Алгебраические уравнения для 7 класса

Учим алгебра 7 класс. Как решать уравнения алгебра 7 класс, примеры, дроби, функции, степени, модули

В 7 классе ученикам предстоит научиться решать уравнения, дроби, строить функции, разбираться в модулях. Для этого следует познакомиться с основными понятиями в темах, рассмотреть алгоритм решения и пошагово учиться находить ответы. Главное правило — начать с простых примеров, постепенно переходя на более сложные. Большинство задач можно решать несколькими методами (это касается и примеров), следует выбрать самый простой и удобный для себя.

Содержание
  1. Как решать уравнения алгебра 7 класс
  2. Как решать систему уравнений алгебра 7 класс
  3. метод подстановки
  4. метод сложения
  5. графический метод
  6. Как решать дроби 7 класс
  7. Примеры 7 класс как решать
  8. Как решать задачи алгебра 7 класс
  9. Как решать функции алгебра 7 клас с
  10. Как решать степени алгебра 7 класс
  11. Алгебра модули как решать
  12. Об Авторе
  13. Смотрите также
  14. Подарок маме на 8 марта своими руками, какую сделать поделку для мамы: в детском саду, в школе, лучшие поделки своими руками. Рисунок маме 8 марта: рисование простые рисунки
  15. Частушки смешные детские про: учителей, школьников, школу, про воспитателей, про детский сад, народные, русские, прикольные детские. Смешные новогодние частушки для детей
  16. Сложные логические загадки с ответом с подвохом, загадки на логическое мышление: для взрослых, для детей
  17. 2 комментария
  18. Решение простых линейных уравнений
  19. Понятие уравнения
  20. Какие бывают виды уравнений
  21. Как решать простые уравнения
  22. Примеры линейных уравнений
  23. Линейные уравнения 7 класс. учебно-методический материал по алгебре (7 класс) на тему
  24. По теме: методические разработки, презентации и конспекты
  25. Комментарии
  26. (2x + 3) — ( 5x — 11 ) = 7 +
  27. ВАРИАНТ 1

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Как решать уравнения алгебра 7 класс

Начнем с решения линейных уравнений (на рисунке показано, по какому принципу они устроены). Чтобы найти ответ в таких уравнениях, нужно совершать действия: раскрытие скобок, поиск подобных слагаемых, умножение/деление частей на одно и тоже число, перенос слагаемых из одной части уравнения в другую. Всё зависит от конкретного примера.

Алгебраические уравнения для 7 класса

Рассмотрим несколько примеров пошагового решения линейных уравнений.

Пример 1.
6x + 24 = 0

Поскольку части уравнения (левая и правая) равны, то можно отнять из каждой одинаковое число. Равенство не изменится, а пример станет значительно проще. В представленном уравнении отняли 24 и слева, и справа. В левой части 24 сократилось, а в правой (0 — 24) получилось -24 (не забываем ставить знак минуса).

Получилось: 6x = -24. Теперь можем сократить 6 и -24 на число 6 (или рассуждаем так: чтобы найти множитель, нужно произведение разделить на другой множитель). В ответе будет -4. Не забудьте в самом конце подставить полученное число вместо х. Совпал ответ — значит, все правильно.

Алгебраические уравнения для 7 класса

Можно рассуждать проще: чтобы упростить уравнение, нужно из левой части отправить в правую число 24, поменяв его знак. Равенство сохранится (на рисунке ниже).

Алгебраические уравнения для 7 класса

Пример 2.
9 + 16x = 41 + 14x

Алгебраические уравнения для 7 класса

Это уравнение более сложное. Здесь важно запомнить несколько моментов:

  • числа без х переносятся в левую часть, а с х — в правую;
  • при переносе знаки меняют.

Пример 3.
7(10 — 4x) + 5x = 12 — 3(5x + 2)

Алгебраические уравнения для 7 класса

  1. Раскрыть скобки, выполнив умножение: 7 умножаем на каждое число в скобках (в правой части -3 на каждое). При выполнении действия не забывайте сохранять знаки.
  2. Записываем уравнение, получившееся после раскрытия скобок. Ещё раз сверяем знаки.
  3. Числа с х отправляются в левую часть, без х — в правую. Знаки чисел, которые переходят в другую часть, меняем.
  4. Подсчитываем результат с обеих сторон.
  5. Делим -64 на -8 и получаем ответ. Не забываем, что минус на минус при делении и умножении дают плюс.

В рассмотренных уравнениях корень точно определён. Так получается не всегда.

Пример 4.

Алгебраические уравнения для 7 класса

Обратите внимание, в ответе получилось 0x = 0. Это значит, что x может быть любым числом, потому что при умножение хоть какого числа на 0 получится 0.

Алгебраические уравнения для 7 класса

В этом примере корней нет, так как любое число, которое умножают на 0, будет равно 0 (21 никак не получится).

Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Как решать систему уравнений алгебра 7 класс

Системой называют несколько уравнений, в которых нужно найти такие значения неизвестных, чтобы равенство сохранилось. Разберемся на примерах, как выглядят системы и какие методы их решения существуют.

метод подстановки

Из самого названия следует, что алгоритм требует что-то подставлять. Ниже представлена система, где нужно найти значения x и y.

Суть метода подстановки: переменную в одном из уравнений выражают через другую переменную. Затем подставляют полученное выражение в другое уравнение.

Смотрим на систему. Видим, что удобнее будет выразить x во втором уравнении (так как он один). Выражаем путем переноса за знак «равно» 12y. Получилось: x = 11 — 12y (не забываем менять знак при переносе числа).

В первое уравнение вместо «x» записываем получившееся выражение. Меняем только x, остальное сохраняется в прежнем виде.

Алгебраические уравнения для 7 класса

Далее преобразуем уравнение, в которое поместили выражение. Раскрываем скобки (перемножаем 5 на каждое значение). y оставляем в левой части, числа переносим в правую, знаки меняем. Таким образом нашли значение y (y = 1).

Алгебраические уравнения для 7 класса

Теперь подставляем полученную единицу во второе уравнение (x = 11 — 12y).

Алгебраические уравнения для 7 класса

Убедиться в правильном решение можно так: подставьте полученные значения в систему. Если равенства сохранятся, значит, решено верно.

метод сложения

Чтобы решить систему методом сложения, нужно из двух уравнений сделать одно. Просто складываем первое и второе. Здесь «y» просто сократились, и получилось простое уравнение. Как только нашли значение «х», нужно подставить его в любой пример (здесь поставили во второе уравнение). В ответе пишется так: (4; 3) — первым всегда пишется х, затем у.

Алгебраические уравнения для 7 класса

графический метод

У нас есть система, где y = 5x и y = -2x + 7. Рассмотрим алгоритм решения системы уравнений:

  1. Подбираем 2 числа для х. Мы взяли 0 и 1, подставляем в первое уравнение: y = 5 * 0 = 0; у = 5 * 1 = 5. Значит первая прямая имеет координаты: (0; 0) и (1; 5).
  2. Для второго уравнения подбираем значения х. Взяли 3 и 2, подставляем и находим у: -2 * 3 + 7 = 1; -2 * 2 + 7 = 3. Значит прямая имеет координаты (3; 1) и (2; 3).
  3. Отмечаем на графике соответствующие прямые, подписываем их название.
  4. на месте пересечения получившихся прямых ставим точку — это будет решение.
  5. Точка имеет координаты (1; 5).

Алгебраические уравнения для 7 класса

На заметку! Старайтесь подбирать такие значения х, чтобы у был небольшим. Так отмечать будет проще.

Выбирайте самый удобный способ решения. Третий метод — графический, считают самым неточным.

Видео:7 класс, 39 урок, Метод алгебраического сложенияСкачать

7 класс, 39 урок, Метод алгебраического сложения

Как решать дроби 7 класс

Дроби можно разделить на 2 основных вида:

Они различаются в способе написания (смотрите рисунок ниже). В свою очередь и те, и другие делятся еще на несколько видов.

Алгебраические уравнения для 7 класса

Для начала рассмотрим решение примеров с десятичными дробями.

Алгебраические уравнения для 7 класса

Особое внимание при решении стоит уделить запятым. При сложении и вычитании запятые стоят строго друг под другом, при умножении это не имеет значения.

Алгебраические уравнения для 7 классаПримеры решения обыкновенных дробей.

Алгебраические уравнения для 7 класса

  • при сложении и вычитании нужно привести дроби к общему знаменателю, найти дополнительные множители. Так, для чисел 6 и 4 общим знаменателем стало число 24. Дополнительные множители считали так: 24 : 6 = 4 (для первой дроби) и 24 : 4 = 6 (для второй). Потом умножили доп. множители на числители и полученные числа сложили. Если в ответе получилась неправильная дробь, то выделяем целую часть, при необходимости сокращаем дроби.
  • при умножении пишем дроби под одной чертой, сокращаем.
  • при делении нужно вторую дробь перевернуть, поставить знак умножения и сократить дроби.

Если пример состоит из простой и десятичной дроби, то следует привести их к одному виду (к которому проще или удобнее считать).

Видео:АЛГЕБРА 7 класс : Решение задач с помощью уравнений | ВидеоурокСкачать

АЛГЕБРА 7 класс : Решение задач с помощью уравнений | Видеоурок

Примеры 7 класс как решать

Теперь закрепим решение дробей на примерах.

Решение примера, представленного ниже:

  1. Видим, что присутствует как обыкновенная дробь, так и десятичные. Нужно привести к одному виду. Так как десятичных больше, и превратить 1/4 в этот вид проще, то делим 1 на 4, а целую часть сохраняем. Вышло 5,25.
  2. Далее умножаем — 3 на каждое число в скобках, внимательно следим за знаками.
  3. Остается от 10,4 отнять 9,3. В итоге вышло 1,1.

Но можно было решить проще. Первое действие всегда в скобках. Поэтому от 5,25 отнимаем 2,15. Получится 3,1. Умножаем ее на 3 — вышло 9,3. И отнимаем: 10,4 — 9,3 = 1,1. Этот способ даже проще, потому что не нужно следить за знаками при раскрытии скобок.

Алгебраические уравнения для 7 класса

Чтобы верно решить следующий пример, нужно:

  • точно проставить порядок действий (умножение и деление делаем в первую очередь, затем складываем);
  • Умножить десятичные дроби столбиком, не забыть поставить запятую;
  • деление здесь простое: переставили запятую на один знак вправо, поделили, получили -2.
  • сложили числа.

Алгебраические уравнения для 7 класса

Видео:Алгебра 7 класс. 11 сентября. Решение линейных уравнений #1Скачать

Алгебра 7 класс. 11 сентября. Решение линейных уравнений #1

Как решать задачи алгебра 7 класс

Задачи решаются путем составления уравнений.

Алгебраические уравнения для 7 класса

Другие примеры задач с подробными решениями в видео-материалах.

Видео:Многочлены. 7 класс.Скачать

Многочлены. 7 класс.

Как решать функции алгебра 7 клас с

Функцией принято считать зависимость y от x. При этом x является переменной (или аргументом), а у — это значение функции (зависимая переменная).

  • y(x) = 8x
  • y(x) = −3x — 62
  • y(x) = x−1 + 18

Чтобы найти значение у, которое бы соответствовало определенному значению х, нужно просто это значение х подставить в функцию.

Алгебраические уравнения для 7 класса

Алгебраические уравнения для 7 класса

Видео:Алгебра 7 класс с нуля | Математика | УмскулСкачать

Алгебра 7 класс с нуля | Математика | Умскул

Как решать степени алгебра 7 класс

Если требуется взять какое-либо число несколько раз, то проще записать его в степени. Например, нужно двойку взять три раза, т. е.: 2 * 2 * 2. Получается длинная запись. Поэтому придумали писать так: 2³ (читается: два в третьей степени).

Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать

Алгебра 7 Линейное уравнение с одной переменной

Алгебраические уравнения для 7 класса

Чтобы число возвести в степень (она указывается справа от числа вверху), нужно его умножать на самого себя столько раз, какая цифра указана. Рассмотрим подробнее на примерах.

Алгебраические уравнения для 7 класса

Не всегда получается возвести число в степень «в уме». Иногда посчитать сложно. Например, возвести 6 в 5 степень, быстро получится не у каждого. Чтобы всякий раз не считать столбиком, лучше выучить основные степени. Они представлены в таблице.

Алгебраические уравнения для 7 класса

При возведении любого числа в степень 1, получится это же число. Если возводить число в нулевую степень, в ответе будет 1.

Рассмотрим несколько примеров со степенями.

Алгебраические уравнения для 7 класса

Отдельное внимание обращаем на возведение в степень отрицательного числа. Если такое число возводить в четную степень (2; 4; 6 и т.д.), то получится положительный ответ, если в нечетную, то ответ со знаком минус.

Видео:Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)Скачать

Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)

Алгебра модули как решать

Модулем числа называют это же число, только без знака минус. Например: | − 9 | = 9. При этом если число изначально неотрицательное, то оно остается прежним.

Алгебраические уравнения для 7 класса

Перейдем к простым примерам.

Логично предположить, что под модулем будет число 4. Также подойдет число -4, ведь из-под модуля все равно выйдет положительное. Так, корнями уравнения будут: x = 4 и x = − 4.

Алгебраические уравнения для 7 класса

Из-под модуля не может выйти отрицательное число. Поэтому, если видим что-то похожее: Ι-8 + хΙ = -8, значит, корней не будет, так как уравнение заведомо нерешаемо.

Другие примеры описаны в видео.

Об Авторе

Алгебраические уравнения для 7 класса

Смотрите также

  • Алгебраические уравнения для 7 класса

Видео:РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 классСкачать

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 класс

Подарок маме на 8 марта своими руками, какую сделать поделку для мамы: в детском саду, в школе, лучшие поделки своими руками. Рисунок маме 8 марта: рисование простые рисунки

Алгебраические уравнения для 7 класса

Видео:Урок по теме РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМЫ УРАВНЕНИЙ 7 КЛАСССкачать

Урок по теме РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМЫ УРАВНЕНИЙ 7 КЛАСС

Частушки смешные детские про: учителей, школьников, школу, про воспитателей, про детский сад, народные, русские, прикольные детские. Смешные новогодние частушки для детей

Алгебраические уравнения для 7 класса

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Сложные логические загадки с ответом с подвохом, загадки на логическое мышление: для взрослых, для детей

2 комментария

Алгебраические уравнения для 7 класса

Спасибо большое очень помогли.

Алгебраические уравнения для 7 класса

Огромное спасибо!А то учитель неможет нормально тему объяснить

Видео:Уравнения с дробями. Алгебра 7 класс.Скачать

Уравнения с дробями. Алгебра 7 класс.

Решение простых линейных уравнений

Алгебраические уравнения для 7 класса

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Видео:Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать

Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Алгебраические уравнения для 7 класса

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Алгебраические уравнения для 7 класса

Видео:АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ 7 класс ПРИМЕРЫ формулы КАК РЕШАТЬ урок 1Скачать

АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ 7 класс ПРИМЕРЫ формулы КАК РЕШАТЬ урок 1

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить: Алгебраические уравнения для 7 класса

  1. Алгебраические уравнения для 7 класса
  2. 3(3х — 4) = 4 · 7х + 24
  3. 9х — 12 = 28х + 24
  4. 9х — 28х = 24 + 12
  5. -19х = 36
  6. х = 36 : (-19)
  7. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Видео:Решение задач с помощью уравнений. Алгебра 7 классСкачать

Решение задач с помощью уравнений. Алгебра 7 класс

Линейные уравнения 7 класс.
учебно-методический материал по алгебре (7 класс) на тему

Алгебраические уравнения для 7 класса

Задания для решения линейных уравнений с одним неизвестным.

Алгебраические уравнения для 7 класса

Алгебраические уравнения для 7 класса

Видео:Урок по теме СПОСОБ ПОДСТАНОВКИ 7 классСкачать

Урок по теме СПОСОБ ПОДСТАНОВКИ 7 класс

По теме: методические разработки, презентации и конспекты

Алгебраические уравнения для 7 класса

Методическая разработка урока алгебры в 7 классе «Различные способы решения систем линейных уравнений» способы решения систем уравнений

Урок алгебры в 7 классе направлен на обобщение и систематизацию различных способов решения систем уравнений: метода сравнения, сложения, подстановки, графического метода, метода Крамера, выбора рацион.

Алгебраические уравнения для 7 класса

Обобщающий урок в 7 классе по алгебре «Линейное уравнение с двумя переменными. График линейного уравнения с двумя переменными»

Обобщающий урок в 7 классе по алгебре «Линейное уравнение с двумя переменными. График линейного уравнения с двумя переменными».

Алгебраические уравнения для 7 класса

8 класс урок-зачёт по теме «Линейные уравнения и системы уравнений»

рассмотрены разные типы текстовых задач, которые решаются с помощью линейных уравнений и систем уравнений.

Алгебраические уравнения для 7 класса

Линейные уравнения и системы линейных уравнений с параметрами

Методическая разработка на тему: «Линейные уравнения и системы линейных уравнений с параметрами».

Алгебраические уравнения для 7 класса

Линейные уравнения, неравенства и системы линейных уравнений с параметром.

Алгебраические уравнения для 7 класса

Линейные уравнения и системы уравнений, повторение, 7 класс

Презентация, повторение теоретического материала.

Алгебраические уравнения для 7 класса

Презентация к уроку алгебры 7 класс «Линейное уравнение и линейная функция(обобщение).

Презентация к уроку алгебры 7 класс «Линейное уравнение и линейная функция(обобщение).

Видео:Решение задач с помощью уравнений. Алгебра, 7 классСкачать

Решение задач с помощью уравнений. Алгебра, 7 класс

Комментарии

Алгебраические уравнения для 7 класса

(2x + 3) — ( 5x — 11 ) = 7 +

(2x + 3) — ( 5x — 11 ) = 7 + (13 — 2x )

(7 — 10x) — (8 — 8x ) + (10x + 6) = — 8

(2x + 3) + (3x + 4) + (5x + 5 ) = 12 — 7x

Алгебраические уравнения для 7 класса

ВАРИАНТ 1

ВАРИАНТ 1
1. Решите уравнение:
2х + 1 = 3х — 4

2. Решите уравнение:
а) ⅔ х = -6 б) 1,6(5х – 1) = 1,8х – 4,7
3. Турист проехал в 7 раз большее расстояние, чем прошел пешком. Весь путь туриста составил 24 км. Какое расстояние турист проехал?
4. При каком значении переменной значение выражения 3 – 2с на 4 меньше значения выражения 5с + 1 ?
5. Длина прямоугольника на 6 см больше ширины. Найдите площадь прямоугольника, если его периметр равен 48 см.

1. Решите уравнение:
— 2х + 1 = — х — 6

2. Решите уравнение:
а) — ⅜ х = 24 б) 2(0,6х + 1,85) = 1,3х + 0,7
3. На одной полке на 15 книг большее, чем другой. Всего на двух полках 53 книги. Сколько книг на каждой полке?
4. При каком значении переменной значение выражения 4а + 8 на 3 больше значения выражения 3 – 2а ?
5. Ширина прямоугольника в 2 раза меньше длины. Найдите площадь прямоугольника, если его периметр равен 120 см.

Поделиться или сохранить к себе: