6 объемная и линейная скорости течения жидкости уравнение неразрывности струи

Видео:Основы гидродинамики и аэродинамики | условие неразрывностиСкачать

Основы гидродинамики и аэродинамики | условие неразрывности

Уравнение неразрывности и уравнение Бернулли.

6 объемная и линейная скорости течения жидкости уравнение неразрывности струи

Уравнение неразрывности потока и уравнения Бернулли являются основными уравнениями гидродинамики. При изучении потоков жидкости вводится ряд понятий, характеризующий потоки с гидравлической и геометрической точек зрения.

Такими понятиями являются: площадь живого сечения потока(или живое сечение потока), расход и средняя скорость.

Площадью живого сечения потока, называют площадь сечения потока, приведенную нормально к направлению линии тока, т.е. перпендикулярно движению струйки жидкости. Живое сечение может быть ограничено твердыми стенками полностью или частично. Если стенки ограничивают поток полностью, то движение жидкости называют напорным; Если же ограничение частичное, то движение называется безнапорным.

Напорное движение характеризуется тем, что гидродинамическое давление в любой точке потока отлично от атмосферного и может быть как больше, так и меньше него. Безнапорное движение характеризуется постоянным давлением на свободной поверхности, обычно равным атмосферному.

Содержание статьи

Расходом потока называется количество жидкости, протекающей через поперечное сечение в единицу времени. Если рассматривать поток жидкости, представляющий собой совокупность большого числа элементарных струек, то очевидно, общий расход жидкости для всего потока в целом представляет собой сумму расходов всех отдельных струек.

Для нахождения этой суммы необходимо знать закон распределения скоростей в сечении потока. Так как во многих случаях движения такой закон неизвестен, в общем случае суммирование становится невозможным. Поэтому в гидродинамике вводится предположение, что все частицы жидкости по всему поперечному сечению потока движутся с одинаковой скоростью. Эту воображаемую фиктивную скорость называют средней скоростью потока υср .

Таким образом уравнение расхода для потока будет

υср – средняя скорость потока

F – площадь сечения потока.

Видео:Урок 132. Основные понятия гидродинамики. Уравнение непрерывностиСкачать

Урок 132. Основные понятия гидродинамики. Уравнение непрерывности

Уравнение неразрывности потока жидкости

Теперь вооружившись основными понятиями перейдем к определению уравнения неразрывности потока.

6 объемная и линейная скорости течения жидкости уравнение неразрывности струи

Отделим сечениями 1-1 и 2-2 некоторый отрезок элементарной струйки. В этот отрезок в единицу времени через сечение 1-1 втекает объем жидкости равный

а через сечение 2-2 из него же вытекает объем, равный

Примем, что жидкость несжимаема и что в ней невозможно образование незаполненных жидкостью пространств – т.е. будем считать, что соблюдается условие сплошности или неразрывности движения.

Учитывая, что форма элементарной струйки с течением времени не изменяется и поперечный приток в струйку или отток из ней отсутствуют, приходим к выводу, что элементарные расходы жидкости, проходящие через сечение 1-1 и 2-2, должны быть одинаковы.

Такие соотношения можно составить для любых двух сечений струйки. Поэтому в более общем виде получаем, что всюду вдоль струйки

Это уравнение называется уравнением неразрывности жидкости – оно является первым основным уравнением гидродинамики. Переходя далее к потоку жидкости в целом получаем, что

т.е. средние скорости в поперечных сечениях потока при неразрывности движения обратно пропорциональны площади этих сечений.

Уравнение неразрывности струи жидкости. Уравнение Бернулли.

Вторым основным уравнением гидродинамики является уравнение Бернулли, устанавливающее взаимосвязь между скоростью и давлением в различных сечениях одной и той же струйки.

6 объемная и линейная скорости течения жидкости уравнение неразрывности струи

При рассмотрении уравнения Бернулли также как и в предыдущем случае ограничимся установившемся медленно изменяющимся движением. Выделим в объеме некоторой жидкости одну элементарную струйку и ограничим её в какой-то определенный момент времени Т сечениями 1-1 и 2-2.

Допустим, что через какой-то промежуток времени ΔТ указанный объем переместится в положение 1’ – 1’ и 2’ – 2’. Тогда применяя к движению этого сечению теорему кинетической энергии, определяем, что приращение кинетической энергии движущейся системы материальных частиц равняется сумме работ всех сил, действующих на систему.

Если всё это записать в виде формулы, то

где W – приращение кинетической энергии = m * υ 2 / 2

ΣA – сумма работ действующих сил = P *ΔS

В этих выражениях
m – масса
υ – скорость материальной точки
P – равнодействующая всех сил, приложенных к точке,
ΔS – проекция перемещения точки на направление силы.

Теперь рассмотрим обе части этого выражения по порядку.

Приращение кинетической энергии ΔW

В нашем случае приращение кинетической энергии определяется как разность значений кинетической энергии в двух положениях перемещающегося объема, т.е. как разность кинетической энергии объема образованного сечениями 1-1’ и объема, образованного сечениями 2 – 2’.

Эти объемы являются результатом перемещения за время ΔТ сечений выделенного участка элементарной струйки.

Вспоминая, что по условию неразрывности расход во всех сечениях элементарной струйки одинаков, а следовательно будет равен

масса в этом случае получается равной

Подставляя все это в выражение для кинетической энергии получаем цепочку

ΔW = m * υ 2 2 / 2 — m * υ 2 1 / 2 = ρ * q * ΔТ * υ 2 2 / 2 — ρ * q * ΔТ * υ 2 1 / 2

Работа сил действующих на систему ΣA

Теперь перейдем к рассмотрению работы сил, действующих на рассматриваемый объем жидкости. Работа сил тяжести AТ равна произведению этой силы на путь, пройденный центром массы движущегося объема жидкости по вертикали.

Для рассматриваемой в нашем примере струйки работа сил тяжести будет равна произведению сил тяжести объема занимаемого сечениями 1-1’ и 2 – 2’ на расстояние Z1 –Z2.

Где Z1 и Z2 – расстояния по вертикали от горизонтальной плоскости, называемой плоскостью сравнения до центров масс объемов 1-1’ и 2 – 2’.

Силы давления АД , действующие на объем жидкости складываются из сил давления на его боковую поверхность и на концевые поперечные сечения. Работа сил давления на боковую поверхность равна нулю, так как эти силы за все время движения нормальны к перемещению их точек приложения.

Суммарно работа сил давления будет

Подставляя в начальное уравнение

Полученные выражения для ΔW и ΣA получаем

6 объемная и линейная скорости течения жидкости уравнение неразрывности струи

Разделим обе части этого уравнения на m = ρ*q*ΔТ и перегруппируем слагаемые

6 объемная и линейная скорости течения жидкости уравнение неразрывности струи

Учитывая, что сечения 1-1 и 2-2 взяты нами совершенно произвольным образом, это уравнение возможно распространить на всю струйку. Применив его для любых поперечных сечений, взятых по её длине, и представить в общем виде:

6 объемная и линейная скорости течения жидкости уравнение неразрывности струи

Записанные выше два уравнения представляют собой уравнение Бернулли для элементарной струйки жидкости. Сумма трех слагаемых, входящих в это уравнение, называется удельной энергией жидкости в данном сечении струйки. Различают такие энергии как:
Удельная энергия положения = qz
Удельная энергия давления = p/ ρ
Кинетическая удельная энергия = υ 2 / 2

В соответствии с этим уравнение Бернулли для струйки жидкости можно сформулировать следующим образом: для элементарной струйки идеальной жидкости полная удельная энергия, т.е. сумма удельной энергии положения, удельной энергии давления и кинетической удельной энергии – есть величина постоянная во всех сечениях струйки.

Видео по теме уравнение неразрывности

Полученные в результате многочисленных экспериментов данные из уравнения Бернулли и уравнения неразрывности потока жидкости нашли широкое применение в повседневной жизни.

Уравнение Бернулли широко используется для нахождения скорости истечения жидкости через отверстия.

Уравнение неразрывности обладает широкой универсальностью и справедливо для любой сплошной среды. Принцип уравнения неразрывности используется для формирования сильной и дальнобойной струи воды при тушении пожаров.

Видео:Закон БернуллиСкачать

Закон Бернулли

Условие неразрывности струи

Течение жидкости характеризуется линиями тока. Это линии, касательные к которым совпадают с направлением вектора скорости частиц жидкости в данной точке (рис. 9.1). Часть пространства, ограниченная линиями тока, называется трубкой тока (на рис. 9.1 заштрихована). Если при течении жидкости линии тока непрерывны, то такое течение называется ламинарным (рис. 9.1).

6 объемная и линейная скорости течения жидкости уравнение неразрывности струи

Рис. 9.1. Линии тока при ламинарном течении

При определенных условиях в движущейся жидкости могут возникать завихрения, скорость ее частиц хаотически изменяется, линии тока претерпевают разрывы, изменяющиеся со временем. Такое движение жидкости называется турбулентным (рис. 9.2).

6 объемная и линейная скорости течения жидкости уравнение неразрывности струи

Рис. 9.2. Линии тока при турбулентном течении

Для установления связи между скоростью ламинарного течения жидкости и площадью поперечного сечения участка, через который она протекает, выделим в трубке тока участки с площадью поперечного сечения и S2 (рис. 9.3). В пределах этих сечений скорости частиц жидкости одинаковы, направлены перпендикулярно выделенным площадкам и равны по величине v± и v2 соответственно. Объемы жидкости V1 и V2, протекающей через выделенное сечение за одно то же время t, одинаковы, так как жидкость практически несжимаема. Это позволяет записать равенство

6 объемная и линейная скорости течения жидкости уравнение неразрывности струи

Уравнение (9.1) представляет собой условие неразрывности струи, утверждающее, что при ламинарном течении

6 объемная и линейная скорости течения жидкости уравнение неразрывности струи

Рис. 9.3. Условие неразрывности струи несжимаемой жидкости произведение площади сечения участка, через который она протекает, и ее скорости является постоянной величиной для данной трубки тока.

При течении жидкости различают ее линейную и объемную скорость. Линейная скорость (и) — это путь L, проходимый частицами жидкости в единицу времени: v = L/t (для равномерного течения). Объемная скорость (расход) Q — это объем жидкости V, протекающий через некоторое сечение за единицу времени t: Q = V/t. Объемная и линейная скорости течения жидкости связаны очевидным соотношением: Q = vS, где S — площадь поперечного сечения потока жидкости. Линейная скорость кровотока измеряется в м/с, а объемная — в м 3 /с, л/мин, мл/мин и др.

Условие неразрывности струи (9.1) выполняется и в реальной гемодинамике. Здесь формулировка этого условия звучит следующим образом: в любом сечении сердечно-сосудистой системы объемная скорость кровотока одинакова: Q = const.

Под площадью сечения сосудистой системы понимают суммарную площадь сечения кровеносных сосудов одного уровня ветвления. Так, в большом круге кровообращения первое (наименьшее по площади) сечение проходит через аорту, второе — через все артерии, на которые непосредственно разветвляется аорта, и т.д. Наибольшую площадь имеет сечение, соответствующее капиллярной сети.

Как следует из условия неразрывности струи, с увеличением площади сечения сосудистой системы скорость кровотока в ее соответствующих участках уменьшается. Так, в покое средняя линейная скорость кровотока в аорте составляет около 0,4-0,5 м/с, а в капиллярах — около 0,5 мм/с. Следовательно, сумма поперечных сечений всех функционирующих капилляров примерно в 800 раз больше площади сечения аорты.

Видео:Вязкость и течение Пуазёйля (видео 14) | Жидкости | ФизикаСкачать

Вязкость и течение Пуазёйля (видео 14) | Жидкости  | Физика

Гидродинамика. Уравнение неразрывности движения жидкости.

Уравнение неразрывности потока демонстрирует закон сохранения массы: количество втекающей и вытекающей жидкости неизменно.

Проанализируем сечение 1 с площадью и скоростью движения частиц жидкости обозначим и1. Элементарный расход для него представлен соотношением:

Далее проанализируем сечение 2 в этой же струйке с площадью сечения и скоростью обозначим и2. Элементарный расход для него представлен соотношением:

Но согласно характерной особенности элементарной струйки притока и оттока жидкости через ее боковую поверхность не существует; на промежутке 1 — 2, которому свойственны постоянные размеры, отсутствуют пустоты и отсутствуют переуплотнения количества жидкости, протекающей в единицу времени сквозь сечения 1 и 2,будут одинаковыми, тогда:

Уравнение неразрывности для элементарной струйки — элементарный расход жидкости при установившемся движении величина одинаковая для всей элементарной струйки.

Проанализируем трубу с переменным живым сечением. Расход жидкости через трубу для всякого ее сечении постоянен, т.е. Q1=Q2= const, делаем вывод:

Значит, когда течение в трубе сплошное и неразрывное, то уравнение неразрывности станет:

Найдем отсюда скорость для выходного сечения:

Обратим внимание, что скорость возрастает обратно пропорционально площади живого сечения потока. Указанная обратная зависимость между скоростью и площадью выступает важным следствием уравнения неразрывности и нашла широкое применение. Так, к примеру, эта особенность используется пожарными при тушении пожара для формирования сильной и дальнобойной струи.

Что произойдет со скорость потока при сужении, когда диаметр напорной трубы d сузиться в два раза?

Площадь живого сечения трубы вычисляем на основе формулы w = πd 2 / 4. В этом случае соотношение площадей в формуле u2 = u1 w1 / w2 равняться 4.

Следовательно, в ситуации, когда диаметр трубы сужается в два раза — скорость потока возрастет в четыре раза. По аналогии, когда диаметр сузится в три раза — скорость увеличиться в девять раз.

📽️ Видео

Вязкость. Ламинарное и турбулентное течения жидкостей. 10 класс.Скачать

Вязкость. Ламинарное и турбулентное течения жидкостей. 10 класс.

Урок 133. Закон Бернулли. Уравнение БернуллиСкачать

Урок 133. Закон Бернулли. Уравнение Бернулли

Вывод уравнения неразрывности - Лекция 1Скачать

Вывод уравнения неразрывности - Лекция 1

Закон БернуллиСкачать

Закон Бернулли

Режимы течения жидкости, ламинарный и турбулентный режимыСкачать

Режимы течения жидкости, ламинарный и турбулентный режимы

Уравнение БернуллиСкачать

Уравнение Бернулли

Теорема Эйлера о движении жидкостиСкачать

Теорема Эйлера о  движении жидкости

Физика. 10 класс. ГидродинамикаСкачать

Физика. 10 класс. Гидродинамика

Жидкости. Часть 12( видео 13) | Жидкости | ФизикаСкачать

Жидкости. Часть 12( видео 13) | Жидкости  | Физика

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.Скачать

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.

Гидродинамика. Уравнение Бернулли. Физика 10 классСкачать

Гидродинамика. Уравнение Бернулли. Физика 10 класс

Что такое расход жидкости, способы измерения объемного и массового расходаСкачать

Что такое расход жидкости, способы измерения объемного и массового расхода

Характеристика насосной системы. Потери по длине трубопровода.Скачать

Характеристика насосной системы. Потери по длине трубопровода.

Галилео. Эксперимент. Закон БернуллиСкачать

Галилео. Эксперимент. Закон Бернулли

Уравнение непрерывности и телеграфное уравнение | Лекция 31 | МатанализСкачать

Уравнение непрерывности и телеграфное уравнение | Лекция 31 | Матанализ

Уравнение Бернулли гидравликаСкачать

Уравнение Бернулли гидравлика
Поделиться или сохранить к себе: