Алгебра решение уравнений 2 степени

Уравнения второй степени: формулы, как их решать, примеры, упражнения

Уравнения второй степени: формулы, как их решать, примеры, упражнения — Наука

Содержание
  1. Содержание:
  2. Как решать квадратные уравнения?
  3. Разрешение по факторингу
  4. Графический метод
  5. Разрешение научного калькулятора
  6. Дискриминант квадратного уравнения
  7. Примеры простых квадратных уравнений
  8. Уравнение вида x 2 + mx + n = 0
  9. Неполное уравнение вида ax 2 + c = 0
  10. Неполное уравнение вида ax 2 + bx = 0
  11. Уравнения со знаменателем
  12. Уравнения высшего порядка, которые становятся квадратичными
  13. Простые решаемые упражнения
  14. — Упражнение 1
  15. — Упражнение 2.
  16. Решение для
  17. Решение б
  18. — Упражнение 3.
  19. Решение
  20. Ссылки
  21. Квадратное уравнение
  22. Что такое квадратное уравнение и как его решать?
  23. Формулы корней квадратного уравнения
  24. Примеры решения квадратных уравнений
  25. Примеры решения задач
  26. Решение задач с помощью систем уравнений второй степени. 9-й класс
  27. Ход урока
  28. I. Устный счет (8 мин)
  29. II. Изучение нового материала (10 мин)
  30. III. Закрепление нового материала (10 мин)
  31. IV. Итог урока.

Видео:Алгебра 9 класс (Урок№25 - Решение систем уравнений второй степени.)Скачать

Алгебра 9 класс (Урок№25 - Решение систем уравнений второй степени.)

Содержание:

В квадратные или квадратные уравнения и неизвестное имеют видтопор 2 + bx + c = 0.Где a ≠ 0, поскольку если бы он был равен 0, уравнение было бы преобразовано в линейное уравнение, а коэффициенты a, b и c — действительные числа.

Неизвестным, которое предстоит определить, является значение x. Например, уравнение 3x 2 — 5x + 2 = 0 — полное квадратное уравнение.

Существуют также варианты, известные как неполные уравнения второй степени, в которых отсутствуют какие-либо члены, кроме топор 2 . Вот некоторые примеры:

Аль-Джуарисми, известный арабский математик античности, описал в своих работах различные типы уравнений первой и второй степени, но только с положительными коэффициентами. Однако именно французский математик Франсуа Вите первым ввел буквы для обозначения величин и предложил решение с помощью формулы решительный:

Это общая формула, позволяющая решить квадратное уравнение, найти его корни или нули, даже если решения не являются действительными. Есть и другие способы их решения.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Как решать квадратные уравнения?

Уравнения второй степени могут быть решены с использованием формулы, приведенной выше, и есть также другие алгебраические процедуры, которые могут дать результаты в некоторых уравнениях.

Мы собираемся решить уравнение, предложенное в начале, с формулой, подходящим методом для любого квадратного уравнения с одной неизвестной:

Чтобы правильно использовать формулу, обратите внимание, что:

  • к коэффициент при члене с x 2
  • б коэффициент при линейном члене
  • c это самостоятельный термин.

Мы собираемся идентифицировать их с помощью того же уравнения:

Обратите внимание, что знак, который сопровождает коэффициент, необходимо учитывать. Теперь подставляем эти значения в формулу:

В числителе стоит символ «плюс — минус» ±, который указывает, что величина с корнем может приниматься как положительная, так и отрицательная. Квадратное уравнение имеет не более двух действительных решений, и этот символ учитывает это.

Позвоните x1 и х2 к этим двум решениям, то:

Икс2 = (5-1) / 6 = 4/6 = 2/3

Видео:Решение систем уравнений второй степени. Алгебра, 9 классСкачать

Решение систем уравнений второй степени. Алгебра, 9 класс

Разрешение по факторингу

Некоторые уравнения второй степени состоят из трехчленов, которые легко разложить на множители. Если так, то этот метод работает намного быстрее. Рассмотрим уравнение:

Икс 2 + 7x — 18 = 0

Факторизация имеет следующий вид:

Пустые места заполняются двумя числами, которые при умножении дают 18, а при вычитании — 7. Знаки в скобках выбираются по этому критерию:

-В первой скобке знак ставится между первым и вторым слагаемыми.

-А во второй скобке указано произведение увиденных знаков.

Что касается чисел, то в этом случае их легко подсчитать: это 9 и 2. Самый большой всегда помещается в первую из круглых скобок, например:

Икс 2 + 7x — 18 = (x + 9). (х — 2)

Читатель может проверить с помощью свойства дистрибутивности, что при построении произведения правой части равенства получается трехчлен левой. Теперь уравнение переписано:

Для выполнения равенства достаточно, чтобы один из двух множителей был равен нулю. Итак, в первом x должно быть выполнено1 = -9 или может оказаться, что второй множитель исчезнет, ​​и в этом случае x2 = 2. Это решения уравнения.

Видео:Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Графический метод

Корни или решения квадратного уравнения соответствуют пересечениям параболы y = топор 2 + bx + c с горизонтальной осью или осью x. Таким образом, при построении графика соответствующей параболы мы найдем решение квадратного уравнения, сделав y = 0.

Разрезы параболы с горизонтальной осью представляют собой решения уравнения топор 2 + bx + c = 0. Парабола, которая пересекает горизонтальную ось только в одной точке, имеет единственный корень, и он всегда будет вершиной параболы.

И наконец, если парабола не пересекает горизонтальную ось, соответствующее уравнениетопор 2 + bx + c = 0 ему не хватает реальных решений.

Построение графика вручную может быть трудоемким, но с использованием онлайн-программ для построения графиков это очень просто.

Видео:Решение систем уравнений второй степениСкачать

Решение систем уравнений второй степени

Разрешение научного калькулятора

Многие модели научных калькуляторов позволяют решать квадратные уравнения (а также уравнения других типов). Чтобы узнать это, вам нужно проверить меню.

После выбора варианта квадратного уравнения для одного неизвестного, меню просит ввести значения коэффициентов a, b и c и возвращает реальные решения, если они существуют. И есть также модели научных калькуляторов, которые работают с комплексными числами и предлагают эти решения.

Видео:Решение систем уравнений второй степени | Алгебра 9 класс #19 | ИнфоурокСкачать

Решение систем уравнений второй степени | Алгебра 9 класс #19 | Инфоурок

Дискриминант квадратного уравнения

Чтобы узнать, имеет ли уравнение действительные решения или нет и сколько их, без необходимости сначала решать, дискриминант Δ определяется как величина под квадратным корнем:

По знаку дискриминанта известно, сколько решений имеет уравнение по этому критерию:

-Два реальных решения: Δ> 0

-Реальное решение (или два одинаковых решения): Δ = 0

-Нет реального решения: Δ 2 + 12x + 64 = 0? Идентифицируем коэффициенты:

Δ = Ь 2 — 4ac = 12 2 — 4x (-7) x 64 = 144 + 1792 = 1936> 0

У уравнения есть два решения. Теперь посмотрим на этот другой:

Икс 2 — 6x + 9 = 0

Δ = (-6) 2 — 4 х 1 х 9 = 36 — 36 = 0

Это уравнение с одним решением или с двумя равными решениями.

Видео:Решение задач с помощью систем уравнений второй степени. Алгебра, 9 классСкачать

Решение задач с помощью систем уравнений второй степени. Алгебра, 9 класс

Примеры простых квадратных уравнений

Вначале мы сказали, что уравнения второй степени могут быть полными, если трехчлен есть, и неполными, если линейный член или независимый член отсутствует. Теперь давайте посмотрим на некоторые конкретные типы:

Видео:П.23 Некоторые приемы решения систем уравнений второй степени - Алгебра 9 класс МакарычевСкачать

П.23 Некоторые приемы решения систем уравнений второй степени - Алгебра 9 класс Макарычев

Уравнение вида x 2 + mx + n = 0

В этом случае a = 1 и формула сводится к:

Для этого типа уравнения и всегда в зависимости от оставшихся коэффициентов, метод факторизации может работать хорошо, как мы видели в предыдущем разделе.

Видео:Алгебра 9 класс (Урок№26 - Решение задач с помощью систем уравнений второй степени.)Скачать

Алгебра 9 класс (Урок№26 - Решение задач с помощью систем уравнений второй степени.)

Неполное уравнение вида ax 2 + c = 0

Решение, если оно существует, имеет вид:

Когда a или c имеют отрицательный знак, существует реальное решение, но если два члена имеют одинаковый знак, решение будет мнимым.

Видео:Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать

Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.

Неполное уравнение вида ax 2 + bx = 0

Это уравнение быстро решается с использованием факторизации, поскольку x является общим множителем в обоих терминах. Одно из решений всегда x = 0, другое находится так:

ах + Ь = 0 → х = -b / а

Давайте посмотрим на пример ниже. Решить:

Следовательно, x1 = 0 и x2 = 5

Видео:Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

Уравнения со знаменателем

Существуют различные уравнения рационального типа, в которых неизвестное может присутствовать как в числителе, так и в знаменателе или даже только в последнем, и которые с помощью алгебраических манипуляций сводятся к квадратным уравнениям.

Чтобы решить их, нужно умножить обе части равенства на наименьшее общее кратное или m.c.m знаменателей, а затем переставить члены. Например:

Видео:Приёмы решения систем уравнений второй степени с двумя переменными | Алгебра 9 класс #23 | ИнфоурокСкачать

Приёмы решения систем уравнений второй степени с двумя переменными | Алгебра 9 класс #23 | Инфоурок

Уравнения высшего порядка, которые становятся квадратичными

Существуют уравнения более высокого порядка, которые можно решить, как если бы они были квадратичными, с помощью замены переменной, например это уравнение двуквадратный:

Икс 4 — 10x 2 + 9 = 0

Пусть x 2 = u, тогда уравнение принимает вид:

или 2 — 10u + 9 = 0

Это уравнение быстро решается путем факторизации, нахождения двух чисел, которые умножаются на 9 и складываются с 10. Это числа 9 и 1:

Следовательно, решениями этого уравнения являются u1 = 9 и u2 = 1. Теперь возвращаем изменение:

Икс 2 = 9 → х1 = 3 и x2 = -3

Икс 2 = 1 → х1 = 1 и x2 = -1

Исходное уравнение имеет порядок 4, поэтому у него не менее 4 корней. В примере это -3, -1, 1 и 3.

Видео:Алгебра 9 класс (Урок№29 - Приёмы решения систем уравнений второй степени с двумя переменными.)Скачать

Алгебра 9 класс (Урок№29 - Приёмы решения систем уравнений второй степени с двумя переменными.)

Простые решаемые упражнения

Видео:СИСТЕМА УРАВНЕНИЙ второй степени 8 классСкачать

СИСТЕМА УРАВНЕНИЙ второй степени 8 класс

— Упражнение 1

Решите следующее квадратное уравнение с неизвестным в знаменателе:

Наименьшее общее кратное — это x (x + 2), и вы должны умножить все члены:

Эквивалентное выражение остается:

5х (х + 2) — х = х (х + 2)

5x 2 + 10х — х = х 2 + 2x

Все слагаемые переносим слева от равенства, а справа оставляем 0:

5x 2 + 10х — х — х 2 — 2x = 0

Мы учитываем, поскольку это неполное уравнение:

Одно из решений x = 0, другое:

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

— Упражнение 2.

Найдите решение квадратных уравнений:

а) -7x 2 + 12x + 64 = 0

б) х 2 — 6x + 9 = 0

Видео:Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать

Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетитор

Решение для

Из этого уравнения мы знаем определитель Δ, потому что он был вычислен в качестве примера ранее, поэтому мы собираемся воспользоваться им, выразив разрешающую формулу следующим образом:

Икс1 = (-12+44) / -14 = – (32/14) = – (16/7)

Икс2 = (-12 – 44) / -14 = 4

Видео:Решение систем уравнений второй степени. Видеоурок 16. Алгебра 9 классСкачать

Решение систем уравнений второй степени. Видеоурок 16. Алгебра 9 класс

Решение б

Квадратный трехчлен x 2 — 6x + 9 факторизуем, так как это трехчлен полного квадрата:

Икс 2 — 6х + 9 = (х-3) 2 = 0

Решение этого уравнения — x = 3.

Видео:Решение систем уравнений второй степени. Видеоурок 16. Алгебра 9 класс.Скачать

Решение систем уравнений второй степени. Видеоурок 16. Алгебра 9 класс.

— Упражнение 3.

Какое уравнение имеет решения 3 и 4?

Видео:Решение задач с помощью систем уравнений второй степени. Урок 17. Алгебра 9 классСкачать

Решение задач с помощью систем уравнений второй степени. Урок 17. Алгебра 9 класс

Решение

Применение распределительного свойства:

Икс 2 — 4х -3х + 12 = 0

Два центральных члена похожи и могут быть сокращены, в результате чего остается:

Икс 2 — 7х + 12 = 0

Видео:МЕТОД АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ II #математика #егэ #shorts #профильныйегэСкачать

МЕТОД АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ II #математика #егэ  #shorts #профильныйегэ

Ссылки

  1. Балдор. 1977. Элементарная алгебра. Венесуэльские культурные издания.
  2. Хоффман, Дж. Выбор тем по математике. Том 2.
  3. Хименес, Р. 2008. Алгебра. Прентис Холл.
  4. Стюарт, Дж. 2006. Precalculus: математика для исчисления. 5-е. Издание. Cengage Learning.
  5. Сапата, Ф. 4 способа решения квадратного уравнения. Получено с: francesphysics.blogspot.com.
  6. Зилл, Д. 1984. Алгебра и тригонометрия. Макгроу Хилл.

Как учиться, не скучая: 6 советов

Полихлорид алюминия: состав, свойства, получение, применение.

Квадратное уравнение

Что такое квадратное уравнение и как его решать?

Мы помним, что уравнение это равенство, содержащее в себе переменную, значение которой нужно найти.

Если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение называют уравнением второй степени или квадратным уравнением.

Например, следующие уравнения являются квадратными:

Алгебра решение уравнений 2 степени

Решим первое из этих уравнений, а именно x 2 − 4 = 0 .

Все тождественные преобразования, которые мы применяли при решении обычных линейных уравнений, можно применять и при решении квадратных.

Итак, в уравнении x 2 − 4 = 0 перенесем член −4 из левой части в правую часть, изменив знак:

Алгебра решение уравнений 2 степени

Получили уравнение x 2 = 4 . Ранее мы говорили, что уравнение считается решённым, если в одной части переменная записана в первой степени и её коэффициент равен единице, а другая часть равна какому-нибудь числу. То есть чтобы решить уравнение, его следует привести к виду x = a , где a — корень уравнения.

У нас переменная x всё ещё во второй степени, поэтому решение необходимо продолжить.

Чтобы решить уравнение x 2 = 4 , нужно ответить на вопрос при каком значении x левая часть станет равна 4 . Очевидно, что при значениях 2 и −2 . Чтобы вывести эти значения воспользуемся определением квадратного корня.

Число b называется квадратным корнем из числа a , если b 2 = a и обозначается как Алгебра решение уравнений 2 степени

У нас сейчас похожая ситуация. Ведь, что такое x 2 = 4 ? Переменная x в данном случае это квадратный корень из числа 4, поскольку вторая степень x прирáвнена к 4.

Тогда можно записать, что Алгебра решение уравнений 2 степени. Вычисление правой части позвóлит узнать чему равно x . Квадратный корень имеет два значения: положительное и отрицательное. Тогда получаем x = 2 и x = −2 .

Обычно записывают так: перед квадратным корнем ставят знак «плюс-минус», затем находят арифметическое значение квадратного корня. В нашем случае на этапе когда записано выражение Алгебра решение уравнений 2 степени, перед Алгебра решение уравнений 2 степениследует поставить знак ±

Алгебра решение уравнений 2 степени

Затем найти арифметическое значение квадратного корня Алгебра решение уравнений 2 степени

Алгебра решение уравнений 2 степени

Выражение x = ± 2 означает, что x = 2 и x = −2 . То есть корнями уравнения x 2 − 4 = 0 являются числа 2 и −2 . Запишем полностью решение данного уравнения:

Алгебра решение уравнений 2 степени

Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:

Алгебра решение уравнений 2 степени

В обоих случаях левая часть равна нулю. Значит уравнение решено верно.

Решим ещё одно уравнение. Пусть требуется решить квадратное уравнение (x + 2) 2 = 25

Для начала проанализируем данное уравнение. Левая часть возведенá в квадрат и она равна 25 . Какое число в квадрате равно 25 ? Очевидно, что числа 5 и −5

Алгебра решение уравнений 2 степени

То есть наша задача найти x, при которых выражение x + 2 будет равно числам 5 и −5 . Запишем эти два уравнения:

Алгебра решение уравнений 2 степени

Решим оба уравнения. Это обычные линейные уравнения, которые решаются легко:

Алгебра решение уравнений 2 степени

Значит корнями уравнения (x + 2) 2 = 25 являются числа 3 и −7 .

В данном примере как и в прошлом можно использовать определение квадратного корня. Так, в уравнения (x + 2) 2 = 25 выражение (x + 2) представляет собой квадратный корень из числа 25 . Поэтому можно cначала записать, что Алгебра решение уравнений 2 степени.

Тогда правая часть станет равна ±5 . Полýчится два уравнения: x + 2 = 5 и x + 2 = −5. Решив по отдельности каждое из этих уравнений мы придём к корням 3 и −7 .

Запишем полностью решение уравнения (x + 2) 2 = 25

Алгебра решение уравнений 2 степени

Из рассмотренных примеров видно, что квадратное уравнение имеет два корня. Чтобы не забыть о найденных корнях, переменную x можно подписывать нижними индексами. Так, корень 3 можно обозначить через x1 , а корень −7 через x2

Алгебра решение уравнений 2 степени

В предыдущем примере тоже можно было сделать так. Уравнение x 2 − 4 = 0 имело корни 2 и −2 . Эти корни можно было обозначить как x1 = 2 и x2 = −2.

Бывает и так, что квадратное уравнение имеет только один корень или вовсе не имеет корней. Такие уравнения мы рассмотрим позже.

Сделаем проверку для уравнения (x + 2) 2 = 25 . Подставим в него корни 3 и −7 . Если при значениях 3 и −7 левая часть равна 25 , то это будет означать, что уравнение решено верно:

Алгебра решение уравнений 2 степени

В обоих случаях левая часть равна 25 . Значит уравнение решено верно.

Квадратное уравнение бывает дано в разном виде. Наиболее его распространенная форма выглядит так:

ax 2 + bx + c = 0 ,
где a, b, c — некоторые числа, x — неизвестное.

Это так называемый общий вид квадратного уравнения. В таком уравнении все члены собраны в общем месте (в одной части), а другая часть равна нулю. По другому такой вид уравнения называют нормальным видом квадратного уравнения.

Пусть дано уравнение 3x 2 + 2x = 16 . В нём переменная x возведенá во вторую степень, значит уравнение является квадратным. Приведём данное уравнение к общему виду.

Итак, нам нужно получить уравнение, которое будет похоже на уравнение ax 2 + bx + c = 0 . Для этого в уравнении 3x 2 + 2x = 16 перенесем 16 из правой части в левую часть, изменив знак:

Получили уравнение 3x 2 + 2x − 16 = 0 . В этом уравнении a = 3 , b = 2 , c = −16 .

В квадратном уравнении вида ax 2 + bx + c = 0 числа a , b и c имеют собственные названия. Так, число a называют первым или старшим коэффициентом; число b называют вторым коэффициентом; число c называют свободным членом.

В нашем случае для уравнения 3x 2 + 2x − 16 = 0 первым или старшим коэффициентом является 3 ; вторым коэффициентом является число 2 ; свободным членом является число −16 . Есть ещё другое общее название для чисел a, b и cпараметры.

Так, в уравнении 3x 2 + 2x − 16 = 0 параметрами являются числа 3 , 2 и −16 .

В квадратном уравнении желательно упорядочивать члены так, чтобы они располагались в таком же порядке как у нормального вида квадратного уравнения.

Например, если дано уравнение −5 + 4x 2 + x = 0 , то его желательно записать в нормальном виде, то есть в виде ax 2 + bx + c = 0.

В уравнении −5 + 4x 2 + x = 0 видно, что свободным членом является −5 , он должен располагаться в конце левой части. Член 4x 2 содержит старший коэффициент, он должен располагаться первым. Член x соответственно будет располагаться вторым:

Алгебра решение уравнений 2 степени

Квадратное уравнение в зависимости от случая может принимать различный вид. Всё зависит от того, чему равны значения a , b и с .

Если коэффициенты a , b и c не равны нулю, то квадратное уравнение называют полным. Например, полным является квадратное уравнение 2x 2 + 6x − 8 = 0 .

Если какой-то из коэффициентов равен нулю (то есть отсутствует), то уравнение значительно уменьшается и принимает более простой вид. Такое квадратное уравнение называют неполным. Например, неполным является квадратное уравнение 2x 2 + 6x = 0, в нём имеются коэффициенты a и b (числа 2 и 6 ), но отсутствует свободный член c.

Рассмотрим каждый из этих видов уравнений, и для каждого из этих видов определим свой способ решения.

Пусть дано квадратное уравнение 2x 2 + 6x − 8 = 0 . В этом уравнении a = 2 , b = 6 , c = −8 . Если b сделать равным нулю, то уравнение примет вид:

Алгебра решение уравнений 2 степени

Получилось уравнение 2x 2 − 8 = 0 . Чтобы его решить перенесем −8 в правую часть, изменив знак:

Для дальнейшего упрощения уравнения воспользуемся ранее изученными тождественными преобразованиями. В данном случае можно разделить обе части на 2

Алгебра решение уравнений 2 степени

У нас получилось уравнение, которое мы решали в начале данного урока. Чтобы решить уравнение x 2 = 4 , следует воспользоваться определением квадратного корня. Если x 2 = 4 , то Алгебра решение уравнений 2 степени. Отсюда x = 2 и x = −2 .

Значит корнями уравнения 2x 2 − 8 = 0 являются числа 2 и −2 . Запишем полностью решение данного уравнения:

Алгебра решение уравнений 2 степени

Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:

Алгебра решение уравнений 2 степени

В обоих случаях левая часть равна нулю, значит уравнение решено верно.

Уравнение, которое мы сейчас решили, является неполным квадратным уравнением. Название говорит само за себя. Если полное квадратное уравнение выглядит как ax 2 + bx + c = 0 , то сделав коэффициент b нулём получится неполное квадратное уравнение ax 2 + c = 0 .

У нас тоже сначала было полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Но мы сделали коэффициент b нулем, то есть вместо числа 6 поставили 0 . В результате уравнение обратилось в неполное квадратное уравнение 2x 2 − 4 = 0 .

В начале данного урока мы решили квадратное уравнение x 2 − 4 = 0 . Оно тоже является уравнением вида ax 2 + c = 0 , то есть неполным. В нем a = 1 , b = 0 , с = −4 .

Также, неполным будет квадратное уравнение, если коэффициент c равен нулю.

Рассмотрим полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Сделаем коэффициент c нулём. То есть вместо числа 4 поставим 0

Алгебра решение уравнений 2 степени

Получили квадратное уравнение 2x 2 + 6x=0 , которое является неполным. Чтобы решить такое уравнение, переменную x выносят за скобки:

Алгебра решение уравнений 2 степени

Получилось уравнение x(2x + 6) = 0 в котором нужно найти x, при котором левая часть станет равна нулю. Заметим, что в этом уравнении выражения x и (2x + 6) являются сомножителями. Одно из свойств умножения говорит, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

В нашем случае равенство будет достигаться, если x будет равно нулю или (2x + 6) будет равно нулю. Так и запишем для начала:

Алгебра решение уравнений 2 степени

Получилось два уравнения: x = 0 и 2x + 6 = 0 . Первое уравнение решать не нужно — оно уже решено. То есть первый корень равен нулю.

Чтобы найти второй корень, решим уравнение 2x + 6 = 0 . Это обычное линейное уравнение, которое решается легко:

Алгебра решение уравнений 2 степени

Видим, что второй корень равен −3.

Значит корнями уравнения 2x 2 + 6x = 0 являются числа 0 и −3 . Запишем полностью решение данного уравнения:

Алгебра решение уравнений 2 степени

Выполним проверку. Подставим корни 0 и −3 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 0 и −3 левая часть равна нулю, то это будет означать, что уравнение решено верно:

Алгебра решение уравнений 2 степени

Следующий случай это когда числа b и с равны нулю. Рассмотрим полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Сделаем коэффициенты b и c нулями. Тогда уравнение примет вид:

Алгебра решение уравнений 2 степени

Получили уравнение 2x 2 = 0 . Левая часть является произведением, а правая часть равна нулю. Произведение равно нулю, если хотя бы один из сомножителей равен нулю. Очевидно, что x = 0 . Действительно, 2 × 0 2 = 0 . Отсюда, 0 = 0 . При других значениях x равенства достигаться не будет.

Проще говоря, если в квадратном уравнении вида ax 2 + bx + c = 0 числа b и с равны нулю, то корень такого уравнения равен нулю.

Отметим, что когда употребляются словосочетания « b равно нулю » или « с равно нулю «, то подразумевается, что параметры b или c вовсе отсутствуют в уравнении.

Например, если дано уравнение 2x 2 − 32 = 0 , то мы говорим, что b = 0 . Потому что если сравнить с полным уравнением ax 2 + bx + c = 0 , то можно заметить, что в уравнении 2x 2 − 32 = 0 присутствует старший коэффициент a , равный 2; присутствует свободный член −32 ; но отсутствует коэффициент b .

Наконец, рассмотрим полное квадратное уравнение ax 2 + bx + c = 0 . В качестве примера решим квадратное уравнение x 2 − 2x + 1 = 0 .

Итак, требуется найти x , при котором левая часть станет равна нулю. Воспользуемся изученными ранее тождественными преобразованиями.

Прежде всего заметим, что левая часть уравнения представляет собой квадрат разности двух выражений. Если мы вспомним как раскладывать многочлен на множители, то получим в левой части (x − 1) 2 .

Алгебра решение уравнений 2 степени

Рассуждаем дальше. Левая часть возведенá в квадрат и она равна нулю. Какое число в квадрате равно нулю? Очевидно, что только 0 . Поэтому наша задача найти x , при котором выражение x − 1 равно нулю. Решив простейшее уравнение x − 1 = 0 , можно узнать чему равно x

Алгебра решение уравнений 2 степени

Этот же результат можно получить, если воспользоваться квадратным корнем. В уравнении (x − 1) 2 = 0 выражение (x − 1) представляет собой квадратный корень из нуля. Тогда можно записать, что Алгебра решение уравнений 2 степени. В этом примере записывать перед корнем знак ± не нужно, поскольку корень из нуля имеет только одно значение — ноль. Тогда получается x − 1 = 0 . Отсюда x = 1 .

Значит корнем уравнения x 2 − 2x + 1 = 0 является единица. Других корней у данного уравнения нет. В данном случае мы решили квадратное уравнение, имеющее только один корень. Такое тоже бывает.

Не всегда бывают даны простые уравнения. Рассмотрим например уравнение x 2 + 2x − 3 = 0 .

В данном случае левая часть уже не является квадратом суммы или разности. Поэтому нужно искать другие пути решения.

Заметим, что левая часть уравнения представляет собой квадратный трехчлен. Тогда можно попробовать выделить полный квадрат из этого трёхчлена и посмотреть что это нам даст.

Выделим полный квадрат из квадратного трёхчлена, располагающего в левой части уравнения:

Алгебра решение уравнений 2 степени

В получившемся уравнении перенесем −4 в правую часть, изменив знак:

Алгебра решение уравнений 2 степени

Теперь воспользуемся квадратным корнем. В уравнении (x + 1) 2 = 4 выражение (x + 1) представляет собой квадратный корень из числа 4 . Тогда можно записать, что Алгебра решение уравнений 2 степени. Вычисление правой части даст выражение x + 1 = ±2 . Отсюда полýчится два уравнения: x + 1 = 2 и x + 1 = −2 , корнями которых являются числа 1 и −3

Алгебра решение уравнений 2 степени

Значит корнями уравнения x 2 + 2x − 3 = 0 являются числа 1 и −3 .

Алгебра решение уравнений 2 степени

Пример 3. Решить уравнение x 2 − 6x + 9 = 0 , выделив полный квадрат.

Выделим полный квадрат из левой части:

Алгебра решение уравнений 2 степени

Далее воспользуемся квадратным корнем и узнáем чему равно x

Алгебра решение уравнений 2 степени

Значит корнем уравнения x 2 − 6x + 9 = 0 является 3. Выполним проверку:

Алгебра решение уравнений 2 степени

Пример 4. Решить квадратное уравнение 4x 2 + 28x − 72 = 0 , выделив полный квадрат:

Выделим полный квадрат из левой части:

Алгебра решение уравнений 2 степени

Перенесём −121 из левой части в правую часть, изменив знак:

Алгебра решение уравнений 2 степени

Воспользуемся квадратным корнем:

Алгебра решение уравнений 2 степени

Получили два простых уравнения: 2x + 7 = 11 и 2x + 7 = −11. Решим их:

Алгебра решение уравнений 2 степени

Пример 5. Решить уравнение 2x 2 + 3x − 27 = 0

Это уравнение немного посложнее. Когда мы выделяем полный квадрат, первый член квадратного трёхчлена мы представляем в виде квадрата какого-нибудь выражения.

Так, в прошлом примере первым членом уравнения был 4x 2 . Его можно было представить в виде квадрата выражения 2x , то есть (2x) 2 = 2 2 x 2 = 4x 2 . Чтобы убедиться что это правильно, можно извлечь квадратный корень из выражения 4x 2 . Это квадратный корень из произведения — он равен произведению корней:

Алгебра решение уравнений 2 степени

В уравнении 2x 2 + 3x − 27 = 0 первый член это 2x 2 . Его нельзя представить в виде квадрата какого-нибудь выражения. Потому что нет числá, квадрат которого равен 2. Если бы такое число было, то этим числом был бы квадратный корень из числа 2. Но квадратный корень из числа 2 извлекается только приближённо. А приближённое значение не годится для представления числá 2 в виде квадрата.

Если обе части исходного уравнения умножить или разделить на одно и то же число, то полýчится уравнение равносильное исходному. Это правило сохраняется и для квадратного уравнения.

Тогда можно разделить обе части нашего уравнения на 2 . Это позвóлит избавиться от двойки перед x 2 что впоследствии даст нам возможность выделить полный квадрат:

Алгебра решение уравнений 2 степени

Перепишем левую часть в виде трёх дробей со знаменателем 2

Алгебра решение уравнений 2 степени

Сократим первую дробь на 2. Остальные члены левой части перепишем без изменений. Правая часть по-прежнему станет равна нулю:

Алгебра решение уравнений 2 степени

Выделим полный квадрат.

Алгебра решение уравнений 2 степени

При представлении члена Алгебра решение уравнений 2 степенив виде удвоенного произведения, появление множителя 2 привело бы к тому, что этот множитель и знаменатель дроби Алгебра решение уравнений 2 степенисократились бы. Чтобы этого не произошло, удвоенное произведение было домножено на Алгебра решение уравнений 2 степени. При выделении полного квадрата всегда нужно стараться сделать так, чтобы значение изначального выражения не изменилось.

Свернём полученный полный квадрат:

Алгебра решение уравнений 2 степени

Приведём подобные члены:

Алгебра решение уравнений 2 степени

Перенесём дробь Алгебра решение уравнений 2 степенив правую часть, изменив знак:

Алгебра решение уравнений 2 степени

Воспользуемся квадратным корнем. Выражение Алгебра решение уравнений 2 степенипредставляет собой квадратный корень из числа Алгебра решение уравнений 2 степени

Алгебра решение уравнений 2 степени

Для вычисления правой части воспользуемся правилом извлечения квадратного корня из дроби:

Алгебра решение уравнений 2 степени

Тогда наше уравнение примет вид:

Алгебра решение уравнений 2 степени

Полýчим два уравнения:

Алгебра решение уравнений 2 степени

Алгебра решение уравнений 2 степени

Значит корнями уравнения 2x 2 + 3x − 27 = 0 являются числа 3 и Алгебра решение уравнений 2 степени.

Корень Алгебра решение уравнений 2 степениудобнее оставить в таком виде, не выполняя деления числителя на знаменатель. Так проще будет выполнять проверку.

Выполним проверку. Подставим найденные корни в исходное уравнение:

Алгебра решение уравнений 2 степени

В обоих случаях левая часть равна нулю, значит уравнение 2x 2 + 3x − 27 = 0 решено верно.

Решая уравнение 2x 2 + 3x − 27 = 0 , в самом начале мы разделили обе его части на 2 . В результате получили квадратное уравнение, в котором коэффициент перед x 2 равен единице:

Алгебра решение уравнений 2 степени

Такой вид квадратного уравнения называют приведённым квадратным уравнением.

Любое квадратное уравнение вида ax 2 + bx + c = 0 можно сделать приведённым. Для этого нужно разделить обе его части на коэффициент, который располагается перед x². В данном случае обе части уравнения ax 2 + bx + c = 0 нужно разделить на a

Алгебра решение уравнений 2 степени

Пример 6. Решить квадратное уравнение 2x 2 + x + 2 = 0

Сделаем данное уравнение приведённым:

Алгебра решение уравнений 2 степени

Выделим полный квадрат:

Алгебра решение уравнений 2 степени

Получили уравнение Алгебра решение уравнений 2 степени, в котором квадрат выражения Алгебра решение уравнений 2 степениравен отрицательному числу Алгебра решение уравнений 2 степени. Такого быть не может, поскольку квадрат любого числа или выражения всегда положителен.

Следовательно, нет такого значения x , при котором левая часть стала бы равна Алгебра решение уравнений 2 степени. Значит уравнение Алгебра решение уравнений 2 степенине имеет корней.

А поскольку уравнение Алгебра решение уравнений 2 степениравносильно исходному уравнению 2x 2 + x + 2 = 0 , то и оно (исходное уравнение) не имеет корней.

Формулы корней квадратного уравнения

Выделять полный квадрат для каждого решаемого квадратного уравнения не очень удобно.

Можно ли создать универсальные формулы для решения квадратных уравнений? Оказывается можно. Сейчас мы этим и займёмся.

Взяв за основу буквенное уравнение ax 2 + bx + c = 0 , и выполнив некоторые тождественные преобразования, мы сможем получить формулы для вывода корней квадратного уравнения ax 2 + bx + c = 0 . В эти формулы можно будет подставлять коэффициенты a , b , с и получать готовые решения.

Итак, выделим полный квадрат из левой части уравнения ax 2 + bx + c = 0. Сначала сделаем данное уравнение приведённым. Разделим обе его части на a

Алгебра решение уравнений 2 степени

Теперь в получившемся уравнении выделим полный квадрат:

Алгебра решение уравнений 2 степени

Перенесем члены Алгебра решение уравнений 2 степении Алгебра решение уравнений 2 степенив правую часть, изменив знак:

Алгебра решение уравнений 2 степени

Приведём правую часть к общему знаменателю. Дроби, состоящие из букв, привóдят к общему знаменателю методом «крест-нáкрест». То есть знаменатель первой дроби станóвится дополнительным множителем второй дроби, а знаменатель второй дроби станóвится дополнительным множителем первой дроби:

Алгебра решение уравнений 2 степени

В числителе правой части вынесем за скобки a

Алгебра решение уравнений 2 степени

Сократим правую часть на a

Алгебра решение уравнений 2 степени

Поскольку все преобразования были тождественными, то получившееся уравнение Алгебра решение уравнений 2 степениимеет те же корни, что и исходное уравнение ax 2 + bx + c = 0.

Уравнение Алгебра решение уравнений 2 степенибудет иметь корни только тогда, если правая часть больше нуля или равна нулю. Это потому что в левой части выполнено возведéние в квадрат, а квадрат любого числа положителен или равен нулю (если в этот квадрат возвóдится ноль). А чему будет равна правая часть зависит от того, что будет подставлено вместо переменных a , b и c .

Поскольку при любом a не рáвным нулю, знаменатель правой части уравнения Алгебра решение уравнений 2 степенивсегда будет положительным, то знак дроби Алгебра решение уравнений 2 степенибудет зависеть от знака её числителя, то есть от выражения b 2 − 4ac .

Выражение b 2 − 4ac называют дискриминантом квадратного уравнения. Дискриминант это латинское слово, означающее различитель . Дискриминант квадратного уравнения обозначается через букву D

Дискриминант позволяет заранее узнать имеет ли уравнение корни или нет. Так, в предыдущем задании мы долго решали уравнение 2x 2 + x + 2 = 0 и оказалось, что оно не имеет корней. Дискриминант же позволил бы нам заранее узнать, что корней нет. В уравнении 2x 2 + x + 2 = 0 коэффициенты a , b и c равны 2, 1 и 2 соответственно. Подставим их в формулу D = b 2 −4ac

D = b 2 − 4ac = 1 2 − 4 × 2 × 2 = 1 − 16 = −15.

Видим, что D (оно же b 2 − 4ac ) является отрицательным числом. Тогда нет смысла решать уравнение 2x 2 + x + 2 = 0, выделяя в нём полный квадрат, потому что когда мы дойдем до уравнения вида Алгебра решение уравнений 2 степени, окажется что правая часть станет меньше нуля (из-за отрицательного дискриминанта). А квадрат числа не может быть отрицательным. Следовательно, корней у данного уравнения не будет.

Станóвится понятно почему древние люди считали выражение b 2 − 4ac различителем. Это выражение подобно индикатору позволяет различить уравнение имеющего корни от уравнения, не имеющего корней.

Итак, D равно b 2 − 4ac . Подставим в уравнении Алгебра решение уравнений 2 степенивместо выражения b 2 − 4ac букву D

Алгебра решение уравнений 2 степени

Если дискриминант исходного уравнения окажется меньше нуля (D , то уравнение примет вид:

Алгебра решение уравнений 2 степени

В этом случае говорят, что у исходного уравнения корней нет, поскольку квадрат любого числа не должен быть отрицательным.

Если дискриминант исходного уравнения окажется больше нуля (D > 0) , то уравнение примет вид:

Алгебра решение уравнений 2 степени

В этом случае уравнение будет иметь два корня. Для их вывода воспользуемся квадратным корнем:

Алгебра решение уравнений 2 степени

Получили уравнение Алгебра решение уравнений 2 степени. Из него полýчится два уравнения: Алгебра решение уравнений 2 степении Алгебра решение уравнений 2 степени. Выразим x в каждом из уравнений:

Алгебра решение уравнений 2 степени

Получившиеся два равенства это и есть универсальные формулы для решения квадратного уравнения ax 2 + bx + c = 0. Их называют формулами корней квадратного уравнения .

Чаще всего эти формулы обозначаются как x1 и x2 . То есть для вычисления первого корня используется формула c индексом 1; для вывода второго корня — формула с индексом 2. Обозначим свои формулы так же:

Алгебра решение уравнений 2 степени

Очерёдность применения формул не важнá.

Решим например квадратное уравнение x 2 + 2x − 8 = 0 с помощью формул корней квадратного уравнения. Коэффициенты данного квадратного уравнения это числа 1 , 2 и −8 . То есть, a = 1 , b = 2 , c = −8 .

Прежде чем использовать формулы корней квадратного уравнения, нужно найти дискриминант этого уравнения.

Найдём дискриминант квадратного уравнения. Для этого воспользуемся формулой D = b 2 4 ac . Вместо переменных a, b и c у нас будут коэффициенты уравнения x 2 + 2x − 8 = 0

D = b 2 4ac = 2 2 − 4 × 1 × (−8) = 4 + 32 = 36

Дискриминант больше нуля. Значит уравнение имеет два корня. Теперь можно воспользоваться формулами корней квадратного уравнения:

Алгебра решение уравнений 2 степени

Значит корнями уравнения x 2 + 2x − 8 = 0 являются числа 2 и −4 . Проверкой убеждаемся, что корни найдены верно:

Алгебра решение уравнений 2 степени

Наконец, рассмотрим случай когда дискриминант квадратного уравнения равен нулю. Вернёмся к уравнению Алгебра решение уравнений 2 степени. Если дискриминант равен нулю, то правая часть уравнения примет вид:

Алгебра решение уравнений 2 степени

И в этом случае квадратное уравнение будет иметь только один корень. Воспользуемся квадратным корнем:

Алгебра решение уравнений 2 степени

Далее выражаем x

Алгебра решение уравнений 2 степени

Это ещё одна формула для вывода корня квадратного корня. Рассмотрим её применение. Ранее мы решили уравнение x 2 − 6x + 9 = 0 , имеющее один корень 3. Решили мы его методом выделения полного квадрата. Теперь попробуем решить с помощью формул.

Найдём дискриминант квадратного уравнения. В этом уравнении a = 1 , b = −6 , c = 9 . Тогда по формуле дискриминанта имеем:

D = b 2 4ac = (−6) 2 − 4 × 1 × 9 = 36 − 36 = 0

Дискриминант равен нулю (D = 0) . Это означает, что уравнение имеет только один корень, и вычисляется он по формуле Алгебра решение уравнений 2 степени

Алгебра решение уравнений 2 степени

Значит корнем уравнения x 2 − 6x + 9 = 0 является число 3.

Для квадратного уравнения, имеющего один корень также применимы формулы Алгебра решение уравнений 2 степении Алгебра решение уравнений 2 степени. Но применение каждой из них будет давать один и тот же результат.

Применим эти две формулы для предыдущего уравнения. В обоих случаях получим один и тот же ответ 3

Алгебра решение уравнений 2 степени

Если квадратное уравнение имеет только один корень, то желательно применять формулу Алгебра решение уравнений 2 степени, а не формулы Алгебра решение уравнений 2 степении Алгебра решение уравнений 2 степени. Это позволяет сэкономить время и место.

Пример 3. Решить уравнение 5x 2 − 6x + 1 = 0

Найдём дискриминант квадратного уравнения:

Алгебра решение уравнений 2 степени

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Алгебра решение уравнений 2 степени

Значит корнями уравнения 5x 2 − 6x + 1 = 0 являются числа 1 и Алгебра решение уравнений 2 степени.

Ответ: 1; Алгебра решение уравнений 2 степени.

Пример 4. Решить уравнение x 2 + 4x + 4 = 0

Найдём дискриминант квадратного уравнения:

Алгебра решение уравнений 2 степени

Дискриминант равен нулю. Значит уравнение имеет только один корень. Он вычисляется по формуле Алгебра решение уравнений 2 степени

Алгебра решение уравнений 2 степени

Значит корнем уравнения x 2 + 4x + 4 = 0 является число −2 .

Пример 5. Решить уравнение 3x 2 + 2x + 4 = 0

Найдём дискриминант квадратного уравнения:

Алгебра решение уравнений 2 степени

Дискриминант меньше нуля. Значит корней у данного уравнения нет.

Ответ: корней нет.

Пример 6. Решить уравнение (x + 4) 2 = 3x + 40

Приведём данное уравнение к нормальному виду. В левой части располагается квадрата суммы двух выражений. Раскрóем его:

Алгебра решение уравнений 2 степени

Перенесём все члены из правой части в левую часть, изменив их знаки. В правой части останется ноль:

Алгебра решение уравнений 2 степени

Приведём подобные члены в левой части:

Алгебра решение уравнений 2 степени

В получившемся уравнении найдём дискриминант:

Алгебра решение уравнений 2 степени

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Алгебра решение уравнений 2 степени

Значит корнями уравнения (x + 4) 2 = 3x + 40 являются числа 3 и −8 .

Ответ: 3 ; −8.

Пример 7. Решить уравнение Алгебра решение уравнений 2 степени

Умнóжим обе части данного уравнения на 2 . Это позвóлит нам избавиться от дроби в левой части:

Алгебра решение уравнений 2 степени

В получившемся уравнении перенесём 22 из правой части в левую часть, изменив знак. В правой части останется 0

Алгебра решение уравнений 2 степени

Приведём подобные члены в левой части:

Алгебра решение уравнений 2 степени

В получившемся уравнении найдём дискриминант:

Алгебра решение уравнений 2 степени

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Алгебра решение уравнений 2 степени

Значит корнями уравнения Алгебра решение уравнений 2 степениявляются числа 23 и −1 .

Ответ: 23; −1.

Пример 8. Решить уравнение Алгебра решение уравнений 2 степени

Умнóжим обе части на наименьшее общее кратное знаменателей обеих дробей. Это позвóлит избавиться от дробей в обеих частях. Наименьшее общее кратное чисел 2 и 3 это число 6 . Тогда получим:

Алгебра решение уравнений 2 степени

В получившемся уравнении раскроем скобки в обеих частях:

Алгебра решение уравнений 2 степени

Теперь перенесём все члены из правой части в левую часть, изменив у них знаки. В правой части останется 0

Алгебра решение уравнений 2 степени

Приведём подобные члены в левой части:

Алгебра решение уравнений 2 степени

В получившемся уравнении найдём дискриминант:

Алгебра решение уравнений 2 степени

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Алгебра решение уравнений 2 степени

Значит корнями уравнения Алгебра решение уравнений 2 степениявляются числа Алгебра решение уравнений 2 степении 2.

Примеры решения квадратных уравнений

Пример 1. Решить уравнение x 2 = 81

Это простейшее квадратное уравнение, в котором надо определить число, квадрат которого равен 81. Таковыми являются числа 9 и −9. Воспользуемся квадратным корнем для их вывода:

Алгебра решение уравнений 2 степени

Ответ: 9, −9 .

Пример 2. Решить уравнение x 2 − 9 = 0

Это неполное квадратное уравнение. Для его решения нужно перенести член −9 в правую часть, изменив знак. Тогда получим:

Алгебра решение уравнений 2 степени

Ответ: 3, −3.

Пример 3. Решить уравнение x 2 − 9x = 0

Это неполное квадратное уравнение. Для его решения сначала нужно вынести x за скобки:

Алгебра решение уравнений 2 степени

Левая часть уравнения является произведением. Произведение равно нулю, если хотя один из сомножителей равен нулю.

Левая часть станет равна нулю, если отдельно x равно нулю, или если выражение x − 9 равно нулю. Получится два уравнения, одно из которых уже решено:

Алгебра решение уравнений 2 степени

Ответ: 0, 9 .

Пример 4. Решить уравнение x 2 + 4x − 5 = 0

Это полное квадратное уравнение. Его можно решить методом выделения полного квадрата или с помощью формул корней квадратного уравнения.

Решим данное уравнение с помощью формул. Сначала найдём дискриминант:

D = b 2 − 4ac = 4 2 − 4 × 1 × (−5) = 16 + 20 = 36

Дискриминант больше нуля. Значит уравнение имеет два корня. Вычислим их:

Алгебра решение уравнений 2 степени

Ответ: 1, −5 .

Пример 5. Решить уравнение Алгебра решение уравнений 2 степени

Умнóжим обе части на наименьшее общее кратное чисел 5, 3 и 6. Это позвóлит избавиться от дробей в обеих частях:

Алгебра решение уравнений 2 степени

В получившемся уравнении перенесём все члены из правой части в левую часть, изменив знак. В правой части останется ноль:

Алгебра решение уравнений 2 степени

Приведём подобные члены:

Алгебра решение уравнений 2 степени

Решим получившееся уравнение с помощью формул:

Алгебра решение уравнений 2 степени

Ответ: 5 , Алгебра решение уравнений 2 степени.

Пример 6. Решить уравнение x 2 = 6

В данном примере как и в первом нужно воспользоваться квадратным корнем:

Алгебра решение уравнений 2 степени

Однако, квадратный корень из числа 6 не извлекается. Он извлекается только приближённо. Корень можно извлечь с определённой точностью. Извлечём его с точностью до сотых:

Алгебра решение уравнений 2 степени

Но чаще всего корень оставляют в виде радикала:

Алгебра решение уравнений 2 степени

Ответ: Алгебра решение уравнений 2 степени

Пример 7. Решить уравнение (2x + 3) 2 + (x − 2) 2 = 13

Раскроем скобки в левой части уравнения:

Алгебра решение уравнений 2 степени

В получившемся уравнении перенесём 13 из правой части в левую часть, изменив знак. Затем приведём подобные члены:

Алгебра решение уравнений 2 степени

Получили неполное квадратное уравнение. Решим его:

Алгебра решение уравнений 2 степени

Ответ: 0 , −1,6 .

Пример 8. Решить уравнение (5 + 7x)(4 − 3x) = 0

Данное уравнение можно решить двумя способами. Рассмотрим каждый из них.

Первый способ. Раскрыть скобки и получить нормальный вид квадратного уравнения.

Алгебра решение уравнений 2 степени

Приведём подобные члены:

Алгебра решение уравнений 2 степени

Перепишем получившееся уравнение так, чтобы член со старшим коэффициентом располагался первым, член со вторым коэффициентом — вторым, а свободный член располагался третьим:

Алгебра решение уравнений 2 степени

Чтобы старший член стал положительным, умнóжим обе части уравнения на −1. Тогда все члены уравнения поменяют свои знаки на противоположные:

Алгебра решение уравнений 2 степени

Решим получившееся уравнение с помощью формул корней квадратного уравнения:

Алгебра решение уравнений 2 степени

Второй способ. Найти значения x , при которых сомножители левой части уравнения равны нулю. Этот способ удобнее и намного короче.

Произведение равно нулю, если хотя бы один из сомножителей равен нулю. В данном случае равенство в уравнении (5 + 7x)(4 − 3x) = 0 будет достигаться, если выражение (5 + 7x) равно нулю, или же выражение (4 − 3x) равно нулю. Наша задача выяснить при каких x это происходит:

Алгебра решение уравнений 2 степени

Примеры решения задач

Предстáвим, что возникла необходимость построить небольшую комнату, площадь которой 8 м 2 . При этом длина комнаты должна быть в два раза больше её ширины. Как определить длину и ширину такой комнаты?

Сделаем примерный рисунок этой комнаты, который иллюстрирует вид сверху:

Алгебра решение уравнений 2 степени

Обозначим ширину комнаты через x . А длину комнаты через 2x , потому что по условию задачи длина должна быть в два раза больше ширины. Множитель 2 и выполнит это требование:

Алгебра решение уравнений 2 степени

Поверхность комнаты (её пол) является прямоугольником. Для вычисления площади прямоугольника, нужно длину данного прямоугольника умножить на его ширину. Сделаем это:

По условию задачи площадь должна быть 8 м 2 . Значит выражение 2x × x следует приравнять к 8

Получилось уравнение. Если решить его, то можно найти длину и ширину комнаты.

Первое что можно сделать это выполнить умножение в левой части уравнения:

В результате этого преобразования переменная x перешла во вторую степень. А мы говорили, что если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение является уравнением второй степени или квадратным уравнением.

Для решения нашего квадратного уравнения воспользуемся изученными ранее тождественными преобразованиями. В данном случае можно разделить обе части на 2

Алгебра решение уравнений 2 степени

Теперь воспользуемся квадратным корнем. Если x 2 = 4 , то Алгебра решение уравнений 2 степени. Отсюда x = 2 и x = −2 .

Через x была обозначена ширина комнаты. Ширина не должна быть отрицательной, поэтому в расчёт берём только значение 2 . Такое часто бывает при решении задачи, в которых применяется квадратное уравнение. В ответе получаются два корня, но условию задачи удовлетворяет только один из них.

А длина была обозначена через 2x . Значение x теперь известно, подставим его в выражение 2x и вычислим длину:

Значит длина равна 4 м , а ширина 2 м . Это решение удовлетворяет условию задачи, поскольку площадь комнаты равна 8 м 2

Ответ: длина комнаты составляет 4 м , а ширина 2 м .

Пример 2. Огородный участок, имеющий форму прямоугольника, одна сторона которого на 10 м больше другой, требуется обнести изгородью. Определить длину изгороди, если известно, что площадь участка равна 1200 м 2

Решение

Длина прямоугольника, как правило, больше его ширины. Пусть ширина участка x метров, а длина (x + 10) метров. Площадь участка составляет 1200 м 2 . Умножим длину участка на его ширину и приравняем к 1200 , получим уравнение:

Решим данное уравнение. Для начала раскроем скобки в левой части:

Алгебра решение уравнений 2 степени

Перенесём 1200 из правой части в левую часть, изменив знак. В правой части останется 0

Алгебра решение уравнений 2 степени

Решим получившееся уравнение с помощью формул:

Алгебра решение уравнений 2 степени

Несмотря на то, что квадратное уравнение имеет два корня, в расчёт берём только значение 30 . Потому что ширина не может выражаться отрицательным числом.

Итак, через x была обозначена ширина участка. Она равна тридцати метрам. А длина была обозначена через выражение x + 10 . Подставим в него найденное значение x и вычислим длину:

x + 10 = 30 + 10 = 40 м

Значит длина участка составляет сорок метров, а ширина тридцать метров. Эти значения удовлетворяют условию задачи, поскольку если перемножить длину и ширину (числа 40 и 30 ) получится 1200 м 2

40 × 30 = 1200 м 2

Теперь ответим на вопрос задачи. Какова длина изгороди? Чтобы её вычислить нужно найти периметр участка.

Периметр прямоугольника это сумма всех его сторон. Тогда:

P = 2(a + b) = 2 × (40 + 30) = 2 × 70 = 140 м.

Ответ: длина изгороди огородного участка составляет 140 м.

Решение задач с помощью систем уравнений второй степени. 9-й класс

Разделы: Математика

Класс: 9

Цели урока:

  1. Обучение составлению системы уравнений по условию задачи.
  2. Повышение интереса к решению текстовых задач.

Ход урока

I. Устный счет (8 мин)

Является ли решением уравнения х+2у=5 пара чисел: а) (0;1) б) (3;-1) в) (-1;3)

1. Является ли решением системы уравнений Алгебра решение уравнений 2 степени,

пара чисел: а) х=1, у=6 б)х=3, у=2

2. Решите систему уравнений: Алгебра решение уравнений 2 степени

3. Определите степень уравнения:

  • А) х-у-1,2=0
  • Б) Алгебра решение уравнений 2 степени
  • В) Алгебра решение уравнений 2 степени
  • Г) Алгебра решение уравнений 2 степени

II. Изучение нового материала (10 мин)

При решении задач можно вводить две переменные и составлять систему уравнений.

Решить задачу двумя способами: «Гипотенуза прямоугольного треугольника равна 13 см. Найдите его катеты, если известно, что один из них на 7 см больше другого».

1 способ— с помощью одной переменной.

Пусть один катет прямоугольного треугольника равен х см, а второй катет – х+7 см. Используя теорему Пифагора, составим уравнение:

корень х=-12 не удовлетворяет условию х>0.

Один катет равен 5 см, второй 12 см

2 способ— с помощью введения двух переменных.

Пусть первый катет х см, второй катет у см (х>0, у>0)

Алгебра решение уравнений 2 степени,

Алгебра решение уравнений 2 степени,

Алгебра решение уравнений 2 степени,

у1=5, у2=-12 (не удовл. условию)

если у=5, то х=7+5=12

один катет равен 5 см, второй катет 12 см

Ответ: 12 см, 5 см

III. Закрепление нового материала (10 мин)

Решение задач:

1. Прямоугольный газон обнесён изгородью, длина которой 30 м. Площадь газона 56 м². Найдите длины сторон газона?

Решение: пусть х м –длина газона, у-ширина газона.

Алгебра решение уравнений 2 степени,

Алгебра решение уравнений 2 степени,

Ответ: 7 см, 8 см

2. Двое рабочих совместно могут выполнить заданную работу за 12 дней. Если первый рабочий сделает половину работы, а затем второй – вторую половину, то вся работа будет закончена за 25 дней нужно каждому из рабочих в отдельности для выполнения работы?

Решение: пусть для выполнения всей работы первому рабочему потребуется х дней, а второму у дней, тогда за 1 день первый выполняет 1/х часть, а второй 1/у часть всей работы. Работая совместно, всю работу они выполняют за 12 дней.

Таким образом 12(1/х+1/у)=1.

Пусть теперь работа выполняется рабочими поочередно. Тогда для выполнения половины всей работы первому потребуется 1/2:1/х=х/2 дней, а второму 1/2: 1/у=у/2 дней.

Алгебра решение уравнений 2 степени,

Алгебра решение уравнений 2 степени,

Алгебра решение уравнений 2 степени,

Алгебра решение уравнений 2 степени,

Алгебра решение уравнений 2 степени,

Одному рабочему для выполнения всей работы требуется 20 дней, а другому 30 дней.

Ответ: 20 дней, 30 дней

Решаем по учебнику: №455, №457 (15 мин)

IV. Итог урока.

Домашнее задание: №456, №458, №460 (2 мин)

Поделиться или сохранить к себе: