациональных уравнений 10 класс

3) записать целое уравнение Алгоритм решения рациональных уравнений 10 класс и решить его;

4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.

Метод умножения обеих частей уравнения на общий знаменатель дробей

Пример №204

Решите уравнение Алгоритм решения рациональных уравнений 10 класс

Решение:

Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:

Алгоритм решения рациональных уравнений 10 класс

Областью допустимых значений переменной будут те значения Алгоритм решения рациональных уравнений 10 класспри которых Алгоритм решения рациональных уравнений 10 классто есть все значения Алгоритм решения рациональных уравнений 10 класскроме чисел Алгоритм решения рациональных уравнений 10 классА простейшим общим знаменателем будет выражение Алгоритм решения рациональных уравнений 10 класс

Умножим обе части уравнения на это выражение:

Алгоритм решения рациональных уравнений 10 класс

Получим: Алгоритм решения рациональных уравнений 10 класса после упрощения: Алгоритм решения рациональных уравнений 10 классто есть Алгоритм решения рациональных уравнений 10 классоткуда Алгоритм решения рациональных уравнений 10 классили Алгоритм решения рациональных уравнений 10 класс

Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.

Следовательно, число 12 — единственный корень уравнения. Ответ. 12.

Решая дробное рациональное уравнение, можно:

3) умножить обе части уравнения на этот общий знаменатель;

4) решить полученное целое уравнение;

5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.

Пример №205

Являются ли равносильными уравнения

Алгоритм решения рациональных уравнений 10 класс

Решение:

Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.

Первое уравнение имеет единственный корень Алгоритм решения рациональных уравнений 10 класса второе — два корня Алгоритм решения рациональных уравнений 10 класс(решите уравнения самостоятельно). Следовательно, уравнения не являются равносильными.

Степень с целым показателем

Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:

Алгоритм решения рациональных уравнений 10 класс

где Алгоритм решения рациональных уравнений 10 класс— натуральное число, Алгоритм решения рациональных уравнений 10 класс

В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: Алгоритм решения рациональных уравнений 10 класскг. Как понимать смысл записи Алгоритм решения рациональных уравнений 10 класс

Рассмотрим степени числа 3 с показателями Алгоритм решения рациональных уравнений 10 класс— это соответственно Алгоритм решения рациональных уравнений 10 класс

В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим: Алгоритм решения рациональных уравнений 10 класс

Число Алгоритм решения рациональных уравнений 10 классдолжно быть втрое меньше числа Алгоритм решения рациональных уравнений 10 классравного числу 3. Но втрое меньшим числа 3 является число 1, следовательно, Алгоритм решения рациональных уравнений 10 классРавенство Алгоритм решения рациональных уравнений 10 класссправедливо для любого основания Алгоритм решения рациональных уравнений 10 класспри условии, что Алгоритм решения рациональных уравнений 10 класс

Нулевая степень отличного от нуля числа а равна единице, то есть Алгоритм решения рациональных уравнений 10 класс при Алгоритм решения рациональных уравнений 10 класс

Вернемся к строке со степенями числа 3, где слева от числа Алгоритм решения рациональных уравнений 10 классзаписано число Алгоритм решения рациональных уравнений 10 классЭто число втрое меньше, чем 1, то есть равно Алгоритм решения рациональных уравнений 10 классСледовательно, Алгоритм решения рациональных уравнений 10 классРассуждая аналогично получаем: Алгоритм решения рациональных уравнений 10 класси т. д.

Приходим к следующему определению степени с целым отрицательным показателем:

если Алгоритм решения рациональных уравнений 10 класс натуральное число, то Алгоритм решения рациональных уравнений 10 класс

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Рациональные уравнения — алгоритмы и примеры вычислений

Алгоритм решения рациональных уравнений 10 класс

Видео:ЛУЧШАЯ СТРАТЕГИЯ решения Целых Рациональных Уравнений (математика с нуля)Скачать

ЛУЧШАЯ СТРАТЕГИЯ решения Целых Рациональных Уравнений (математика с нуля)

Общая информация

Рациональным уравнением называется равенство с одним или несколькими неизвестными, в правой и левой частях которого содержатся только рациональные выражения. Очень важно уметь определять тип, поскольку от этого зависит правильность нахождения корней и методика решения.

Определение можно немного упростить. Рациональным называется выражение, состоящее из некоторых числовых значений и неизвестной, операций вычитания, сложения, умножения, деления, а также возведения в степень с целым (натуральным) показателем. Уравнение рационального типа — равенство двух выражений, состоящих из переменных рационального типа (r (x) = 0). Они бывают двух видов: целые и дробные.

К первым относятся тождества, в знаменателе которых не содержится неизвестная величина. Примерами являются: x + 7 = 2x, x 2 + 2x — 7 = 0 и (x 2 + 4) / 2 = 2x / 4. Дробные представлены правильными дробями, числитель и знаменатель которых содержат переменные рационального типа. Примерами дробно-рациональных уравнений являются (x + 7) / 2x = 7 — x, (x 2 + 2x — 7) / (x 2 — 4) = 0 и (x 2 + 4) / 2x^ — 8 = 2x / 4.

Математики выделяют еще одну группу рациональных уравнений с параметрами, которые необходимо найти или они даются при решении задачи. Параметр — некоторое ограничение, влияющее на поиск корней.

Видео:ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать

ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?

Основные виды

Алгоритм решения рациональных уравнений 10 класс

Рациональные уравнения бывают линейными, квадратными, кубическими и биквадратными. Для каждого вида существуют определенные методики решения. Последние строятся на алгоритмах, позволяющих оптимизировать процесс нахождения корней.

Уравнения могут объединяться в системы. Чтобы ее решить, нужно найти все ее корни, удовлетворяющие ее элементам (выражениям). Отличаются равенства между собой только показателем степени. Например, у линейного последняя соответствует единице, у квадратного — 2, кубического — 3 и биквадратным — 4. Если в выражении с неизвестным присутствует дробная часть, всегда проверяется знаменатель на равенство нулю, поскольку такое значение превращает тождество в неопределенность. Числитель проверять нет необходимости. Выбор алгоритма решения рационального уравнения зависит от типа выражения.

Линейные и квадратные

Линейное выражение с неизвестными можно записать следующим образом: a1 * y1 + a2 * y2 +. + an * yn + c = 0. Например, 5х + 4 = 8 является линейным. Решается оно с помощью простого алгоритма:

  • Необходимо перенести неизвестные величины в левую сторону, а известные — в правую: 5х = 8 — 4.
  • Перенести число «5» с противоположным знаком: x = (8 — 4) / 5 = 4 / 5 = 0,8.

Квадратные уравнения — тождества вида az 2 + bz + c = 0. Они бывают полными (присутствуют все коэффициенты) и неполными. В последних какой-либо из параметров равен нулю. В зависимости от методики нахождения его корней, выбирается нужный алгоритм. Основные способы решения:

  • Теорема Виета (при a = 1).
  • Нахождение дискриминанта.
  • Графический метод.
  • Автоматизированный.

При использовании теоремы Виета значения корней вычисляется по таким формулам: z1 + z2 = — b и z1 * z2 = c. Если а > 1 (b и c не равны 0), то необходимо найти некоторый параметр. Математики называют его дискриминантом. Для решения существует специальный алгоритм:

Алгоритм решения рациональных уравнений 10 класс

  1. Выполнить расчет дискриминанта, и записать результат в виде квадрата: D = b 2 — 4ac.
  2. Если D больше 0, то два корня уравнения вычисляются таким образом: z1 = [(-b) + (D)^(½)] / (2 * а) и z2 = [(-b) — (D)^(½)] / (2 * а).
  3. При D = 0 две формулы во втором пункте преобразуются в одну, поскольку дискриминант не учитывается: z = [-b] / (2 * а). В этом случае существует только один корень.
  4. Когда при подсчете значения D получается отрицательное число, корней у уравнения нет вообще.
  5. После нахождения корней нужно подставить их в исходное выражение. Результат вычисления будет равен 0. Все остальные значения, приводящие к неверному тождеству, являются неверными. Их необходимо отсеивать. Это происходит, когда квадратное уравнение имеет вид обыкновенной дроби.

Следующим способом является графический метод решения. Для его реализации необходимо построить параболу, а затем найти точки пересечения с осью абсцисс (корни). Использование дополнительного программного обеспечения (онлайн-калькуляторов) для автоматизации вычислений экономит много времени. Его рекомендуется применять для проверки.

При отсутствии свободного члена (az^2 + bz = 0), можно воспользоваться методом разложения на множители. Для этого следует разделить обе части равенства на «а», а затем вынести общий множитель. В результате получится выражение z(z + b) = 0. У него два корня: z1 = 0 и z2 = -b.

Кубические тождества

Выражение вида а * z 3 + b * z 2 + с * z + d = 0 (а > 0), содержащее одну неизвестную, называется кубическим уравнением. Его метод решения зависит от вида. В алгебре выделяют 4 класса:

  1. az 3 + d= 0.
  2. az 3 + bz 2 + bz + a = 0.
  3. az 3 + bz 2 + cz = 0.

а * z 3 + b * z 2 + с * z + d = 0.

Алгоритм решения рациональных уравнений 10 класс

Первый класс решается просто. Для этого необходимо перенести свободный член d в правую часть, а затем разделить на «а»: z 3 = -d/a. После этого можно взять кубический корень из правой и левой частей. Кроме того, можно не переносить d, а просто разложить на множители: z 3 + d/a = (z + (d/a)^(1/3)) * (z 2 — [(d/a)^(1/3)]z + [(d/a)^2]^(1/3)) = 0. Разложив на множители, нужно решить 2 уравнения.

Чтобы решить второй тип задания, нужно выполнить некоторые математические преобразования: az 3 + bz 2 + bz + a = a (z 3 + 1) + b (z 2 + z) = a (z + 1)(z 2 — z + 1) + bz (z + 1) = (z + 1)(az 2 + z (b — a) + a) = 0. В результате этой операции произошло понижение степени. Далее нужно решить 2 равенства с неизвестными.

В третьем классе нужно просто вынести неизвестную (общий множитель) за скобку, а затем решить линейное и квадратное уравнения. Кроме того, этот тип тождеств решается также при помощи графического метода или замены переменной. Четвертый класс решается только с помощью построения графика (графическое представление — кубическая парабола) или заменой неизвестной.

В первом случае нужно построить кривую, которая называется кубической параболой. После этого следует найти точки пересечения графика с осью абсцисс. Метод замены — введение нового параметра, приводящего к равносильному упрощенному выражению. Сведение к квадратному многочлену осуществляется по такому алгоритму:

Алгоритм решения рациональных уравнений 10 класс

  • Разделить обе части на «а».
  • Выполнить замену: z = w — (b/(3a)).
  • Вычислить коэффициенты р и q: p = [(3ас — b 2 ) / (3а 2 )] и q = [2b 3 — 9abc + (27a 2 ) * D] / (27a 3 ).
  • Записать результат: w 2 + pw + q = 0.
  • Решить квадратное уравнение.
  • Вычислить z, подставив корни из пятого пункта во второй.
  • Осуществить проверку.

Последний пункт также можно выполнить в автоматизированном режиме, поскольку это займет меньше времени. Методика позволяет избавиться от высшей степени и свести выражение к квадратному многочлену.

Биквадратные уравнения

Алгоритм решения рациональных уравнений 10 класс

Биквадратные уравнения (az 4 + bz 2 + c = 0) — сложные выражения. Они решаются аналитическим методом, который заключается в понижении степени. В этом случае вводится новая неизвестная для понижения степени w = z 2 . В результате этого получается равносильное равенство вида: aw 2 + bw + c = 0. Далее решается обыкновенное квадратное уравнение, а затем его корни подставляются в параметр замены.

Когда биквадратный многочлен с неизвестными представлен в виде az 4 + bz 3 + cz 2 + dz + e = 0, нужно решать при помощи формулы Кардана. Математики рекомендуют воспользоваться алгоритмом:

  • Рассчитать вспомогательные коэффициенты: f = b / a, g = c / a и h = d / a.
  • Вычисление основных параметров: i = -((f)^2 / 3) + g и k = [2 (f)^3 / 27] — [(f * g) / 3] + h.
  • Нахождение по формуле Кардана математического ожидания: m = [(-k / 2) + ((k 2 / 4) + i 3 / 27)^(½)]^(1/3) + [(-k / 2) — (-(k 2 / 4) + i 3 / 27)^(½)]^(1/3).
  • Поиск искомых корней: z1 = m — f, z2 = m — g и z3 = m — h.

Математическое ожидание — область, принимающая среднее значение при определенных условиях. Если уравнение имеет другой вид, корни следует искать с помощью математического ожидания Кардана. Однако его следует править в зависимости от коэффициентов исходного тождества. Можно также построить график функции, но эта методика довольно сложная.

Для этого специалисты рекомендуют пользоваться сторонними сервисами, одним из которых является «yotx.ru». Он позволяет строить разные графики. Особенностью веб-приложения является его гибкая настройка, а также табличные данные зависимости значения функции от ее аргумента, которыми можно воспользоваться. Полученный график можно распечатать, сохранить на жестком диске, получить в виде ссылки и html-кода для сайта или урока.

Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

Алгебра 8. Урок 11 - Дробно-рациональные уравнения

Пример решения

Алгоритм решения рациональных уравнений 10 класс

После получения теоретических знаний следует приступить к практике. Начинать следует с простых примеров, заканчивая более сложными. Например, выполнить работу по нахождению корней равенства с неизвестными: [(2z^3 — 16) / (2z^2 — 4z + 2)] = 0.

Уравнение является рациональным. Оно состоит из двух выражений: числителя и знаменателя. Первый следует приравнять к нулю, поскольку при делении на любое выражение будет получено нулевое значение. Однако не все так просто — нужно обязательно проверить знаменатель. Следует найти корень или корни, при которых он обращается в ноль, превращая все тождество в пустое множество или неопределенность. Чтобы найти корни числителя, нужно воспользоваться алгоритмом:

Видео:Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.Скачать

Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.

Решение целых и дробно рациональных уравнений

Давайте познакомимся с рациональными и дробными рациональными уравнениями, дадим их определение, приведем примеры, а также разберем наиболее распространенные типы задач.

Видео:Решение дробных рациональных уравнений. Алгебра, 8 классСкачать

Решение дробных рациональных уравнений. Алгебра, 8 класс

Рациональное уравнение: определение и примеры

Знакомство с рациональными выражениями начинается в 8 классе школы. В это время на уроках алгебры учащиеся все чаще начинают встречать задания с уравнениями, которые содержат рациональные выражения в своих записях. Давайте освежим в памяти, что это такое.

Рациональное уравнение – это такое уравнение, в обеих частях которого содержатся рациональные выражения.

В различных пособиях можно встретить еще одну формулировку.

Рациональное уравнение – это такое уравнение, запись левой части которого содержит рациональное выражение, а правая – нуль.

Определения, которые мы привели для рациональных уравнений, являются равнозначными, так как говорят об одно и том же. Подтверждает правильность наших слов тот факт, что для любых рациональных выражений P и Q уравнения P = Q и P − Q = 0 будут равносильными выражениями.

А теперь обратимся к примерам.

x = 1 , 2 · x − 12 · x 2 · y · z 3 = 0 , x x 2 + 3 · x — 1 = 2 + 2 7 · x — a · ( x + 2 ) , 1 2 + 3 4 — 12 x — 1 = 3 .

Рациональные уравнения точно также, как и уравнения других видов, могут содержать любое количество переменных от 1 до нескольких. Для начала мы рассмотрим простые примеры, в которых уравнения будут содержать только одну переменную. А затем начнем постепенно усложнять задачу.

Рациональные уравнения делятся на две большие группы: целые и дробные. Посмотрим, какие уравнения будут относиться к каждой из групп.

Рациональное уравнение будет являться целым в том случае, если в записи левой и правой его частей содержатся целые рациональные выражения.

Рациональное уравнение будет являться дробным в том случае, если одна или обе его части содержат дробь.

Дробно рациональные уравнения в обязательном порядке содержат деление на переменную или же переменная имеется в знаменателе. В записи целых уравнений такого деления нет.

3 · x + 2 = 0 и ( x + y ) · ( 3 · x 2 − 1 ) + x = − y + 0 , 5 – целые рациональные уравнения. Здесь обе части уравнения представлены целыми выражениями.

1 x — 1 = x 3 и x : ( 5 · x 3 + y 2 ) = 3 : ( x − 1 ) : 5 – это дробно рациональные уравнения.

К числу целых рациональных уравнений можно отнести линейные и квадратные уравнения.

Видео:Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

Решение целых уравнений

Решение таких уравнений обычно сводится к преобразованию их в равносильные алгебраические уравнения. Достичь этого можно путем проведения равносильных преобразований уравнений в соответствии со следующим алгоритмом:

  • сначала получим ноль в правой части уравнения, для этого на необходимо перенести выражение, которое находится в правой части уравнения, в его левую часть и поменять знак;
  • затем преобразуем выражение в левой части уравнения в многочлен стандартного вида.

Мы должны получить алгебраическое уравнение. Это уравнение будет равносильным по отношению к исходному уравнению. Легкие случаи позволяют нам для решения задачи свести целое уравнение с линейному или квадратному. В общем случае мы решаем алгебраическое уравнение степени n .

Необходимо найти корни целого уравнения 3 · ( x + 1 ) · ( x − 3 ) = x · ( 2 · x − 1 ) − 3 .

Решение

Проведем преобразование исходного выражения с целью получить равносильное ему алгебраическое уравнение. Для этого произведем перенос выражения, содержащегося в правой части уравнения, в левую часть и заменим знак на противоположный. В итоге получим: 3 · ( x + 1 ) · ( x − 3 ) − x · ( 2 · x − 1 ) + 3 = 0 .

Теперь проведем преобразование выражения, которое находится в левой части в многочлен стандартного вида и произведем необходимые действия с этим многочленом:

3 · ( x + 1 ) · ( x − 3 ) − x · ( 2 · x − 1 ) + 3 = ( 3 · x + 3 ) · ( x − 3 ) − 2 · x 2 + x + 3 = = 3 · x 2 − 9 · x + 3 · x − 9 − 2 · x 2 + x + 3 = x 2 − 5 · x − 6

У нас получилось свести решение исходного уравнения к решению квадратного уравнения вида x 2 − 5 · x − 6 = 0 . Дискриминант этого уравнения положительный: D = ( − 5 ) 2 − 4 · 1 · ( − 6 ) = 25 + 24 = 49 . Это значит, действительных корней будет два. Найдем их, воспользовавшись формулой корней квадратного уравнения:

x = — — 5 ± 49 2 · 1 ,

x 1 = 5 + 7 2 или x 2 = 5 — 7 2 ,

x 1 = 6 или x 2 = — 1

Проверим верность корней уравнения, которые мы нашли в ходе решения. Для этого числа, которые мы получили, подставим в исходное уравнение: 3 · ( 6 + 1 ) · ( 6 − 3 ) = 6 · ( 2 · 6 − 1 ) − 3 и 3 · ( − 1 + 1 ) · ( − 1 − 3 ) = ( − 1 ) · ( 2 · ( − 1 ) − 1 ) − 3 . В первом случае 63 = 63 , во втором 0 = 0 . Корни x = 6 и x = − 1 действительно являются корнями уравнения, данного в условии примера.

Ответ: 6 , − 1 .

Давайте разберем, что значит «степень целого уравнения». С этим термином мы будем часто встречаться в тех случаях, когда нам надо будет представить целое уравнение в виде алгебраического. Дадим определение понятию.

Степень целого уравнения – это степень алгебраического уравнения, равносильного исходному целому уравнению.

Если посмотреть на уравнения из примера, приведенного выше, можно установить: степень данного целого уравнения вторая.

Если бы наш курс ограничивался решением уравнений второй степени, то рассмотрение темы на этом можно было бы закончить. Но все не так просто. Решение уравнений третьей степени сопряжено с трудностями. А для уравнений выше четвертой степени и вовсе не существует общих формул корней. В связи с этим решение целых уравнений третьей, четвертой и других степеней требует от нас применения целого ряда других приемов и методов.

Чаще прочих используется подход к решению целых рациональных уравнений, который основан на методе разложения на множители. Алгоритм действий в этом случае следующий:

  • переносим выражение из правой части в левую с тем, чтобы в правой части записи остался нуль;
  • представляем выражение в левой части как произведение множителей, а затем переходим к совокупности нескольких более простых уравнений.

Пример 4

Найдите решение уравнения ( x 2 − 1 ) · ( x 2 − 10 · x + 13 ) = 2 · x · ( x 2 − 10 · x + 13 ) .

Решение

Переносим выражение из правой части записи в левую с противоположным знаком: ( x 2 − 1 ) · ( x 2 − 10 · x + 13 ) − 2 · x · ( x 2 − 10 · x + 13 ) = 0 . Преобразование левой части в многочлен стандартного вида нецелесообразно в связи с тем, что это даст нам алгебраическое уравнение четвертой степени: x 4 − 12 · x 3 + 32 · x 2 − 16 · x − 13 = 0 . Легкость преобразования не оправдывает всех сложностей с решением такого уравнения.

Намного проще пойти другим путем: вынесем за скобки общий множитель x 2 − 10 · x + 13 . Так мы придем к уравнению вида ( x 2 − 10 · x + 13 ) · ( x 2 − 2 · x − 1 ) = 0 . Теперь заменим полученное уравнение совокупностью двух квадратных уравнений x 2 − 10 · x + 13 = 0 и x 2 − 2 · x − 1 = 0 и найдем их корни через дискриминант: 5 + 2 · 3 , 5 — 2 · 3 , 1 + 2 , 1 — 2 .

Ответ: 5 + 2 · 3 , 5 — 2 · 3 , 1 + 2 , 1 — 2 .

Точно также мы можем использовать метод введения новой переменной. Этот метод позволяет нам переходить к равносильным уравнениям со степенями ниже, чем были степени в исходном целом уравнении.

Есть ли корни у уравнения ( x 2 + 3 · x + 1 ) 2 + 10 = − 2 · ( x 2 + 3 · x − 4 ) ?

Решение

Если мы сейчас попробуем свести целое рациональное уравнение к алгебраическому, то получим уравнение 4 степени, которое не имеет рациональных корней. Потому нам будет проще пойти другим путем: ввести новую переменную у, которая заменит в уравнении выражение x 2 + 3 · x .

Теперь мы будем работать с целым уравнением ( y + 1 ) 2 + 10 = − 2 · ( y − 4 ) . Перенесем правую часть уравнения в левую с противоположным знаком и проведем необходимые преобразования. Получим: y 2 + 4 · y + 3 = 0 . Найдем корни квадратного уравнения: y = − 1 и y = − 3 .

Теперь проведем обратную замену. Получим два уравнения x 2 + 3 · x = − 1 и x 2 + 3 · x = − 3 . Перепишем их как x 2 + 3 · x + 1 = 0 и x 2 + 3 · x + 3 = 0 . Используем формулу корней квадратного уравнения для того, чтобы найти корни первого уравнения из полученных: — 3 ± 5 2 . Дискриминант второго уравнения отрицательный. Это значит, что действительных корней у второго уравнения нет.

Ответ: — 3 ± 5 2

Целые уравнения высоких степеней попадаются в задачах достаточно часто. Пугаться их не нужно. Нужно быть готовым применить нестандартный метод их решения, в том числе и ряд искусственных преобразований.

Видео:Как решать неравенства? Математика 10 класс | TutorOnlineСкачать

Как решать неравенства? Математика 10 класс | TutorOnline

Решение дробно рациональных уравнений

Начнем рассмотрение этой подтемы мы с алгоритма решения дробно рациональных уравнений вида p ( x ) q ( x ) = 0 , где p ( x ) и q ( x ) – целые рациональные выражения. Решение остальных дробно рациональных уравнений всегда можно свести к решению уравнений указанного вида.

В основу наиболее употребимого метода решения уравнений p ( x ) q ( x ) = 0 положено следующее утверждение: числовая дробь u v , где v – это число, которое отлично от нуля, равна нулю только в тех случаях, когда числитель дроби равен нулю. Следуя логике приведенного утверждения мы можем утверждать, что решение уравнения p ( x ) q ( x ) = 0 может быть сведено в выполнению двух условий: p ( x ) = 0 и q ( x ) ≠ 0 . На этом построен алгоритм решения дробных рациональных уравнений вида p ( x ) q ( x ) = 0 :

  • находим решение целого рационального уравнения p ( x ) = 0 ;
  • проверяем, выполняется ли для корней, найденных в ходе решения, условие q ( x ) ≠ 0 .

Если это условие выполняется, то найденный корень является корнем исходного уравнения. Если нет, то корень не является решением задачи.

Найдем корни уравнения 3 · x — 2 5 · x 2 — 2 = 0 .

Решение

Мы имеем дело с дробным рациональным уравнением вида p ( x ) q ( x ) = 0 , в котором p ( x ) = 3 · x − 2 , q ( x ) = 5 · x 2 − 2 = 0 . Приступим к решению линейного уравнения 3 · x − 2 = 0 . Корнем этого уравнения будет x = 2 3 .

Проведем проверку найденного корня, удовлетворяет ли он условию 5 · x 2 − 2 ≠ 0 . Для этого подставим числовое значение в выражение. Получим: 5 · 2 3 2 — 2 = 5 · 4 9 — 2 = 20 9 — 2 = 2 9 ≠ 0 .

Условие выполняется. Это значит, что x = 2 3 является корнем исходного уравнения.

Ответ: 2 3 .

Есть еще один вариант решения дробных рациональных уравнений p ( x ) q ( x ) = 0 . Вспомним, что это уравнение равносильно целому уравнению p ( x ) = 0 на области допустимых значений переменной x исходного уравнения. Это позволяет нам использовать следующий алгоритм в решении уравнений p ( x ) q ( x ) = 0 :

  • решаем уравнение p ( x ) = 0 ;
  • находим область допустимых значений переменной x ;
  • берем корни, которые лежат в области допустимых значений переменной x , в качестве искомых корней исходного дробного рационального уравнения.

Пример 7

Решите уравнение x 2 — 2 · x — 11 x 2 + 3 · x = 0 .

Решение

Для начала решим квадратное уравнение x 2 − 2 · x − 11 = 0 . Для вычисления его корней мы используем формулу корней для четного второго коэффициента. Получаем D 1 = ( − 1 ) 2 − 1 · ( − 11 ) = 12 , и x = 1 ± 2 3 .

Теперь мы можем найти ОДЗ переменной x для исходного уравнения. Это все числа, для которых x 2 + 3 · x ≠ 0 . Это то же самое, что x · ( x + 3 ) ≠ 0 , откуда x ≠ 0 , x ≠ − 3 .

Теперь проверим, входят ли полученные на первом этапе решения корни x = 1 ± 2 3 в область допустимых значений переменной x . Мы видим, что входят. Это значит, что исходное дробное рациональное уравнение имеет два корня x = 1 ± 2 3 .

Ответ​​: x = 1 ± 2 3

Второй описанный метод решения проще первого в случаях, когда легко находится область допустимых значений переменной x , а корни уравнения p ( x ) = 0 иррациональные. Например, 7 ± 4 · 26 9 . Корни могут быть и рациональными, но с большим числителем или знаменателем. Например, 127 1101 и − 31 59 . Это позволяет сэкономить время на проведении проверки условия q ( x ) ≠ 0 : намного проще исключить корни, которые не подходят, по ОДЗ.

В тех случаях, когда корни уравнения p ( x ) = 0 целые, целесообразнее использовать первый из описанных алгоритмов решения уравнений вида p ( x ) q ( x ) = 0 . Быстрее сразу находить корни целого уравнения p ( x ) = 0 , после чего проверять, выполняется ли для них условие q ( x ) ≠ 0 , а не находить ОДЗ, после чего решать уравнение p ( x ) = 0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

Найдите корни уравнения ( 2 · x — 1 ) · ( x — 6 ) · ( x 2 — 5 · x + 14 ) · ( x + 1 ) x 5 — 15 · x 4 + 57 · x 3 — 13 · x 2 + 26 · x + 112 = 0 .

Решение

Начнем с рассмотрения целого уравнения ( 2 · x − 1 ) · ( x − 6 ) · ( x 2 − 5 · x + 14 ) · ( x + 1 ) = 0 и нахождения его корней. Для этого применим метод решения уравнений через разложение на множители. Получается, что исходное уравнение равносильно совокупности четырех уравнений 2 · x − 1 = 0 , x − 6 = 0 , x 2 − 5 · x + 14 = 0 , x + 1 = 0 , из которых три линейных и одно квадратное. Находим корни: из первого уравнения x = 1 2 , из второго – x = 6 , из третьего – x = 7 , x = − 2 , из четвертого – x = − 1 .

Проведем проверку полученных корней. Определить ОДЗ в данном случае нам сложно, так как для этого придется провести решение алгебраического уравнения пятой степени. Проще будет проверить условие, по которому знаменатель дроби, которая находится в левой части уравнения, не должен обращаться в нуль.

По очереди подставим корни на место переменной х в выражение x 5 − 15 · x 4 + 57 · x 3 − 13 · x 2 + 26 · x + 112 и вычислим его значение:

1 2 5 − 15 · 1 2 4 + 57 · 1 2 3 − 13 · 1 2 2 + 26 · 1 2 + 112 = = 1 32 − 15 16 + 57 8 − 13 4 + 13 + 112 = 122 + 1 32 ≠ 0 ;

6 5 − 15 · 6 4 + 57 · 6 3 − 13 · 6 2 + 26 · 6 + 112 = 448 ≠ 0 ;

7 5 − 15 · 7 4 + 57 · 7 3 − 13 · 7 2 + 26 · 7 + 112 = 0 ;

( − 2 ) 5 − 15 · ( − 2 ) 4 + 57 · ( − 2 ) 3 − 13 · ( − 2 ) 2 + 26 · ( − 2 ) + 112 = − 720 ≠ 0 ;

( − 1 ) 5 − 15 · ( − 1 ) 4 + 57 · ( − 1 ) 3 − 13 · ( − 1 ) 2 + 26 · ( − 1 ) + 112 = 0 .

Проведенная проверка позволяет нам установить, что корнями исходного дробного рацинального уравнения являются 1 2 , 6 и − 2 .

Ответ: 1 2 , 6 , — 2

Найдите корни дробного рационального уравнения 5 · x 2 — 7 · x — 1 · x — 2 x 2 + 5 · x — 14 = 0 .

Решение

Начнем работу с уравнением ( 5 · x 2 − 7 · x − 1 ) · ( x − 2 ) = 0 . Найдем его корни. Нам проще представить это уравнение как совокупность квадратного и линейного уравнений 5 · x 2 − 7 · x − 1 = 0 и x − 2 = 0 .

Используем формулу корней квадратного уравнения для поиска корней. Получаем из первого уравнения два корня x = 7 ± 69 10 , а из второго x = 2 .

Подставлять значение корней в исходное уравнение для проверки условий нам будет достаточно сложно. Проще будет определить ОДЗ переменной x . В данном случае ОДЗ переменной x – это все числа, кроме тех, для которых выполняется условие x 2 + 5 · x − 14 = 0 . Получаем: x ∈ — ∞ , — 7 ∪ — 7 , 2 ∪ 2 , + ∞ .

Теперь проверим, принадлежат ли найденные нами корни к области допустимых значений переменной x .

Корни x = 7 ± 69 10 — принадлежат, поэтому, они являются корнями исходного уравнения, а x = 2 – не принадлежит, поэтому, это посторонний корень.

Ответ: x = 7 ± 69 10 .

Разберем отдельно случаи, когда в числителе дробного рационального уравнения вида p ( x ) q ( x ) = 0 находится число. В таких случаях, если в числителе находится число, отличное от нуля, то уравнение не будет иметь корней. Если это число будет равно нулю, то корнем уравнения будет любое число из ОДЗ.

Решите дробное рациональное уравнение — 3 , 2 x 3 + 27 = 0 .

Решение

Данное уравнение не будет иметь корней, так как в числителе дроби из левой части уравнения находится отличное от нуля число. Это значит, что ни при каких значениях x значение приведенной в условии задачи дроби не будет равняться нулю.

Ответ: нет корней.

Решите уравнение 0 x 4 + 5 · x 3 = 0 .

Решение

Так как в числителе дроби находится нуль, решением уравнения будет любое значение x из ОДЗ переменной x .

Теперь определим ОДЗ. Оно будет включать все значения x , при которых x 4 + 5 · x 3 ≠ 0 . Решениями уравнения x 4 + 5 · x 3 = 0 являются 0 и − 5 , так как, это уравнение равносильно уравнению x 3 · ( x + 5 ) = 0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 = 0 и x + 5 = 0 , откуда и видны эти корни. Мы приходим к тому, что искомой областью допустимых значений являются любые x , кроме x = 0 и x = − 5 .

Получается, что дробное рациональное уравнение 0 x 4 + 5 · x 3 = 0 имеет бесконечное множество решений, которыми являются любые числа кроме нуля и — 5 .

Ответ: — ∞ , — 5 ∪ ( — 5 , 0 ∪ 0 , + ∞

Теперь поговорим о дробных рациональных уравнениях произвольного вида и методах их решения. Их можно записать как r ( x ) = s ( x ) , где r ( x ) и s ( x ) – рациональные выражения, причем хотя бы одно из них дробное. Решение таких уравнений сводится к решению уравнений вида p ( x ) q ( x ) = 0 .

Мы уже знаем, что мы можем получить равносильное уравнение при переносе выражения из правой части уравнения в левое с противоположным знаком. Это значит, что уравнение r ( x ) = s ( x ) равносильно уравнение r ( x ) − s ( x ) = 0 . Также мы уже разобрали способы преобразования рационального выражения в рациональную дробь. Благодаря этому мы без труда можем преобразовать уравнение r ( x ) − s ( x ) = 0 в тождественную ему рациональную дробь вида p ( x ) q ( x ) .

Так мы переходим от исходного дробного рационального уравнения r ( x ) = s ( x ) к уравнению вида p ( x ) q ( x ) = 0 , решать которые мы уже научились.

Следует учитывать, что при проведении переходов от r ( x ) − s ( x ) = 0 к p ( x ) q ( x ) = 0 , а затем к p ( x ) = 0 мы можем не учесть расширения области допустимых значений переменной x .

Вполне реальна ситуация, когда исходное уравнение r ( x ) = s ( x ) и уравнение p ( x ) = 0 в результате преобразований перестанут быть равносильными. Тогда решение уравнения p ( x ) = 0 может дать нам корни, которые будут посторонними для r ( x ) = s ( x ) . В связи с этим в каждом случае необходимо проводить проверку любым из описанных выше способов.

Чтобы облегчить вам работу по изучению темы, мы обобщили всю информацию в алгритм решения дробного рационального уравнения вида r ( x ) = s ( x ) :

  • переносим выражение из правой части с противоположным знаком и получаем справа нуль;
  • преобразуем исходное выражение в рациональную дробь p ( x ) q ( x ) , последовательно выполняя действия с дробями и многочленами;
  • решаем уравнение p ( x ) = 0 ;
  • выявляем посторонние корни путем проверки их принадлежности ОДЗ или методом подстановки в исходное уравнение.

Визуально цепочка действий будет выглядеть следующим образом:

r ( x ) = s ( x ) → r ( x ) — s ( x ) = 0 → p ( x ) q ( x ) = 0 → p ( x ) = 0 → о т с е и в а н и е п о с т о р о н н и х к о р н е й

Решите дробное рациональное уравнение x x + 1 = 1 x + 1 .

Решение

Перейдем к уравнению x x + 1 — 1 x + 1 = 0 . Преобразуем дробное рациональное выражение в левой части уравнения к виду p ( x ) q ( x ) .

Для этого нам придется привести рациональные дроби к общему знаменателю и упростить выражение:

x x + 1 — 1 x — 1 = x · x — 1 · ( x + 1 ) — 1 · x · ( x + 1 ) x · ( x + 1 ) = = x 2 — x — 1 — x 2 — x x · ( x + 1 ) = — 2 · x — 1 x · ( x + 1 )

Для того, чтобы найти корни уравнения — 2 · x — 1 x · ( x + 1 ) = 0 , нам необходимо решить уравнение − 2 · x − 1 = 0 . Получаем один корень x = — 1 2 .

Нам осталось выполнить проверку любым из методов. Рассмотрим их оба.

Подставим полученное значение в исходное уравнение. Получим — 1 2 — 1 2 + 1 = 1 — 1 2 + 1 . Мы пришли к верному числовому равенству − 1 = − 1 . Это значит, что x = − 1 2 является корнем исходного уравнения.

Теперь проведем проверку через ОДЗ. Определим область допустимых значений переменной x . Это будет все множество чисел, за исключением − 1 и 0 (при x = − 1 и x = 0 обращаются в нуль знаменатели дробей). Полученный нами корень x = − 1 2 принадлежит ОДЗ. Это значит, что он является корнем исходного уравнения.

Ответ: − 1 2 .

Найдите корни уравнения x 1 x + 3 — 1 x = — 2 3 · x .

Решение

Мы имеем дело с дробным рациональным уравнением. Следовательно, будем действовать по алгоритму.

Перенесем выражение из правой части в левую с противоположным знаком: x 1 x + 3 — 1 x + 2 3 · x = 0

Проведем необходимые преобразования: x 1 x + 3 — 1 x + 2 3 · x = x 3 + 2 · x 3 = 3 · x 3 = x .

Приходим к уравнению x = 0 . Корень этого уравнения – нуль.

Проверим, не является ли этот корень посторонним для исходного уравнения. Подставим значение в исходное уравнение: 0 1 0 + 3 — 1 0 = — 2 3 · 0 . Как видите, полученное уравнение не имеет смысла. Это значит, что 0 – это посторонний корень, а исходное дробное рациональное уравнение корней не имеет.

Ответ: нет корней.

Если мы не включили в алгоритм другие равносильные преобразования, то это вовсе не значит, что ими нельзя пользоваться. Алгоритм универсален, но он создан для того, чтобы помогать, а не ограничивать.

Решите уравнение 7 + 1 3 + 1 2 + 1 5 — x 2 = 7 7 24

Решение

Проще всего будет решить приведенное дробное рациональное уравнение согласно алгоритму. Но есть и другой путь. Рассмотрим его.

Отнимем от правой и левой частей 7 , получаем: 1 3 + 1 2 + 1 5 — x 2 = 7 24 .

Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно числу, обратному числу из правой части, то есть, 3 + 1 2 + 1 5 — x 2 = 24 7 .

Вычтем из обеих частей 3 : 1 2 + 1 5 — x 2 = 3 7 . По аналогии 2 + 1 5 — x 2 = 7 3 , откуда 1 5 — x 2 = 1 3 , и дальше 5 — x 2 = 3 , x 2 = 2 , x = ± 2

Проведем проверку для того, чтобы установить, являются ли найденные корни корнями исходного уравнения.

💥 Видео

Алгебра 8. Урок 12 - Задачи на составление дробно-рациональных уравнений (Часть 1)Скачать

Алгебра 8. Урок 12 - Задачи на составление дробно-рациональных уравнений (Часть 1)

Дробно-рациональные уравнения. Подготовка к экзаменам. 64 часть. 9 класс.Скачать

Дробно-рациональные уравнения. Подготовка к экзаменам. 64 часть. 9 класс.

СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

Дробно рациональные уравнения. Алгебра, 9 классСкачать

Дробно рациональные уравнения. Алгебра, 9 класс

решение УРАВНЕНИЙ решение НЕРАВЕНСТВ 10 11 классСкачать

решение УРАВНЕНИЙ решение НЕРАВЕНСТВ 10 11 класс

Решение задач с помощью рациональных уравнений. Алгебра, 8 классСкачать

Решение задач с помощью рациональных уравнений. Алгебра, 8 класс

Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴Скачать

Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴

Зачётный способ решить дробно рациональное уравнение методом заменыСкачать

Зачётный способ решить дробно рациональное уравнение методом замены

Дробно-рациональные уравнения + Бонус: треугольник Паскаля | МатематикаСкачать

Дробно-рациональные уравнения + Бонус: треугольник Паскаля | Математика

✓ Метод интервалов. Рациональные уравнения и неравенства | Борис ТрушинСкачать

✓ Метод интервалов. Рациональные уравнения и неравенства | Борис Трушин
Поделиться или сохранить к себе: