Алгебраический способ решения уравнений с модулем

Алгебраическое и графическое решение уравнений, содержащих модули

Алгебраический способ решения уравнений с модулем

Алгебраическое и графическое решение уравнений, содержащих модули.

2.Понятия и определения………………………………………….4

4.Способы решение уравнений, содержащих модуль…………. 6

4.1.Решение при помощи зависимостей между числами a и b, их модулями и квадратами…………………………………………………………12

4.2.Использование геометрической интерпретации модуля для решения уравнений…………………………………………………………..14

4.3.Графики простейших функций, содержащих знак абсолютной величины…………………………………………………………..15

4.4.Решение нестандартных уравнений, ………….16

Слово «модуль» произошло от латинского слова «modulus», что в переводе означает «мера». Это многозначное слово(омоним), которое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, программировании и других точных науках.

В архитектуре — это исходная единица измерения, устанавливаемая для данного архитектурного сооружения и служащая для выражения кратных соотношений его составных элементов.

В технике — это термин, применяемый в различных областях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например модуль зацепления, модуль упругости и. т.п.

Модуль объемного сжатия( в физике)-отношение нормального напряжения в материале к относительному удлинению.

2. Понятия и определения

Чтобы глубоко изучать данную тему, необходимо познакомиться с простейшими определениями, которые мне будут необходимы:

Уравнение-это равенство, содержащее переменные.

Уравнение с модулем — это уравнение, содержащие переменную под знаком абсолютной величины(под знаком модуля).Например: |x|=1

Решить уравнение-это значит найти все его корни, или доказать, что корней нет.

В математике модуль имеет несколько значений, но в моей исследовательской работе я возьму лишь одно:

Модуль — абсолютная величина числа, равная расстоянию от начала отсчета до точки на числовой прямой.

3. Доказательство теорем

Определение. Модуль числа a или абсолютная величина числа a равна a, если a больше или равно нулю и равна — a, если a меньше нуля:

Алгебраический способ решения уравнений с модулем

Из определения следует, что для любого действительного числа a, Алгебраический способ решения уравнений с модулем

Теорема 1. Абсолютная величина действительного числа Алгебраический способ решения уравнений с модулемравна большему из двух чисел a или –a

1. Если число a положительно, то — a отрицательно, т. е. — a 0 уравнение имеет 2 различных корня.

Как показывает решение, корнями данного уравнения также являются числа 11/3 и 6

Ответ: x1=6, x2=11/3

Пример 5. Решим уравнение (2x + 3)2= ( x – 1)2.

Учитывая соотношение (2), получим, что |2x + 3|=|x – 1|, откуда по образцу предыдущего примера (и по соотношению (1)):

2х + 3=х – 1 или 2х + 3=-х + 1

2х – х=-1 – 3 2х+ х=1 – 3

Таким образом корнями уравнения являются х1=-4, и х2=-0,(6)

Пример 6. Решим уравнение |x – 6|=|x2 – 5x + 9|

Пользуясь соотношением (1), получим:

х – 6=х2 – 5х + 9 или х – 6 = -(х2 – 5х + 9)

-х2 + 5х + х – 6 – 9=0 |(-1) x – 6=-x2 + 5x — 9

x2 — 6x + 15=0 x2 – 4x + 3=0

D=36 – 4 * 15=36 – 60= -24 0

Проверка: |1 – 6|=|12 – 5 * 1 + 9| |3 – 6|=|32 – 5 * 3 + 9|

5 = 5(И) 3 = |9 – 15 + 9|

4.2.Использование геометрической интерпретации модуля для решения уравнений.

Геометрический смысл модуля разности величин — это расстояние между ними. Например, геометрический смысл выражения |x – a | — длина отрезка координатной оси, соединяющей точки с абсциссами а и х. Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Пример 7. Решим уравнение |x – 1| + |x – 2|=1 с использованием геометрической интерпретации модуля.

Будем рассуждать следующим образом: исходя из геометрической интерпретации модуля, левая часть уравнения представляет собой сумму расстояний от некоторой точки абсцисс х до двух фиксированных точек с абсциссами 1 и 2. Тогда очевидно, что все точки с абсциссами из отрезка [1; 2] обладают требуемым свойством, а точки, расположенные вне этого отрезка — нет. Отсюда ответ: множеством решений уравнения является отрезок [1; 2].

Пример8. Решим уравнение |x – 1| — |x – 2|=1 1 с использованием геометрической интерпретации модуля.

Будем рассуждать аналогично предыдущему примеру, при этом получим, что разность расстояний до точек с абсциссами 1 и 2 равна единице только для точек, расположенных на координатной оси правее числа 2. Следовательно, решением данного уравнения будет являться не отрезок, заключенный между точками 1 и 2, а луч, выходящий из точки 2, и направленный в положительном направлении оси ОХ.

Обобщением вышеприведенных уравнений являются следующие равносильные переходы:

|x – a| + |x – b|=b – a, где b >a Û a a Û x

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Уравнение с модулем

Уравнение с модулем достаточно сложная тема для начинающих. Учитывая это обстоятельство, в данный урок войдут только элементарные уравнения.

Что такое уравнение с модулем и как его решить?

В уравнениях с модулем неизвестное значение содержится под знáком модуля. Например:

Уравнения с модулем бывают разными и решаются они различными методами. Нельзя сказать что какой-то метод наиболее рационален. Всё зависит от исходного уравнения.

Например, в каких-то уравнениях можно просто угадать корень, в то время как в других нужно логически мыслить, раскрывать модули, выполнять тождественные преобразования. Человек волен выбирать каким методом решения пользоваться.

К примеру, решим вышеприведённое уравнение |x − 2| = 5 . Допустим, что мы не знаем ни одного метода решения. Как бы мы его решили?

Прежде всего заметим, что правая часть данного уравнения равна числу 5. Слева же располагается модуль из выражения |x − 2| . Это означает что подмодульное выражение x − 2 должно равняться числу 5 или −5

Алгебраический способ решения уравнений с модулем

Значит нужно выяснить при каких значениях переменной x подмодульное выражение x − 2 будет обращаться в число 5 или −5.

Искомые значения x найдутся если приравнять подмодульное выражение к числу 5 и −5, а затем поочерёдно решить каждое из уравнений:

Алгебраический способ решения уравнений с модулем

Значит корнями уравнения |x − 2| = 5 являются числа 7 и −3.

Большинство элементарных уравнений с модулем можно решить используя правило раскрытия модуля. Для этого раскрывают модуль содержащийся в уравнении, затем получившееся выражение подставляют в исходное уравнение вместо выражения с модулем.

Раскрывать модуль нужно для каждого из случаев: когда подмодульное выражение больше или равно нулю, и когда подмодульное выражение меньше нуля.

Решим наше уравнение |x − 2| = 5 с помощью правила раскрытия модуля. Выпишем отдельно его модуль и раскроем его:

Алгебраический способ решения уравнений с модулем

В этой конструкции говорится, что если подмодульное выражение x − 2 больше или равно нулю, то модуль раскроется как x − 2, и тогда исходное уравнение примет вид x − 2 = 5 , откуда x = 7

Алгебраический способ решения уравнений с модулем

А если же подмодульное выражение x − 2 меньше нуля, то модуль раскроется как −(x − 2) . Тогда исходное уравнение примет вид −(x − 2) = 5 , откуда x = −3

Алгебраический способ решения уравнений с модулем

Итак, уравнение |x − 2|= 5 имеет корни 7 и −3. Для проверки подстáвим числа 7 и −3 в исходное уравнение вместо x . Тогда получим верное равенство:

Алгебраический способ решения уравнений с модулем

Подмодульное выражение как правило содержит такое x, которое может обращать всё подмодульное выражение как в положительное число, так и в отрицательное, либо вообще в ноль.

Поэтому модуль и раскрывается для каждого из случаев: когда подмодульное выражение больше или равно нулю, и когда подмодульное выражение меньше нуля. Каждый из случаев будет давать независимое уравнение со своим корнем.

Вернёмся теперь к моменту, где мы раскрывали модуль:

Алгебраический способ решения уравнений с модулем

Условия x − 2 ≥ 0 и x − 2 являются неравенствами, которые можно решить, тем самым приведя их к простому виду:

Алгебраический способ решения уравнений с модулем

Символ ⇔ означает равносильность. В данном случае указывается, что условие x − 2 ≥ 0 равносильно условию x ≥ 2 , а условие x − 2 равносильно условию x

Такой вид записи условий позволяет однозначно сказать при каких x модуль будет раскрываться с плюсом, а при каких с минусом.

В первом случае получилось условие x ≥ 2. Это значит что при всех x бóльших либо равных 2, модуль |x − 2| будет раскрываться с плюсом. Так, при x = 7, подмодульное выражение станет равно 5

А значит дальнейшее раскрытие будет с плюсом

Таким же образом модуль |x − 2| будет вести себя и с другими значениями x на промежутке x ≥ 2 . То есть, будет раскрываться с плюсом. Примеры:

При x = 3, |3 − 2|=|1| = 1
При x = 4, |4 − 2|=|2| = 2
При x = 2, |2 − 2|=|0| = 0
При x = 13, |13 − 2|=|11| = 11

А во втором случае получилось условие x . Это значит что при всех x мéньших 2, модуль будет раскрываться с минусом. Так, при x = −3, подмодульное выражение опять же станет равно 5. Но в промежуточных вычислениях можно увидеть, что модуль раскрывается с минусом:

Модуль |x − 2| будет вести себя так же и с другими значениями x на промежутке x . Примеры:

При x = 1, |1 − 2|=|−1| = −(−1) = 1
При x = 0, |0 − 2|=|−2| = −(−2) = 2
При x = −1, |−1 − 2|=|−3| = −(−3) = 3
При x = −9,|−9 − 2|=|−11| = −(−11) = 11

Число 2 является своего рода точкой перехода, в которой модуль |x − 2| меняет свой порядок раскрытия.

Можно представить как модуль |x − 2| двигался по маршруту от минус бесконечности до числа 2, раскрываясь в каждой точке с минусом. Попав в точку 2, модуль поменял свой порядок раскрытия — а именно раскрывшись в точке 2 с плюсом, он далее стал раскрываться с плюсом, двигаясь в правую часть к плюс бесконечности.

С помощью координатной прямой это можно представить так:

Алгебраический способ решения уравнений с модулем

Красные знаки минуса и плюса указывают, как будет раскрываться модуль |x − 2| на промежутках x и x ≥ 2 .

Точку перехода можно найти для любого модуля. Для этого нужно узнать при каких x подмодульное выражение равно нулю. Ноль это то значение, до и после которого модуль всегда сохраняет свой знак. Это следует из правила раскрытия модуля:

Алгебраический способ решения уравнений с модулем

В этом примере в момент когда x станет равным нулю, модуль |x| раскроется с плюсом и далее при всех x , бóльших нуля, будет раскрываться с плюсом. Напротив, при всех x , мéньших нуля модуль будет раскрываться с минусом:

Алгебраический способ решения уравнений с модулем

А например для модуля |2x + 6| точкой перехода будет число −3 , потому что при его подстановке в подмодульное выражение 2x + 6 вместо x, данное подмодульное выражение станет равно нулю. Изобразим это на рисунке:

Алгебраический способ решения уравнений с модулем

При всех x, бóльших либо равных −3 , модуль будет раскрываться с плюсом. Примеры:

При x = −3, |2 × (−3) + 6| = |0| = 0
При x = 4, |2 × 4 + 6| = |14| = 14
При x = 5, |2 × 5 + 6| = |16| = 16

А при всех x, мéньших 3, модуль будет раскрываться с минусом. Примеры:

При x = −4, |2 × (−4) + 6| = |−2| = −(−2) = 2
При x = −5, |2 × (−5) + 6| = |−4| = −(−4) = 4
При x = −6, |2 × (−6) + 6| = |−6| = −(−6) = 6

Пример 2. Решить уравнение |x| + 3x = −2

Решение

Раскроем модуль, который содержится в левой части уравнения:

Алгебраический способ решения уравнений с модулем

Если x ≥ 0 , то модуль раскроется со знаком плюс и тогда исходное уравнение примет вид x + 3x = −2 . Сразу решим это уравнение:

Алгебраический способ решения уравнений с модулем

Теперь рассмотрим второй случай — когда xx + 3x = −2 . Решим и это уравнение:

Алгебраический способ решения уравнений с модулем

Получили корни Алгебраический способ решения уравнений с модулеми −1.

Выполним проверку, подставив найденные корни в исходное уравнение. Проверим корень Алгебраический способ решения уравнений с модулем

Алгебраический способ решения уравнений с модулем

Видим, что при подстановке корня Алгебраический способ решения уравнений с модулемисходное уравнение не обращается в верное равенство. Значит Алгебраический способ решения уравнений с модулемне является корнем исходного уравнения.

Проверим теперь корень −1

Алгебраический способ решения уравнений с модулем

Получили верное равенство. Значит из двух найденных решений только −1 является корнем уравнения.

Ответ: −1.

Здесь можно сделать важный вывод. В уравнениях с модулем найденные корни не всегда удовлетворяют исходному уравнению. Чтобы убедиться в правильности своего решения, нужно выполнять проверку, подставляя найденные корни в исходное уравнение.

Кроме того, проверить является ли найденное значение корнем уравнения можно с помощью условия, согласно которому был раскрыт модуль.

Так, в данном примере мы раскрывали модуль |x| для случаев когда подмодульное выражение больше или равно нулю, и когда подмодульное выражение меньше нуля:

Алгебраический способ решения уравнений с модулем

Условия x≥0 и x x + 3x = −2 . Корнем этого уравнения стало число Алгебраический способ решения уравнений с модулем. Это число не удовлетворяет условию x ≥ 0, согласно которому был раскрыт модуль |x| и согласно которому было получено уравнение x + 3x = −2 . Действительно, при подстановке числа Алгебраический способ решения уравнений с модулемв неравенство x ≥ 0 получается неверное неравенство.

А при раскрытии модуля со знаком минус, получилось уравнение −x + 3x = −2 . Корнем этого уравнения стало число −1 . Это число удовлетворяет условию x −x + 3x = −2 . Действительно, при подстановке числа −1 в неравенство x получается верное неравенство.

Пример 3. Решить уравнение |1 − 2x| − 4x = −6

Решение

Алгебраический способ решения уравнений с модулем

При раскрытии модуля |1 − 2x| со знаком плюс, получим уравнение 1 − 2x − 4x = −6 . Решим его:

Алгебраический способ решения уравнений с модулем

При раскрытии модуля |1 − 2x| со знаком минус, получим уравнение −1 + 2x − 4x = −6. Решим его:

Алгебраический способ решения уравнений с модулем

Получили корни Алгебраический способ решения уравнений с модулеми Алгебраический способ решения уравнений с модулем.

Корень Алгебраический способ решения уравнений с модулемне удовлетворяет условию Алгебраический способ решения уравнений с модулем, значит не является корнем исходного уравнения.

Корень Алгебраический способ решения уравнений с модулемудовлетворяет условию Алгебраический способ решения уравнений с модулем, значит является корнем исходного уравнения. Проверка также покажет это:

Алгебраический способ решения уравнений с модулем

Ответ: Алгебраический способ решения уравнений с модулем.

Пример 4. Решить уравнение | x 2 − 3x | = 0

Решение

Если модуль числа равен нулю, то подмодульное выражение тоже равно нулю:

Алгебраический способ решения уравнений с модулем

То есть можно не раскрывать модуль. Достаточно узнать при каких значениях x подмодульное выражение равно нулю. В данном случае для этого нужно решить неполное квадратное уравнение:

Алгебраический способ решения уравнений с модулем

Получили корни 0 и 3. Оба корня удовлетворяют исходному уравнению. Проверка показывает это:

Алгебраический способ решения уравнений с модулем

Пример 5. Решить уравнение x 2 − 5|x| + 6 = 0

Выпишем отдельно модуль |x| и раскроем его:

Алгебраический способ решения уравнений с модулем

При раскрытии модуля |x| со знаком плюс, исходное уравнение примет вид x 2 − 5x + 6 = 0 . Это квадратное уравнение. Решим его с помощью дискриминанта:

Алгебраический способ решения уравнений с модулем

Оба корня удовлетворяют условию x ≥ 0 , значит являются корнями исходного уравнения.

При раскрытии модуля |x| со знаком минус, исходное уравнение примет вид x 2 + 5x + 6 = 0 . Это тоже квадратное уравнение. Решим его как и предыдущее:

Алгебраический способ решения уравнений с модулем

При условии x ≥ 0 , модуль из уравнения раскрылся с плюсом, получились корни 3 и 2. Оба корня удовлетворяют условию x ≥ 0 , значит удовлетворяют и исходному уравнению.

При условии x , модуль из уравнения раскрылся с минусом, получились корни −2 и −3. Оба корня удовлетворяют условию x , значит удовлетворяют и исходному уравнению.

Ответ: 3, 2, −2 и −3.

Сведéние уравнения с модулем в совокупность

Большинство элементарных уравнений с модулем можно решить сведéнием их к так называемой совокупности уравнений.

Элементарными мы будем называть те уравнения с модулем, в которых левая часть является модулем из какого-то выражения, а правая часть — числом. Например, |x| = 3 или |2x − 1| = 3.

Решим наше самое первое уравнение |x − 2| = 5 сведéнием его к совокупности уравнений. Корнями этого уравнения были числа 7 и −3. Это уравнение тоже считается элементарным.

Если раскрыть модуль |x − 2| со знаком плюс, то уравнение |x − 2| = 5 примет вид x − 2 = 5 .

Если раскрыть модуль |x − 2| со знаком минус, то уравнение |x − 2| = 5 примет вид −(x − 2) = 5 , то есть −x + 2 = 5 .

Видим, что из уравнения |x − 2| = 5 получилось два уравнения: x − 2 = 5 и −x + 2 = 5 . Причём каждое из уравнений имеет свой собственный корень. Уравнение x − 2 = 5 имеет корень 7, а уравнение −x + 2 = 5 — корень −3

Выпишем уравнения x − 2 = 5 и −x + 2 = 5 и объединим их квадратной скобкой:

Алгебраический способ решения уравнений с модулем

Такой вид записи называют совокупностью уравнений.

Совокупность уравнений — это несколько уравнений, объединённых квадратной скобкой, и имеющих множество решений, которые удовлетворяют хотя бы одному из уравнений, входящих в данную совокупность.

Так, число 7 является решением совокупности Алгебраический способ решения уравнений с модулемпотому что это число удовлетворяет первому уравнению х − 2 = 5 .

Число −3 тоже является решением данной совокупности, поскольку удовлетворяет второму уравнению − х + 2 = 5.

Вместе же числа 7 и −3 образуют множество решений данной совокупности.

В отличие от системы уравнений, совокупность состоит из уравнений, которые не зависят друг от друга. Для каждого уравнения, входящего в совокупность, значение переменной x будет разным. А в системе уравнений значение переменной x удовлетворяет как первому уравнению, так и второму.

Решить совокупность уравнений означает найти множество решений, которые удовлетворяют хотя бы одному из уравнений, входящих в данную совокупность.

Решим каждое уравнение совокупности Алгебраический способ решения уравнений с модулемпо-отдельности. Это обычные линейные уравнения, которые легко решаются:

Алгебраический способ решения уравнений с модулем

Символ ⇔ как было ранее сказано означает равносильность. В данном случае он указывает на то, что все получающиеся совокупности равносильны друг другу.

Итак, мы получили корни 7 и −3. Поскольку эти два числа являются решениями совокупности Алгебраический способ решения уравнений с модулем, то значит являются и решениями уравнения |x − 2| = 5.

В исходную совокупность можно включать условия, согласно которым был раскрыт модуль. В этом случае каждое уравнение вместе со своим условием обрамляется знаком системы.

Дополним предыдущую совокупность условиями, согласно которым был раскрыт модуль. К первому уравнению x − 2 = 5 добавим условие x − 2 ≥ 0 , а ко второму уравнению −x + 2 = 5 добавим условие x − 2

Алгебраический способ решения уравнений с модулем

Решение каждого уравнения должно удовлетворять своему условию. Поэтому условия и уравнения обрамлены знáком системы.

Решим получившуюся совокупность с условиями. Условия являются неравенствами, которые тоже можно решать:

Алгебраический способ решения уравнений с модулем

В первом случае получили корень 7 , который удовлетворяет своему условию x ≥ 2 . Во втором случае получили корень −3 , который удовлетворяет своему условию x .

Не следует бояться таких записей. Это лишь подробное решение, показывающее что откуда взялось. Чаще всего решение можно записать покороче.

Существует схема для сведéния в совокупность уравнения вида |x| = a . Выглядит эта схема так:

Алгебраический способ решения уравнений с модулем

Данная схема легко позволяет свести уравнение с модулем в совокупность. Эту схему можно прочитать так: « Если выражение |x| равно a, то подмодульное выражение равно a или −a »

Квадратная скобка в совокупностях заменяет собой слово «или».

Например, уравнение |x| = 5 можно свести в совокупность, рассуждая так: если выражение |x| равно 5, то подмодульное выражение равно 5 или −5 .

Алгебраический способ решения уравнений с модулем

А применительно к нашему предыдущему примеру можно рассуждать так: если |x − 2| равно 5 , то подмодульное выражение равно 5 или −5

Алгебраический способ решения уравнений с модулем

Это та же самая совокупность, что и в прошлый раз. Убедитесь в этом, умножив обе части второго уравнения на −1.

В уравнениях где слева модуль, а справа число, мы будем чаще использовать именно такой способ записи совокупности. Он позволяет не прибегать к правилу раскрытия модуля, а сразу получить совокупность.

Но надо помнить, что эта схема будет работать только для уравнений вида |x| = a . То есть для уравнений, у которого слева модуль, а справа число.

Пример 2. Решить уравнение |2x − 1| = 3

Решение

У этого уравнения слева модуль, а справа число. Значит его можно свести в совокупность, воспользовавшись схемой Алгебраический способ решения уравнений с модулем

Если выражение |2x − 1| равно 3, то подмодульное выражение 2x − 1 равно 3 или −3

Алгебраический способ решения уравнений с модулем

Теперь решим каждое уравнение совокупности по отдельности:

Алгебраический способ решения уравнений с модулем

Ответ: 2 и −1.

Пример 3. Решить уравнение |x + 2| − 3 = 8

Решение

В некоторых случаях прежде чем свести исходное уравнение в совокупность, его следует упростить.

Так, в данном случае −3 следует перенести в правую часть, изменив знак:

Алгебраический способ решения уравнений с модулем

Получили уравнение |x + 2| = 11 . Если выражение |x + 2| равно 11, то подмодульное выражение x + 2 равно 11 или −11

Алгебраический способ решения уравнений с модулем

Решим данную совокупность:

Алгебраический способ решения уравнений с модулем

Ответ: 9 и −13.

Пример 4. Решить уравнение 4|x| + 4 = 2|x| + 10

Решение

Перенесём 2|x| из правой части в левую часть, а 4 перенесём из левой части в правую часть:

Разделим обе части получившегося уравнения на 2. Тогда получится простое уравнение с модулем:

Алгебраический способ решения уравнений с модулем

Ответ: 3 и −3.

Пример 5. Решить уравнение Алгебраический способ решения уравнений с модулем

Решение

Если выражение |2 − 5x 2 | равно 3, то подмодульное выражение 2 − 5x 2 равно 3 или −3

Алгебраический способ решения уравнений с модулем

В обоих уравнениях перенесём 2 в правую часть, изменив знак:

Алгебраический способ решения уравнений с модулем

В первом уравнении разделим обе части на −5. Во втором уравнении так же разделим обе части на −5. Тогда получим два квадратных уравнения

Алгебраический способ решения уравнений с модулем

Первое уравнение не имеет корней, потому что квадрат любого числа положителен, а в данном случае он равен отрицательному числу. Корнями второго уравнения являются числа 1 и −1, поскольку вторая степень этих чисел равна единице.

Ответ: 1 и −1.

Пример 6. Решить уравнение |x + 6| + 4x = 5

Решение

Данное уравнение не является уравнением вида |x| = a , значит не получится воспользоваться схемой Алгебраический способ решения уравнений с модулем.

Чтобы свести данное уравнение в совокупность, нужно сначала раскрыть его модуль, затем записать совокупность из получившихся уравнения.

Раскроем модуль |x + 6|

Алгебраический способ решения уравнений с модулем

Если x + 6 ≥ 0 , то модуль раскроется со знаком плюс и тогда исходное уравнение примет вид x + 6 + 4x = 5

Если x + 6 , то модуль раскроется со знаком минус и тогда исходное уравнение примет вид − x − 6 + 4x = 5. Получим следующую совокупность:

Алгебраический способ решения уравнений с модулем

Дальнейшее решение элементарно:

Алгебраический способ решения уравнений с модулем

Из найденных корней только Алгебраический способ решения уравнений с модулемявляется корнем исходного уравнения, поскольку удовлетворяет условию x ≥ −6 . А корень Алгебраический способ решения уравнений с модулемне является корнем уравнения, поскольку не удовлетворяет условию x .

Ответ: Алгебраический способ решения уравнений с модулем

Наиболее простой вид

Наиболее простой вид уравнения с модулем выглядит так:

где x — корень уравнения, a — произвольное число, бóльшее или рáвное нулю. То есть a ≥ 0

Если условие a ≥ 0 не выполнено, то уравнение |x|= a корней не имеет. Это следует из определения модуля. Действительно, модуль всегда неотрицателен.

Приведем несколько примеров уравнений вида |x| = a

Пример 1. Решить уравнение |x| = 2

Решение

В данном случае сразу видно, что корнями являются числа 2 и −2. Ведь если вместо x подставить эти числа, то получим верное равенство: |−2| = 2 и |2| = 2. Решение для этого уравнения можно записать, сведя его в совокупность:

«Если выражение |x| равно 2, то подмодульное выражение x равно 2 или −2«

Алгебраический способ решения уравнений с модулем

Ответ: 2 и −2

Пример 2. Решить уравнение |−x| = 4

Решение

Если выражение |−x| равно 4, то подмодульное выражение равно 4 или −4

Алгебраический способ решения уравнений с модулем

Умножим оба уравнения на −1

Алгебраический способ решения уравнений с модулем

Ответ: −4 и 4.

Пример 3. Решить уравнение |x| = −7

В данном случае корней нет, поскольку модуль всегда неотрицателен. А в данном случае модуль равен отрицательному числу.

Если уравнение с модулем не имеет корней, обычно пишут что x принадлежит пустому множеству:

Напомним, что пустым называют множество, не имеющее элементов.

Модуль внутри модуля

Алгебраический способ решения уравнений с модулем

В этом уравнении слева располагается модуль, который в свою очередь содержит внутри себя другой модуль, а справа уравнения располагается число. Такой вид уравнения с модулем можно решить, сведя его в совокупность с помощью схемы, которую мы рассмотрели ранее:

Алгебраический способ решения уравнений с модулем

В нашем случае если выражение Алгебраический способ решения уравнений с модулемравно 9, то подмодульное выражение |2 + x| + 3 равно 9 или −9

Алгебраический способ решения уравнений с модулем

В получившейся совокупности имеется два уравнения с модулем. Эти уравнения тоже в свою очередь следует свести в совокупность. Но сначала немного упростим эти уравнения. В первом и во втором уравнении перенесем 3 в правую часть, изменив знак. Тогда получим:

Алгебраический способ решения уравнений с модулем

Теперь сведём эти уравнения в совокупности. Первое уравнение распадётся на следующую совокупность:

Алгебраический способ решения уравнений с модулем

Сразу решим совокупность Алгебраический способ решения уравнений с модулем. Первый корень равен 4, второй −8.

Алгебраический способ решения уравнений с модулем

Теперь решим второе уравнение |2 + x| = −12 . Но замечаем, что его правая часть равна отрицательному числу. Это уравнение не имеет корней, потому что модуль не может равняться отрицательному числу.

Значит уравнение Алгебраический способ решения уравнений с модулемимеет корни 4 и −8 . Проверим эти корни, подставив их в исходное уравнение Алгебраический способ решения уравнений с модулем

Алгебраический способ решения уравнений с модулем

В данном случае оба корня удовлетворяют исходному уравнению.

Ответ: 4 и −8 .

Вообще, уравнение с модулем внутри которого содержится другой модуль, тоже решается различными способами. Какой способ использовать зависит от самогó уравнения. Решим например следующее уравнение:

Алгебраический способ решения уравнений с модулем

Здесь уже нельзя использовать схему Алгебраический способ решения уравнений с модулемпотому что слева располагается не только модуль, но и переменная x . Конечно, переменную x можно перенести в правую часть, и тогда можно будет свести данное уравнение в совокупность:

Алгебраический способ решения уравнений с модулем

Но тогда справа появляется переменная x, на которую нужно будет вводить дополнительное ограничение, чтобы правая часть уравнения не стала отрицательной. Такой способ решения мы рассмотрим позже. А пока решим исходное уравнение с помощью правила раскрытия модуля.

Чтобы раскрыть модули данного уравнения нужно сначала определиться где внешний и где внутренний модуль.

В уравнении Алгебраический способ решения уравнений с модулемвнешним модулем является полностью левая часть Алгебраический способ решения уравнений с модулем, а внутренним модулем — выражение Алгебраический способ решения уравнений с модулем

Алгебраический способ решения уравнений с модулем

Значение внешнего модуля зависит от внутреннего модуля, и раскрываться внешний модуль будет исходя от результата который получился в результате вычисления его подмодульного содержимого.

Например, если x = 3 , то внутренний модуль |3 − x| примет значение 0, и в результате всё подмодульное выражение внешнего модуля станет равно −2 . А это значит что внешний модуль будет раскрываться с минусом.

||3 − x| − x + 1| = ||3 − 3| − 3 + 1| = ||0| − 3 + 1| = |−2| = −(−2) = 2

А если например x = −2 , то внутренний модуль |3 − x| примет значение 5, и в результате всё подмодульное выражение внешнего модуля станет равно 8. А это значит что внешний модуль будет раскрываться с плюсом:

||3 − x| − x + 1| = ||3 − (−2)| − (−2) + 1| = ||5| − (−2) + 1| = | 8 |=8

Поэтому решение будем начинать с раскрытия внутреннего модуля.

Если внутренний модуль раскроется с плюсом, то есть если 3 − x ≥ 0 (что равносильно неравенству x ≤ 3 ), то исходное уравнение примет вид:

Алгебраический способ решения уравнений с модулем

Теперь уравнение имеет только внешний модуль. Решим его раскрыв модуль:

Алгебраический способ решения уравнений с модулем

Если −2x + 4 ≥ 0, то:

Алгебраический способ решения уравнений с модулем

Сейчас нас интересуют только те значения x при которых внутренний модуль раскрывается с плюсом, а это произойдет при условии x ≤ 3. Поэтому для наглядности рядом с найденным корнем указано, что он удовлетворяет условию x ≤ 3

Решаем далее. Если −2x + 4 , то:

Алгебраический способ решения уравнений с модулем

Несмотря на то, что оба найденных корня удовлетворяют уравнению |−2x+4|=6−x , мы исключаем корень Алгебраический способ решения уравнений с модулемиз решений, потому что нас сейчас интересуют только те значения x, при которых внутренний модуль изначального уравнения раскрывается с плюсом. Поэтому рядом с корнем Алгебраический способ решения уравнений с модулемуказано, что он не удовлетворяет условию x ≤ 3 .

Итак, если внутренний модуль раскрывается с плюсом, исходное уравнение принимает вид |−2x + 4| = 6 − x и корнем этого уравнения является число −2 .

Теперь решим исходное уравнение для случая, когда внутренний модуль раскрывается с минусом, то есть когда 3 − x (что равносильно неравенству x > 3 ). Внутренний модуль будет раскрываться с минусом при всех значениях x больших 3.

Если внутренний модуль раскроется с минусом, то исходное уравнение примет вид:

Алгебраический способ решения уравнений с модулем

Модуль −2 равен 2 . Тогда получаем простейшее линейное уравнение, корень которого равен 4

Алгебраический способ решения уравнений с модулем

Получили корень 4 , который удовлетворяет условию x > 3 .

В итоге корнями уравнения являются числа −2 и 4.

Ответ: 2 и 4.

Пример 3. Решить уравнение ||x − 1| − 7| = 10

Решение

Слева располагается модуль, а справа число, значит можно применить схему:Алгебраический способ решения уравнений с модулем

В данном случае если выражение ||x − 1| 7| равно 10, то подмодульное выражение |x 1| 7 равно 10 или 10. Получится совокупность из двух уравнений:

Алгебраический способ решения уравнений с модулем

Упростим получившиеся уравнения. Перенесём число −7 в обоих уравнениях в правую часть, изменив знак:

Алгебраический способ решения уравнений с модулем

Второе уравнение корней не имеет. Первое уравнение распадется на совокупность Алгебраический способ решения уравнений с модулем, корни которой 18 и −16.

Алгебраический способ решения уравнений с модулем

Ответ: 18 и −16 .

Решим это же уравнение с помощью раскрытия модулей. Начнем с внутреннего модуля.

Если x − 1 ≥ 0 (что равносильно x ≥ 1 ), то исходное уравнение примет вид:

Алгебраический способ решения уравнений с модулем

Решим получившееся уравнение раскрыв модуль:

Алгебраический способ решения уравнений с модулем

Далее решаем уравнение для случаев когда x − 8 ≥ 0 и x − 8

Алгебраический способ решения уравнений с модулем

Сейчас нас интересуют те значения, при которых внутренний модуль исходного уравнения раскрывается с плюсом. А это будет при условии, что x ≥ 1 . Этому условию удовлетворяет только значение 18 , поэтому мы пометили его зеленой галочкой для наглядности.

Теперь решим исходное уравнение для случая, когда внутренний модуль раскрывается с минусом, то есть когда x − 1 (или что равносильно неравенству x ).

Если x − 1 , то исходное уравнение примет вид:

Алгебраический способ решения уравнений с модулем

Решим получившееся уравнение раскрыв модуль:

Алгебраический способ решения уравнений с модулем

Далее решаем уравнение для случаев когда −x − 6 ≥ 0 и −x − 6

Алгебраический способ решения уравнений с модулем

Из найденных корней только −16 удовлетворяет условию x .

В итоге корнями уравнения ||x − 1| − 7| = 10 являются числа 18 и −16 .

Видно, что с помощью схемы Алгебраический способ решения уравнений с модулемданное уравнение решилось легче и быстрее, чем способом раскрытия модулей.

Слева модуль, а справа выражение с переменной

Решим следующее уравнение с модулем:

Здесь так же применима схема:

Алгебраический способ решения уравнений с модулем

То есть, если выражение |4x − 3| равно 3x, то подмодульное выражение 4x − 3 должно равняться 3x или −3x.

Алгебраический способ решения уравнений с модулем

Но в исходном уравнении переменная x содержится не только под знáком модуля, но и в правой части. Нам пока неизвестно какое значение примет переменная x . Если x примет отрицательное значение, то правая часть станет полностью отрицательной. В этом случае корней не будет, потому что модуль не может равняться отрицательному числу.

Поэтому, если мы хотим решить данное уравнение, то при сведéнии его в совокупность, дополнительно следует ввести ограничение в виде условия 3x ≥ 0 . Это будет означать, что правая часть уравнения |4x − 3| = 3x должна быть больше либо равна нулю:

Алгебраический способ решения уравнений с модулем

Совокупность и условие обрамлены знаком системы, потому что решения совокупности должны удовлетворять условию 3x ≥ 0.

Итак, решим совокупность. Условие 3x ≥ 0 является неравенством, которое тоже можно решить:

Алгебраический способ решения уравнений с модулем

Получившиеся корни можно подставить в условие x ≥ 0 и посмотреть выполняется ли оно. Если выполняется, то найденные корни удовлетворяют уравнению. В данном случае при подстановке обеих корней в неравенство, оно выполняется. Проверка также показывает, что корни удовлетворяют уравнению:

Алгебраический способ решения уравнений с модулем

Пример 2. Решить уравнение |2x − 1| = 5x − 10

Решение

Решим это уравнение таким же образом, как и предыдущее. Введём условие, требующее чтобы правая часть была больше либо равна нулю:

Алгебраический способ решения уравнений с модулем

В данном случае только значение 3 удовлетворяет условию x ≥ 2 . Оно же является единственным корнем исходного уравнения. Проверка показывает это:

Алгебраический способ решения уравнений с модулем

А число Алгебраический способ решения уравнений с модулемне удовлетворяет условию x ≥ 2 и не является корнем исходного уравнения. Проверка также показывает это:

Алгебраический способ решения уравнений с модулем

Видим, что модуль стал равен отрицательному числу, а это противоречит определению модуля и нашему условию x ≥ 2 .

Пример 3. Решить уравнение Алгебраический способ решения уравнений с модулем

Решение

Это уравнение мы решили, когда учились решать уравнения с модулем внутри которых другой модуль. Теперь данное уравнение можно решить, сведя его в совокупность.

Для начала перенесём x в правую часть, изменив знак:

Алгебраический способ решения уравнений с модулем

Теперь сведём данное уравнение в совокупность. Дополнительно введём условие в виде неравенства 6 − x ≥ 0

Алгебраический способ решения уравнений с модулем

В левой части первого уравнения оставим модуль, остальные члены перенесём в правую часть. Тоже самое сделаем и со вторым уравнением. Также будем решать неравенство 6 − x ≥ 0 , оно позволит в конце проверять найденные корни на соответствие:

Алгебраический способ решения уравнений с модулем

Решим первое уравнение. Оно распадётся на следующую совокупность:

Алгебраический способ решения уравнений с модулем

Получились корни −2 и 8 . Из них только −2 удовлетворяет условию x ≤ 6 .

Теперь решим второе уравнение. Оно является уравнением, содержащим переменную в правой части. При сведении его в совокупность дополним его условием −7 + 2x ≥ 0

Алгебраический способ решения уравнений с модулем

Алгебраический способ решения уравнений с модулем

При решении второго уравнения получились корни Алгебраический способ решения уравнений с модулеми 4. Прежде чем сверять их с условием x ≤ 6 следует сверить их с условием Алгебраический способ решения уравнений с модулемпод которое решалось уравнение |3 − x| = −7 + 2 x . Условию Алгебраический способ решения уравнений с модулемудовлетворяет только корень 4 .

В итоге корнями исходного уравнения Алгебраический способ решения уравнений с модулемявляются числа −2 и 4.

Пример 4. Решить уравнение |4x + 20| = −6x

Решение

На первый взгляд покажется, что данное уравнение не имеет решений, потому что правая часть отрицательна. Но это не совсем так. Правая часть содержит переменную x, которая может принять отрицательное значение или ноль, и это приведёт к тому что правая часть станет положительной либо равной нулю. А такое уравнение имеет право на существование.

В данном случае мы решим это уравнение, сведя его в совокупность. Но при этом укажем, что правая часть должна быть больше или равна нулю:

Алгебраический способ решения уравнений с модулем

Из найденных корней только корень −2 удовлетворяет исходному уравнению. Также он удовлетворяет нашему условию x ≤ 0 .

Ответ: −2.

Когда обе части — модули

Решим следующее уравнение:

Обе части этого уравнения являются модулями. Раскроем эти модули. Будем учитывать все возможные случаи при их раскрытии.

Случай 1. Если x + 7 ≥ 0 и 1 + 3x ≥ 0 , то модули в обеих частях раскроются со знаком плюс и тогда исходное уравнение примет вид:

Это простейшее линейное уравнение. Решим его:

Алгебраический способ решения уравнений с модулем

Случай 2. Если x + 7 и 1 + 3x то модули в обеих частях раскроются со знаком минус и тогда исходное уравнение примет вид:

Раскроем скобки, получим:

Замечаем, что если умножить обе части этого уравнения на −1 , то получается уравнение x + 7 = 1 + 3 x . А это уравнение мы получали в результате раскрытия модулей со знаком плюс.

То есть уравнения x + 7 = 1 + 3x и −x − 7 = −1 − 3x являются равносильными, а значит имеют одни и те же корни. Убедимся в этом, решив уравнение −x − 7 = −1 − 3x

Алгебраический способ решения уравнений с модулем

Поэтому, раскрыв модули со знаком плюс, нет необходимости раскрывать их со знаком минус, потому что в обоих случаях получаются уравнения, имеющие одни и те же корни.

Следующий случай это когда x + 7 ≥ 0 и 1 + 3x . Тогда исходное уравнение примет вид x + 7 = −1 − 3x. Найдём корень этого уравнения:

Алгебраический способ решения уравнений с модулем

И последний случай это когда x + 7 и 1 + 3x ≥ 0 . Тогда уравнение примет вид −x − 7 = 1 + 3 x . Если умножить это уравнение на −1 , то получим уравнение x + 7 = −1 − 3x. А это уравнение мы получали, когда рассматривали предыдущий случай (случай x + 7 ≥ 0 и 1 + 3x ).

Следовательно, уравнение −x − 7 = 1 + 3x равносильно предыдущему уравнению x + 7 = −1 − 3 x . Убедимся в этом решив уравнение −x − 7 = 1 + 3x

Алгебраический способ решения уравнений с модулем

Значит раскрыв левую часть со знаком плюс, а правую часть со знаком минус, нет необходимости раскрывать левую часть со знаком минус, а правую часть со знаком плюс, потому что в обоих случаях получаются уравнения, имеющие одни и те же корни.

Вообще, если в уравнении обе части являются модулями как в данном примере, то это уравнение можно свести в следующую совокупность:

Алгебраический способ решения уравнений с модулем

В этой конструкции уравнение вида |a| = |b| сведено в совокупность из двух уравнений a = b и a = −b . Видно что первое уравнение получается путем раскрытия обоих модулей со знаком плюс, а второе уравнение — путем раскрытия модуля |a| со знаком плюс, а модуля |b| — со знаком минус.

Важно. Данная схема работает только тогда, когда обе части являются модулями без посторонних членов. Проще говоря, если будет дано уравнение, например |a| = |b| + c , то приведенную схему использовать нельзя.

Пример 2. Решить уравнение |2 − 3x| = |x + 5|

Решение

Обе части данного уравнения являются модулями. Воспользуемся схемой:

Алгебраический способ решения уравнений с модулем

У нас получится совокупность из двух уравнений. В первом уравнении оба модуля будут раскрыты со знаком плюс, во втором уравнении — модуль |2 − 3x| будет раскрыт со знаком плюс, а модуль |x + 5| со знаком минус:

Алгебраический способ решения уравнений с модулем

Алгебраический способ решения уравнений с модулем

Ответ: Алгебраический способ решения уравнений с модулеми Алгебраический способ решения уравнений с модулем

Пример 3. Решить уравнение |x 2 − 13x + 35|=|35 − x 2 |

Решение

Обе части данного уравнения являются модулями. Воспользуемся схемой:

Алгебраический способ решения уравнений с модулем

У нас получится совокупность из двух уравнений. В первом уравнении оба модуля будут раскрыты со знаком плюс. Во втором уравнении — модуль |x 2 − 13x + 35| будет раскрыт со знаком плюс, а модуль |35 − x 2 | со знаком минус:

Алгебраический способ решения уравнений с модулем

Приведём подобные члены в обоих уравнениях:

Алгебраический способ решения уравнений с модулем

Первое уравнение является неполным квадратным. Решим его, вынеся x за скобки. Второе уравнение решается элементарно:

Алгебраический способ решения уравнений с модулем

Ответ: Алгебраический способ решения уравнений с модулем, Алгебраический способ решения уравнений с модулем, 0.

Когда решение — числовой промежуток

Нередко приходиться решать уравнения с модулем, где корнями являются не один или два числа, а числовой промежуток. Таковым, например, является уравнение:

Раскроем модуль этого уравнения:

Алгебраический способ решения уравнений с модулем

Если раскрыть модуль со знаком плюс, то получается уравнение 5x + 3 = −5x − 3 . Решим его:

Алгебраический способ решения уравнений с модулем

А если раскрыть модуль со знаком минус, то получится уравнение −5x − 3 = −5x − 3 . В этом уравнении обе части являются одинаковыми, а значит данное равенство является тождеством. Оно будет верно при любом значении x . Значит корнями уравнения −5x − 3 = −5x − 3 являются все числа от минус бесконечности до плюс бесконечности:

Но надо помнить про условия, согласно которым были раскрыты модули. В первом случае мы получили корень Алгебраический способ решения уравнений с модулем. Он будет верен только при условии что Алгебраический способ решения уравнений с модулем. Это условие соблюдено. Проверка также показывает что корень подходит:

Алгебраический способ решения уравнений с модулем

Значит один из корней уравнений равен Алгебраический способ решения уравнений с модулем

Во втором случае мы получили множество корней от минус бесконечности до плюс бесконечности. Но это будет верно только при условии что Алгебраический способ решения уравнений с модулем

Например, если взять любое число из промежутка (−∞; +∞) , но которое не будет удовлетворять условию Алгебраический способ решения уравнений с модулем, то это число не будет обращать наше уравнение в верное равенство.

Например, число 2 принадлежит промежутку (−∞; +∞), но не удовлетворяет условию Алгебраический способ решения уравнений с модулем, а значит число 2 не является корнем исходного уравнения. Проверка также покажет это:

Алгебраический способ решения уравнений с модулем

А если взять к примеру число −5 , то оно будет принадлежать промежутку (−∞; +∞) и удовлетворять условию Алгебраический способ решения уравнений с модулем, а значит будет обращать исходное уравнение в верное равенство:

Алгебраический способ решения уравнений с модулем

Поэтому ответ надо записать так, чтобы были выполнены оба условия Алгебраический способ решения уравнений с модулеми Алгебраический способ решения уравнений с модулем. Для наглядности нарисуем координатную прямую и обозначим её как x

Алгебраический способ решения уравнений с модулемОтметим на ней наш первый корень Алгебраический способ решения уравнений с модулем

Алгебраический способ решения уравнений с модулем

Раскрыв модуль со знаком минус и решив получившееся уравнение, мы получили в ответе множество всех чисел от минус бесконечности до плюс бесконечности, но при этом было дано условие Алгебраический способ решения уравнений с модулем. Значит более точным ответ в этом случае будет таким:

Корнями уравнения −5x − 3 = −5x − 3 при условии Алгебраический способ решения уравнений с модулемявляются все числа от минус бесконечности до Алгебраический способ решения уравнений с модулем

Значит на координатной прямой нужно заштриховать область слева от числа Алгебраический способ решения уравнений с модулем. Они будут иллюстрировать числа, меньшие Алгебраический способ решения уравнений с модулем

Алгебраический способ решения уравнений с модулем

Число Алгебраический способ решения уравнений с модулемтоже является верным корнем исходного уравнения. Он был получен при раскрытии модуля со знаком плюс. Поэтому на координатной прямой пустой кружок нужно закрасить. Так мы включим число Алгебраический способ решения уравнений с модулемво множество решений:

Алгебраический способ решения уравнений с модулем

Тогда окончательный ответ будет выглядеть так:

Алгебраический способ решения уравнений с модулем

Ответ: Алгебраический способ решения уравнений с модулем

Также, можно решить это уравнение сведя его в совокупность, дополнительно указав, что правая часть должна быть больше либо равна нулю:

Алгебраический способ решения уравнений с модулем

Пример 2. Решить уравнение |2x − 3| = 3 − 2x

Решение

Алгебраический способ решения уравнений с модулем

Решим исходное уравнение для случаев когда 2x − 3 ≥ 0 и 2x − 3

Алгебраический способ решения уравнений с модулем

Алгебраический способ решения уравнений с модулем

Ответ: Алгебраический способ решения уравнений с модулем

Использование координатной прямой

Рассмотрим ещё один способ решения элементарных уравнений с модулем — с помощью координатной прямой. Этот способ используется редко, но знать о нём не помешает.

Решим наше самое первое уравнение |x − 2| = 5 с помощью координатной прямой. Напомним, что корнями этого уравнения были числа 7 и −3.

Модуль есть расстояние от начала координат до точки A . Либо расстояние между двумя числами на координатной прямой.

Расстояние между двумя числами выражается в виде разности |x1x2| , где x1 — первое число, x2 — второе число.

Если внимательно посмотреть на уравнение |x − 2|= 5 , то можно увидеть что его левая часть это расстояние от x до 2 (или от 2 до x) и это расстояние равно 5. Отмéтим на координатной прямой число x и число 2

Алгебраический способ решения уравнений с модулем

Правая часть уравнения |x − 2|= 5 говорит о том, что расстояние от x до 2 составляет пять единиц:

Алгебраический способ решения уравнений с модулем

Если расстояние от x до 2 равно 5, то и расстояние от 2 до x тоже равно 5. Это позволяет отсчитать пять целых шагов от числа 2 к числу x и таким образом узнать значение x

Алгебраический способ решения уравнений с модулем

Видно, что отсчитав пять шагов влево мы попали в точку с координатой −3. А это один из корней, который мы находили для уравнения |x − 2|= 5.

Но пять целых шагов от числа 2 можно отсчитать не только влево, но и вправо:

Алгебраический способ решения уравнений с модулем

Если отсчитать пять целых шагов вправо, то попадём в точку с координатой 7. Это тоже был корень уравнения |x − 2|= 5

Алгебраический способ решения уравнений с модулем

Несколько модулей в одной части

Решим следующее уравнение:

Это уравнение содержит два модуля в левой части. Чтобы решить данное уравнение нужно раскрыть его модули. Рассмотреть нужно каждый из случаев:

  • когда оба модуля больше либо равны нулю;
  • когда оба модуля меньше нуля;
  • когда первый модуль больше либо равен нулю, а второй модуль меньше нуля;
  • когда первый модуль меньше нуля, а второй модуль больше либо равен нулю.

Не будем комментировать каждый случай, а сразу приведём решение:

Алгебраический способ решения уравнений с модулем

Первые два случая корней не дали. В третьем случае нашелся корень 3, но он не удовлетворяет условиям x − 5 ≥ 0 и x , поэтому не является корнем исходного уравнения.

В четвёртом случае нашёлся корень 2, который удовлетворяет условиям x − 5 и x ≥ 0 . Также он удовлетворяет исходному уравнению.

Заметно, что такой способ решения уравнения неудобен. Если модулей в уравнении будет три, четыре или более, то придётся рассматривать намного больше случаев. Человек запутавшись, может забыть рассмотреть какой-то из случаев, и получится что уравнение решено не полностью.

Поэтому такой вид уравнения как в данном примере удобнее решать методом интервалов. Об этом мы поговорим в следующем уроке.

Видео:Уравнения с модулемСкачать

Уравнения с модулем

Способы решения уравнений содержащих модуль

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Способы решения уравнений содержащих модуль.

1. Основные способы, используемые при решении уравнений, содержащих модуль.

Напомним основные понятия, используемые в данной теме.

Уравнением с одной переменной называют равенство, содержащее переменную.

Корнями уравнения называются значения переменной, при которых уравнение обращается в верное равенство.

Решить уравнение – значит, найти все его корни или доказать, что корней нет.

Уравнением с модулем называют равенство, содержащее переменную под знаком модуля.

При решении уравнений, содержащих знак абсолютной величины, мы будем основываться на определении модуля числа и свойствах абсолютной величины числа.

Свойства модуля
Алгебраический способ решения уравнений с модулем

Существует несколько способов решения уравнений с модулем. Рассмотрим каждый из них.

1 СПОСОБ. МЕТОД ПОСЛЕДОВАТЕЛЬНОГО РАСКРЫТИЯ МОДУЛЯ.

Пример 1. Решим уравнение |х-5|=4.
Исходя из определения модуля, произведем следующие рассуждения. Если выражение, стоящее под знаком модуля неотрицательно, то есть х-5≥0, то уравнение примет вид х-5=4. Если значение выражения под знаком модуля отрицательно, то по определению оно будет равно – (х-5)=4 или х-5= -4. Решая полученные уравнения, находим: х1=9, х2=1.
Ответ: 9; 1.
Решим этим же способом уравнение, содержащее «модуль в модуле».

Пример 2. Решим уравнение ||2х-1|-4|=6.

Рассуждая аналогично, рассмотрим два случая.
1). |2х-1|-4=6, |2х-1|=10. Используя еще раз определение модуля, получим: 2х-1=10 либо 2х-1= -10. Откуда х1=5,5, х2= -4,5.
2). |2х-1|-4= -6, |2х-1|= -2. Понятно, что в этом случае уравнение не имеет решений, так как по определению модуль всегда неотрицателен.
Ответ: 5,5; -4,5.

2 СПОСОБ. МЕТОД ИНТЕРВАЛОВ.


Метод интервалов – это метод разбиения числовой прямой на промежутки, в которых по определению модуля знак абсолютной величины можно будет снять. Для каждого из промежутков необходимо решить уравнение и сделать вывод относительно получившихся корней. Корни, удовлетворяющие промежуткам, и дадут окончательный ответ.

Алгебраический способ решения уравнений с модулем

Пример 3. Решим уравнение |х+3|+|х-1|=6.
Найдем корни (нули) каждого выражения, содержащегося под знаком модуля: х+3=0, х= -3; х-1=0, х=1. Эти значения х разбивают числовую прямую на три промежутка:
-3 1
Решим уравнение отдельно в каждом из получившихся промежутков. В первом промежутке (х

Пример 4. |2-х|=2х+1.
Прежде всего, следует установить область допустимых значений. Возникает естественный вопрос, почему в предыдущих примерах не было необходимости этого делать. В этом уравнении в правой части стоит выражение с переменной, которое может быть отрицательным. Таким образом, область допустимых значений – это промежуток [-½; +∞). Найдем нуль выражения, стоящего под знаком модуля: 2-х=0, х=2.
В первом промежутке: 2-х=2х+1, х=⅓. Это значение принадлежит ОДЗ, значит, является корнем уравнения.
Во втором промежутке: -2+х=2х+1, х= -3. -3 не принадлежит ОДЗ, а следовательно не является корнем уравнения. Ответ: ⅓.

3 СПОСОБ. ГРАФИЧЕСКИЙ МЕТОД.

Суть данного метода заключается в использовании графиков функций для нахождения корней уравнения. Этот метод реже других применяют для решения уравнений, содержащих модуль, так как, во-первых, он занимает достаточно много времени и не всегда рационален, а, во-вторых, результаты, полученные при построении графиков, не всегда являются точными.

Преобразуем уравнение: 1 + |x| = 0.5

Графиком функции Алгебраический способ решения уравнений с модулемявляются лучи — биссектрисы 1-го и 2-го координатных углов. Графиком функции Алгебраический способ решения уравнений с модулемявляется прямая, параллельная оси OX и проходящая через точку -0,5 на оси OY.

Алгебраический способ решения уравнений с модулем

Графики не пересекаются, значит, уравнение не имеет решений.

Ответ: нет решений.

Пример 5. |х+1|=2. Построим графики функций у=|х+1| и у=2.
Для построения графика у=|х+1|, построим график функции у=х+1, а затем отразим часть прямой, лежащую ниже оси ОХ. Абсциссы точек пересечения графиков и есть корни уравнения: х 1 =1, х 2 = -3. Ответ: 1; -3.

Пример 6. |х 2 -1|=|4-х 2 |.
Построим графики функций у=|х 2 -1| и у=|4-х 2 |. Для этого построим графики функций у= х 2 -1 и у=4-х 2 , а затем отобразим часть графиков, лежащую ниже оси ОХ.
х 1 ≈1,6; х 2 ≈-1,6.

4 СПОСОБ. МЕТОД РЕШЕНИЯ ПРИ ПОМОЩИ ЗАВИСИМОСТЕЙ МЕЖДУ ЧИСЛАМИ А И В, ИХ МОДУЛЯМИ И КВАДРАТАМИ ЭТИХ ЧИСЕЛ.

| а |=| в | Алгебраический способ решения уравнений с модулема=в или а=-в;

а 2 2 Алгебраический способ решения уравнений с модулема=в или а=-в; (1)

| а |=| в | Алгебраический способ решения уравнений с модулема 2 2 (2)

Пример 7 . Решим уравнение |х 2 -8х+5|=|х 2 -5|.

Учитывая соотношение (1), получим:

х 2 -8х+5= х 2 -5 или х 2 -8х+5= -х 2 +5

Таким образом, корни исходного уравнения: х 1 =1,25; х 2 =0; х 3 =4.

В силу соотношения (2) получаем: (х+3) 2 =(х-5) 2 ;

х 2 +6х+9= х 2 -10х+25;

Пример 9 . (1-3х) 2 =(х-2) 2 .

Учитывая соотношение (2), получаем: |1-3х|=|х-2|, откуда из соотношения (1), имеем:

1-3х=х-2 или 1-3х= -х+2

5 СПОСОБ. ИСПОЛЬЗОВАНИЕ ГЕОМЕТРИЧЕСКОЙ ИНТЕРПРЕТАЦИИ МОДУЛЯ.

Опорная информация: геометрический смысл модуля разности величин – это расстояние между ними. Например, геометрический смысл выражения |х-а| — длина отрезка координатной оси, соединяющей точки с абсциссами а и х. Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Исходя из геометрической интерпретации модуля, левая часть уравнения представляет собой сумму расстояний от некоторой точки с абсциссой х до двух фиксированных точек с абсциссами 2 и 3. Тогда очевидно, что все точки с абсциссами, принадлежащими отрезку [2;3] обладают требуемым свойством, а точки, расположенные вне этого отрезка – нет. Отсюда, множеством решений уравнения является отрезок [2;3].

Рассуждая аналогично, получим, что разность расстояний до точек с абсциссами 2 и 3 равна 1 только для точек, расположенных на координатной оси правее числа 3. Следовательно, решением данного уравнения будет являться луч, выходящий из точки 3, и направленный в положительном направлении оси ОХ.

Обобщением вышеприведенных уравнений 10 и 11 являются следующие равносильные переходы:

|х-а|+|х-в|=в-а, где в ≥ а Алгебраический способ решения уравнений с модулема ≤ х ≤ в

|х-а|-|х-в|=в-а, где в ≥ а Алгебраический способ решения уравнений с модулемх ≥ в

Проанализировав представленные способы решения уравнений, содержащих модуль, можно сделать вывод, что ни один из них не является универсальным и для получения наилучших результатов необходимо добиваться того, чтобы ученик овладел возможно большим количеством методов решения, оставляя право выбора решения за собой.

Решим аналитически и графически уравнение |x — 2| = 3.

А) Аналитическое решение

Рассуждать будем, исходя из определения модуля. Если выражение, находящееся под модулем

неотрицательно, т. е. x — 2 Алгебраический способ решения уравнений с модулем0, тогда оно «выйдет» из под знака модуля со знаком «плюс» и уравнение примет вид: x — 2 = 3. Если значения выражения под знаком модуля отрицательно, тогда, по определению, оно будет равно: Алгебраический способ решения уравнений с модулемили x — 2=-3

Таким образом, получаем, либо x — 2 = 3, либо x — 2 = -3. Решая полученные уравнения, находим: Алгебраический способ решения уравнений с модулем

Ответ: Алгебраический способ решения уравнений с модулем

Теперь можно сделать вывод: если модуль некоторого выражения равен действительному положительному числу a, тогда выражение под модулем равно либо a, либо Алгебраический способ решения уравнений с модулем.

Одним из способов решения уравнений, содержащих модуль, является графический способ. Суть этого способа заключается в том, чтобы построить графики данных функций. В случае, если графики пересекутся, точки пересечений данных графиков будут являться корнями нашего уравнения. В случае, если графики не пересекутся, мы сможем сделать вывод, что уравнение корней не имеет. Этот способ, вероятно, реже других применяют для решения уравнений, содержащих модуль, так как, во-первых, он занимает достаточно много времени и не всегда рационален, а, во-вторых, результаты, полученные при построении графиков, не всегда являются точными.

Другой способ решения уравнений, содержащих модуль — это способ разбиения числовой прямой на промежутки. В этом случае нам нужно разбить числовую прямую так, что по определению модуля, знак абсолютной величины на данных промежутках можно будет снять. Затем, для каждого из промежутков мы должны будем решить данное уравнение и сделать вывод, относительно получившихся корней (удовлетворяют они нашему промежутку или нет). Корни, удовлетворяющие промежутки и дадут окончательный ответ.

Установим, при каких значениях x, модуль равен нулю: Алгебраический способ решения уравнений с модулем

Получим два промежутка, на каждом из которых решим уравнение:

Алгебраический способ решения уравнений с модулем

Получим две смешанных системы:

(1) Алгебраический способ решения уравнений с модулем(2) Алгебраический способ решения уравнений с модулем

Решим каждую систему:

(1) Алгебраический способ решения уравнений с модулем(удовлетворяет данному промежутку)

(2) Алгебраический способ решения уравнений с модулем

Ответ: Алгебраический способ решения уравнений с модулем

Для решения уравнения графическим способом, надо построить графики функций Алгебраический способ решения уравнений с модулеми Алгебраический способ решения уравнений с модулем

Для построения графика функции Алгебраический способ решения уравнений с модулем, построим график функции Алгебраический способ решения уравнений с модулем— это прямая, пересекающая ось OX в точке (2; 0), а ось OY в точке Алгебраический способ решения уравнений с модулема затем часть прямой, лежащую ниже оси OX зеркально отразить в оси OX.

Графиком функции Алгебраический способ решения уравнений с модулемявляется прямая, параллельная оси OX и проходящая через точку (0; 3) на оси OY.

Алгебраический способ решения уравнений с модулем

Абсциссы точек пересечения графиков функций дадут решения уравнения.

Прямая графика функции y=3 пересеклась с графиком функции y=|x – 2| в точках с координатами (-1; 3) и (5; 3), следовательно, решениями уравнения будут абсциссы точек:

Ответ: Алгебраический способ решения уравнений с модулем

Практика обучения учащихся способам решения уравнений, содержащих модули, позволила выявить достоинства и недостатки каждого способа, которые для удобства сведены в таблицу.

Метод последовательного раскрытия модулей

1). Объявляя условие раскрытия одного модуля, можно пользоваться им для раскрытия других модуле тем самым, выигрывая время в решении задачи.

2). Последовательность действий, направленных на поиск ответа, позволяет контролировать и проверять промежуточные результаты.

Необходимость раскрытия модуля, что для некоторых заданий приводит к потере темпа в получении ответа.

Самый эффективный способ, так как сопровождается относительно небольшим объемом работы.

В силу необходимости нахождения концов интервалов может возникнуть ситуация, когда соответствующее уравнение либо вызывает серьезные затруднения при определении корней, либо недоступно ученику на данном этапе обучения.

Данный способ имеет очень широкое применение в других темах школьного курса математики.

Ответ определяется приблизительно.

Метод решения при помощи зависимостей между числами, их модулями и квадратами этих чисел

В некоторых случаях применение данного способа позволяет решать уравнения определенного вида на более раннем этапе.

В некоторых случаях выбор данного способа приводит к громоздкому решению, а иногда решение сводится к уравнению, недоступному для ученика на данном этапе обучения.

Геометрическая интерпретация модуля

Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Применение данного способа ограничивается уравнениями определенного вида.

Проанализировав достоинства и недостатки каждого из указанных способов, можно с уверенностью сказать, что на мотивационном этапе формирования умения решать уравнения с модулем ученикам следует показывать все, доступные на данном этапе обучения способы решения, и, главное, на конкретных примерах доказывать, что первый этап решения – выбор самого эффективного способа.

Рассмотрим пример |(х-1)(х-3)|=х-3.

Это уравнение можно решить тремя способами.
а) последовательное раскрытие модуля:
Если (х-1)(х-3) ≥ 0, то Если (х-1)(х-3) 2 -4х+3=х-3, х 2 -4х+3= -х+3,
х 2 -5х+6=0, х 2 -3х=0,
х 1 =3, х 2 =2. х 1 =0, х 2 =3.
2 – не удовлетворяет условию. 0, 3 — не удовлетворяет условию.
Ответ: 3.
б) метод интервалов: найдем концы интервалов, решив уравнение (х-1)(х-3)=0, откуда х 1 =1, х 2 =3.

(х-1)(х-3)=х-3, -(х-1)(х-3)=х-3, (х-1)(х-3)=х-3,
х 1 =2, х 2 =3. х 1 =0, х 2 =3. х 1 =2, х 2 =3.
2 (-∞; 1), 0 [1; 3). 2 [3; +∞).
3 (-∞; 1).
Ответ: 3.
в) графический метод: для решения уравнения построим в одной системе координат графики функций у=|х 2 -4х+3| и у=-3.
Построим у=|х 2 -4х+3|. Для этого сначала рассмотрим функцию у=х 2 -4х+3, графиком которой является парабола, ветви направлены вверх. Вершина параболы в точке (2; -1). Строим график и отображаем часть параболы, которая лежит ниже оси ОХ в верхнюю полуплоскость. Далее в этой же системе координат строим график у=х-3. Графики функций пересеклись в точке с абсциссой 3.
Ответ: 3.

Таким образом, можно сделать следующий вывод: систематическое использование различных способов для решения уравнений, содержащих абсолютную величину, приводит не только к повышению интереса к математике, повышению творческой активности школьников, но и повышает уверенность детей в собственных силах, так как у них имеется возможность выбора того способа решения, который наиболее эффективен в каждом конкретном случае.

ТЕСТОВЫЕ ЗАДАНИЯ по теме «Решение уравнений с модулем».
1. Какие числа являются решениями уравнения |х+3|= -4?
а) -7; б) -7; 1; в) нет корней; г) 1.
2. Решите уравнение |х+3|=7:
а) 7; б) -7; в) 0; 7; г) 7; -7.
3. Определите координаты точки пересечения графиков функций у=|2х+1| и у=0:
а) (0;0); б) (-0,5;0); в) (0;-0,5); г) (0,5;0).
4. Решите уравнение |х+3|+|х-1|=6:
а) 3; -2; б) 4; -2; в) -4; 2; г) 2; -3.
5. Сколько точек пересечения имеют графики функций у=||5,5х-4|+2| и у=3?
а) 1; б) 2; в) 3; г) 4.
6. Решите уравнение |3х-7|=1-х:
а) 2; 3; б) -2; 3; в) -3; 2; г) -2; -3.
7. Сколько решений имеет уравнение (2,5х-5)2=(0,5х-6)2:
а) 1; б) 2; в) 3; г) 4.

СИСТЕМА КАРТОЧЕК-ЗАДАНИЙ по теме «Решение уравнений с модулем».
1. ЗАДАНИЯ С УКАЗАНИЯМИ ИЛИ АЛГОРИТМИЧЕСКИМИ ПРЕДПИСАНИЯМИ И ОБРАЗОМ ВЫПОЛНЕНИЯ.
УКАЗАНИЯ ОБРАЗЕЦ ЗАДАНИЕ
Если |х-а|+|х-в|=в-а, где в ≥ а, то
а ≤ х ≤ в
|х-1|+|х-2|=1,
1 ≤ х ≤ 2.
Ответ: [1; 2]
а) |х-4|+|х-5|=1,
б) |х|-|х-1|=1,
в) |х-6|+|х-8|=2,
г) |х-0,5|-|х-4,5|=4.

Если |х-а|-|х-в|=в-а, где в ≥ а, то
х ≥ в
|х-1|-|х-2|=1,
х ≥ 2.
Ответ: [2; +∞).

АЛГОРИТМ ОБРАЗЕЦ ЗАДАНИЯ
1. Отметить все нули подмодульных выражений на числовой прямой. Они разобьют числовую прямую на промежутки, в которых все подмодульные выражения имеют постоянный знак.
2. Из каждого промежутка взять произвольное число и подсчетом определить знак подмодульного выражения, по знаку раскрыть модули.
3. Решить уравнения и выбрать решения, принадлежащие данному промежутку. |х+1|+|х+2|=1.
Решение.
Подмодульные выражения х+1 и х+2 обращаются в нуль при х= -1, х= -2.

1) -3 (-∞; -2]
-х-1-х-2=1; х= -2;
-2 (-∞; -2].
2) -1,5 (-2; -1)
-х-1+х+2=1; 1=1; х — любое число из промежутка (-2; -1).
3) 0 [-1; +∞)
х+1+х+2=1; х= -1;
-1 [-1; +∞).
Ответ: [-2; -1].
1) |14-х|+|х+1|=7;
2) |х|-|х+2|=2;
3) |х2-4|=|2х-1|;
4) | х2-6х+5|+|3-х|=3

2. ЗАДАНИЯ «НАЙДИ ОШИБКУ».
1.
Решить уравнение: |х2-8х+5|=| х2-5|.
Решение.
|х2-8х+5|=| х2-5|
х2-8х+5= х2-5, или х2-8х+5=5- х2,
-8х+10=0, 2 х2-8х=0,
х=1,25. х(2х-8)=0,
х=0, или 2х-8=0,
2х=8,
х=0,25.
Ответ: 1,25; 0,25. ВЕРНОЕ РЕШЕНИЕ

2.
Решить уравнение х2-6х+|х-4|+8=0.
Решение.
Если х-4 ≥ 0, то Если х-4 Решить уравнение |х-1|-2|х+3|+х+7=0.
Решение.
Решим уравнение методом интервалов, для этого найдем концы интервалов, решив уравнения
х-1=0 и х+3=0
х=1 х= -3.
-х+1-2(-х-3)+х+7=0; -х+1-2х-6+х+7=0; х-1-2х-6+х+7=0;
2х+14=0; -2х+2=0; 0=0.
х= -7. х=1. х — любое число.
Ответ: х – любое число. ВЕРНОЕ РЕШЕНИЕ

3. ЗАДАНИЯ С СОПУТСТВУЮЩИМИ УКАЗАНИЯМИ И ИНСТРУКЦИЯМИ.
1.
Решить уравнение |х-2|+|2х-7|=3.

Решение.
Решим уравнение методом интервалов.
1) Найдите нули подмодульных выражений, решив уравнения:
х-2=0 и 2х-7=0.
х1=… х2=…
2) Отметьте полученные значения на координатном луче.

3) Решите исходное уравнение на каждом из интервалов, предварительно определив знак подмодульного выражения. Учитывая знак, раскрыть модули.

4) Проверьте, принадлежат ли найденные корни указанным промежуткам.
Ответ: …………………………………………………….

2.
Решить уравнение ||х-3|-х+1|=6.
Решение.
1) Раскройте внешний модуль, используя определение: |а|=а, если а ≥ 0 и
|а|= -а, если а 4. ЗАДАНИЯ С ПРИМЕНЕНИЕМ КЛАССИФИКАЦИИ.
1.
Выпишите уравнения, которые решаются с помощью зависимостей между величинами, их модулями и квадратами величин. Решите эти уравнения.
1) ||х|+3|=3;
2) |х|+|х+4|=х-1;
3) |х+2|=|3-х|;
4) |х+3|+|х-1|=7;
5) (2х-3)2=(3,5х-1)2;
6) |х2-4х+5|=|х2-9|;
7) |11х-7|= -3;
8) |х-2|+|х-1|=1;
9) х2-х-2=|5х-3|;

2.
Выпишите уравнения, которые решаются с использованием геометрической интерпретации модуля. Решите эти уравнения.
1) |х|-|х-8|=2;
2) |х 2 -2х-3|=3х-3;
3) |2х-|2х-|2х-3|||=0;
4) |х-1|-2|х+4|+х+11=0;
5) |х-3|+|х-4|=1;
6) (5х-4) 2 =(2х-1) 2 ;
7) |2,5х-11|= -2;
8) |х-7|-|х-9|=2.

5. ЗАДАНИЯ С ВЫПОЛНЕНИЕМ НЕКОТОРОЙ ЧАСТИ.
1.
Решить уравнение (х 2 -5х+6)2-5•| х 2 -5х+6|+6=0.
Решение.
Пусть | х 2 -5х+6|=t, тогда, учитывая, что (х 2 -5х+6)2=| х 2 -5х+6|2, получим уравнение: t 2 -5t+6=0. Решением этого уравнения являются числа ……. поэтому исходное уравнение равносильно совокупности двух уравнений:
| х 2 -5х+6|=… или | х 2 -5х+6|=…
…………………………………………………………………………………
…………………………………………………………………………………
…………………………………………………………………………………
…………………………………………………………………………………

ПРОВЕРОЧНАЯ РАБОТА по теме «Решение уравнений с модулем»
1. Решите уравнение |х-3|=7.
2. Решите графически уравнение |2х+1|=3.
3. Решите уравнение методом интервалов |х+1|+|х-1|=3.
4. Решите уравнение методом последовательного раскрытия модулей |-х+2|=2х+1.
5. Решите уравнение (2х+3) 2 =(х-1) 2 .
6. Решите уравнение самым удобным способом |х 2 +6х+2|=3|х+2|.
7. При каком значении а уравнение можно решить, используя геометрическую интерпретацию модуля: |х-а|+|х-9|=1?

🎦 Видео

Контрольная работа. Уравнения с МОДУЛЕМСкачать

Контрольная работа. Уравнения с МОДУЛЕМ

Модуль числа. Практическая часть. 6 класс.Скачать

Модуль числа. Практическая часть. 6 класс.

Решение уравнения с модулем |x+8|+|x-3|+|x+2|=1.Скачать

Решение уравнения с модулем |x+8|+|x-3|+|x+2|=1.

6 класс. Решение уравнений с модулями.Скачать

6 класс. Решение уравнений с модулями.

Неравенства с модулем | Математика | TutorOnlineСкачать

Неравенства с модулем | Математика | TutorOnline

УРАВНЕНИЯ С МОДУЛЕМ | метод интерваловСкачать

УРАВНЕНИЯ С МОДУЛЕМ | метод интервалов

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

УРАВНЕНИЯ С МОДУЛЕМ. Метод интервалов для решения уравнений.Скачать

УРАВНЕНИЯ С МОДУЛЕМ. Метод интервалов для решения уравнений.

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Метод промежутков. Уравнения с Модулем Часть 2 из 3Скачать

Метод промежутков. Уравнения с Модулем Часть 2 из 3

Уравнения с модулем. Часть 2 | Математика | TutorOnlineСкачать

Уравнения с модулем. Часть 2  | Математика | TutorOnline

Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравненииСкачать

Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравнении

Модуль числа. Практическая часть. 6 класс.Скачать

Модуль числа. Практическая часть. 6 класс.

Модуль в модуле в уравнении. Алгебра 7 класс.Скачать

Модуль в модуле в уравнении. Алгебра 7 класс.

Как решать уравнения с модулем ( Математика 6 класс )Скачать

Как решать уравнения с модулем ( Математика 6 класс )

Геометрический метод. Уравнения с Модулем Часть 3 из 3Скачать

Геометрический метод. Уравнения с Модулем Часть 3 из 3

Быстрый способ решения квадратного уравненияСкачать

Быстрый способ решения квадратного уравнения
Поделиться или сохранить к себе: