В 7 классе ученикам предстоит научиться решать уравнения, дроби, строить функции, разбираться в модулях. Для этого следует познакомиться с основными понятиями в темах, рассмотреть алгоритм решения и пошагово учиться находить ответы. Главное правило — начать с простых примеров, постепенно переходя на более сложные. Большинство задач можно решать несколькими методами (это касается и примеров), следует выбрать самый простой и удобный для себя.
- Как решать уравнения алгебра 7 класс
- Как решать систему уравнений алгебра 7 класс
- метод подстановки
- метод сложения
- графический метод
- Как решать дроби 7 класс
- Примеры 7 класс как решать
- Как решать задачи алгебра 7 класс
- Как решать функции алгебра 7 клас с
- Как решать степени алгебра 7 класс
- Алгебра модули как решать
- Об Авторе
- Смотрите также
- Подарок маме на 8 марта своими руками, какую сделать поделку для мамы: в детском саду, в школе, лучшие поделки своими руками. Рисунок маме 8 марта: рисование простые рисунки
- Частушки смешные детские про: учителей, школьников, школу, про воспитателей, про детский сад, народные, русские, прикольные детские. Смешные новогодние частушки для детей
- Сложные логические загадки с ответом с подвохом, загадки на логическое мышление: для взрослых, для детей
- 2 комментария
- Решение простых линейных уравнений
- Понятие уравнения
- Какие бывают виды уравнений
- Как решать простые уравнения
- Примеры линейных уравнений
- Линейные уравнения 7 класс. учебно-методический материал по алгебре (7 класс) на тему
- По теме: методические разработки, презентации и конспекты
- Комментарии
- (2x + 3) — ( 5x — 11 ) = 7 +
- ВАРИАНТ 1
Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Как решать уравнения алгебра 7 класс
Начнем с решения линейных уравнений (на рисунке показано, по какому принципу они устроены). Чтобы найти ответ в таких уравнениях, нужно совершать действия: раскрытие скобок, поиск подобных слагаемых, умножение/деление частей на одно и тоже число, перенос слагаемых из одной части уравнения в другую. Всё зависит от конкретного примера.
Рассмотрим несколько примеров пошагового решения линейных уравнений.
Пример 1.
6x + 24 = 0
Поскольку части уравнения (левая и правая) равны, то можно отнять из каждой одинаковое число. Равенство не изменится, а пример станет значительно проще. В представленном уравнении отняли 24 и слева, и справа. В левой части 24 сократилось, а в правой (0 — 24) получилось -24 (не забываем ставить знак минуса).
Получилось: 6x = -24. Теперь можем сократить 6 и -24 на число 6 (или рассуждаем так: чтобы найти множитель, нужно произведение разделить на другой множитель). В ответе будет -4. Не забудьте в самом конце подставить полученное число вместо х. Совпал ответ — значит, все правильно.
Можно рассуждать проще: чтобы упростить уравнение, нужно из левой части отправить в правую число 24, поменяв его знак. Равенство сохранится (на рисунке ниже).
Пример 2.
9 + 16x = 41 + 14x
Это уравнение более сложное. Здесь важно запомнить несколько моментов:
- числа без х переносятся в левую часть, а с х — в правую;
- при переносе знаки меняют.
Пример 3.
7(10 — 4x) + 5x = 12 — 3(5x + 2)
- Раскрыть скобки, выполнив умножение: 7 умножаем на каждое число в скобках (в правой части -3 на каждое). При выполнении действия не забывайте сохранять знаки.
- Записываем уравнение, получившееся после раскрытия скобок. Ещё раз сверяем знаки.
- Числа с х отправляются в левую часть, без х — в правую. Знаки чисел, которые переходят в другую часть, меняем.
- Подсчитываем результат с обеих сторон.
- Делим -64 на -8 и получаем ответ. Не забываем, что минус на минус при делении и умножении дают плюс.
В рассмотренных уравнениях корень точно определён. Так получается не всегда.
Пример 4.
Обратите внимание, в ответе получилось 0x = 0. Это значит, что x может быть любым числом, потому что при умножение хоть какого числа на 0 получится 0.
В этом примере корней нет, так как любое число, которое умножают на 0, будет равно 0 (21 никак не получится).
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Как решать систему уравнений алгебра 7 класс
Системой называют несколько уравнений, в которых нужно найти такие значения неизвестных, чтобы равенство сохранилось. Разберемся на примерах, как выглядят системы и какие методы их решения существуют.
метод подстановки
Из самого названия следует, что алгоритм требует что-то подставлять. Ниже представлена система, где нужно найти значения x и y.
Суть метода подстановки: переменную в одном из уравнений выражают через другую переменную. Затем подставляют полученное выражение в другое уравнение.
Смотрим на систему. Видим, что удобнее будет выразить x во втором уравнении (так как он один). Выражаем путем переноса за знак «равно» 12y. Получилось: x = 11 — 12y (не забываем менять знак при переносе числа).
В первое уравнение вместо «x» записываем получившееся выражение. Меняем только x, остальное сохраняется в прежнем виде.
Далее преобразуем уравнение, в которое поместили выражение. Раскрываем скобки (перемножаем 5 на каждое значение). y оставляем в левой части, числа переносим в правую, знаки меняем. Таким образом нашли значение y (y = 1).
Теперь подставляем полученную единицу во второе уравнение (x = 11 — 12y).
Убедиться в правильном решение можно так: подставьте полученные значения в систему. Если равенства сохранятся, значит, решено верно.
метод сложения
Чтобы решить систему методом сложения, нужно из двух уравнений сделать одно. Просто складываем первое и второе. Здесь «y» просто сократились, и получилось простое уравнение. Как только нашли значение «х», нужно подставить его в любой пример (здесь поставили во второе уравнение). В ответе пишется так: (4; 3) — первым всегда пишется х, затем у.
графический метод
У нас есть система, где y = 5x и y = -2x + 7. Рассмотрим алгоритм решения системы уравнений:
- Подбираем 2 числа для х. Мы взяли 0 и 1, подставляем в первое уравнение: y = 5 * 0 = 0; у = 5 * 1 = 5. Значит первая прямая имеет координаты: (0; 0) и (1; 5).
- Для второго уравнения подбираем значения х. Взяли 3 и 2, подставляем и находим у: -2 * 3 + 7 = 1; -2 * 2 + 7 = 3. Значит прямая имеет координаты (3; 1) и (2; 3).
- Отмечаем на графике соответствующие прямые, подписываем их название.
- на месте пересечения получившихся прямых ставим точку — это будет решение.
- Точка имеет координаты (1; 5).
На заметку! Старайтесь подбирать такие значения х, чтобы у был небольшим. Так отмечать будет проще.
Выбирайте самый удобный способ решения. Третий метод — графический, считают самым неточным.
Видео:7 класс, 39 урок, Метод алгебраического сложенияСкачать
Как решать дроби 7 класс
Дроби можно разделить на 2 основных вида:
Они различаются в способе написания (смотрите рисунок ниже). В свою очередь и те, и другие делятся еще на несколько видов.
Для начала рассмотрим решение примеров с десятичными дробями.
Особое внимание при решении стоит уделить запятым. При сложении и вычитании запятые стоят строго друг под другом, при умножении это не имеет значения.
Примеры решения обыкновенных дробей.
- при сложении и вычитании нужно привести дроби к общему знаменателю, найти дополнительные множители. Так, для чисел 6 и 4 общим знаменателем стало число 24. Дополнительные множители считали так: 24 : 6 = 4 (для первой дроби) и 24 : 4 = 6 (для второй). Потом умножили доп. множители на числители и полученные числа сложили. Если в ответе получилась неправильная дробь, то выделяем целую часть, при необходимости сокращаем дроби.
- при умножении пишем дроби под одной чертой, сокращаем.
- при делении нужно вторую дробь перевернуть, поставить знак умножения и сократить дроби.
Если пример состоит из простой и десятичной дроби, то следует привести их к одному виду (к которому проще или удобнее считать).
Видео:Алгебра 7 класс с нуля | Математика | УмскулСкачать
Примеры 7 класс как решать
Теперь закрепим решение дробей на примерах.
Решение примера, представленного ниже:
- Видим, что присутствует как обыкновенная дробь, так и десятичные. Нужно привести к одному виду. Так как десятичных больше, и превратить 1/4 в этот вид проще, то делим 1 на 4, а целую часть сохраняем. Вышло 5,25.
- Далее умножаем — 3 на каждое число в скобках, внимательно следим за знаками.
- Остается от 10,4 отнять 9,3. В итоге вышло 1,1.
Но можно было решить проще. Первое действие всегда в скобках. Поэтому от 5,25 отнимаем 2,15. Получится 3,1. Умножаем ее на 3 — вышло 9,3. И отнимаем: 10,4 — 9,3 = 1,1. Этот способ даже проще, потому что не нужно следить за знаками при раскрытии скобок.
Чтобы верно решить следующий пример, нужно:
- точно проставить порядок действий (умножение и деление делаем в первую очередь, затем складываем);
- Умножить десятичные дроби столбиком, не забыть поставить запятую;
- деление здесь простое: переставили запятую на один знак вправо, поделили, получили -2.
- сложили числа.
Видео:Многочлены. 7 класс.Скачать
Как решать задачи алгебра 7 класс
Задачи решаются путем составления уравнений.
Другие примеры задач с подробными решениями в видео-материалах.
Видео:Алгебра 7 класс. 11 сентября. Решение линейных уравнений #1Скачать
Как решать функции алгебра 7 клас с
Функцией принято считать зависимость y от x. При этом x является переменной (или аргументом), а у — это значение функции (зависимая переменная).
- y(x) = 8x
- y(x) = −3x — 62
- y(x) = x−1 + 18
Чтобы найти значение у, которое бы соответствовало определенному значению х, нужно просто это значение х подставить в функцию.
Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать
Как решать степени алгебра 7 класс
Если требуется взять какое-либо число несколько раз, то проще записать его в степени. Например, нужно двойку взять три раза, т. е.: 2 * 2 * 2. Получается длинная запись. Поэтому придумали писать так: 2³ (читается: два в третьей степени).
Видео:АЛГЕБРА 7 класс : Решение задач с помощью уравнений | ВидеоурокСкачать
Чтобы число возвести в степень (она указывается справа от числа вверху), нужно его умножать на самого себя столько раз, какая цифра указана. Рассмотрим подробнее на примерах.
Не всегда получается возвести число в степень «в уме». Иногда посчитать сложно. Например, возвести 6 в 5 степень, быстро получится не у каждого. Чтобы всякий раз не считать столбиком, лучше выучить основные степени. Они представлены в таблице.
При возведении любого числа в степень 1, получится это же число. Если возводить число в нулевую степень, в ответе будет 1.
Рассмотрим несколько примеров со степенями.
Отдельное внимание обращаем на возведение в степень отрицательного числа. Если такое число возводить в четную степень (2; 4; 6 и т.д.), то получится положительный ответ, если в нечетную, то ответ со знаком минус.
Видео:Урок по теме РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМЫ УРАВНЕНИЙ 7 КЛАСССкачать
Алгебра модули как решать
Модулем числа называют это же число, только без знака минус. Например: | − 9 | = 9. При этом если число изначально неотрицательное, то оно остается прежним.
Перейдем к простым примерам.
Логично предположить, что под модулем будет число 4. Также подойдет число -4, ведь из-под модуля все равно выйдет положительное. Так, корнями уравнения будут: x = 4 и x = − 4.
Из-под модуля не может выйти отрицательное число. Поэтому, если видим что-то похожее: Ι-8 + хΙ = -8, значит, корней не будет, так как уравнение заведомо нерешаемо.
Другие примеры описаны в видео.
Об Авторе
Смотрите также
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Подарок маме на 8 марта своими руками, какую сделать поделку для мамы: в детском саду, в школе, лучшие поделки своими руками. Рисунок маме 8 марта: рисование простые рисунки
Видео:Уравнения с дробями. Алгебра 7 класс.Скачать
Частушки смешные детские про: учителей, школьников, школу, про воспитателей, про детский сад, народные, русские, прикольные детские. Смешные новогодние частушки для детей
Видео:Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)Скачать
Сложные логические загадки с ответом с подвохом, загадки на логическое мышление: для взрослых, для детей
2 комментария
Спасибо большое очень помогли.
Огромное спасибо!А то учитель неможет нормально тему объяснить
Видео:РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 классСкачать
Решение простых линейных уравнений
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Видео:Решение задач с помощью уравнений. Алгебра 7 классСкачать
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
Видео:АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ 7 класс ПРИМЕРЫ формулы КАК РЕШАТЬ урок 1Скачать
Линейные уравнения 7 класс.
учебно-методический материал по алгебре (7 класс) на тему
Задания для решения линейных уравнений с одним неизвестным.
Видео:Урок по теме СПОСОБ ПОДСТАНОВКИ 7 классСкачать
По теме: методические разработки, презентации и конспекты
Методическая разработка урока алгебры в 7 классе «Различные способы решения систем линейных уравнений» способы решения систем уравнений
Урок алгебры в 7 классе направлен на обобщение и систематизацию различных способов решения систем уравнений: метода сравнения, сложения, подстановки, графического метода, метода Крамера, выбора рацион.
Обобщающий урок в 7 классе по алгебре «Линейное уравнение с двумя переменными. График линейного уравнения с двумя переменными»
Обобщающий урок в 7 классе по алгебре «Линейное уравнение с двумя переменными. График линейного уравнения с двумя переменными».
8 класс урок-зачёт по теме «Линейные уравнения и системы уравнений»
рассмотрены разные типы текстовых задач, которые решаются с помощью линейных уравнений и систем уравнений.
Линейные уравнения и системы линейных уравнений с параметрами
Методическая разработка на тему: «Линейные уравнения и системы линейных уравнений с параметрами».
Линейные уравнения, неравенства и системы линейных уравнений с параметром.
Линейные уравнения и системы уравнений, повторение, 7 класс
Презентация, повторение теоретического материала.
Презентация к уроку алгебры 7 класс «Линейное уравнение и линейная функция(обобщение).
Презентация к уроку алгебры 7 класс «Линейное уравнение и линейная функция(обобщение).
Видео:Решение задач с помощью уравнений. Алгебра, 7 классСкачать
Комментарии
(2x + 3) — ( 5x — 11 ) = 7 +
(2x + 3) — ( 5x — 11 ) = 7 + (13 — 2x )
(7 — 10x) — (8 — 8x ) + (10x + 6) = — 8
(2x + 3) + (3x + 4) + (5x + 5 ) = 12 — 7x
ВАРИАНТ 1
ВАРИАНТ 1
1. Решите уравнение:
2х + 1 = 3х — 4
2. Решите уравнение:
а) ⅔ х = -6 б) 1,6(5х – 1) = 1,8х – 4,7
3. Турист проехал в 7 раз большее расстояние, чем прошел пешком. Весь путь туриста составил 24 км. Какое расстояние турист проехал?
4. При каком значении переменной значение выражения 3 – 2с на 4 меньше значения выражения 5с + 1 ?
5. Длина прямоугольника на 6 см больше ширины. Найдите площадь прямоугольника, если его периметр равен 48 см.
1. Решите уравнение:
— 2х + 1 = — х — 6
2. Решите уравнение:
а) — ⅜ х = 24 б) 2(0,6х + 1,85) = 1,3х + 0,7
3. На одной полке на 15 книг большее, чем другой. Всего на двух полках 53 книги. Сколько книг на каждой полке?
4. При каком значении переменной значение выражения 4а + 8 на 3 больше значения выражения 3 – 2а ?
5. Ширина прямоугольника в 2 раза меньше длины. Найдите площадь прямоугольника, если его периметр равен 120 см.