29 системы уравнений в частных производных

29 системы уравнений в частных производных

МИР МАТЕМАТИЧЕСКИХ УРАВНЕНИЙ

Точные решения > Системы дифференциальных уравнений в частных производных

Видео:Простейшие уравнения в частных производныхСкачать

Простейшие уравнения в частных производных

Системы дифференциальных уравнений в частных производных

Веб-сайт EqWorld содержит обширную информацию о решениях различных классов обыкновенных дифференциальных уравнений, дифференциальных уравнений с частными производными (уравнений математической физики), интегральных уравнений, функциональных уравнений и других математических уравнений.

Видео:Уравнения в частных производных первого порядка| poporyadku.schoolСкачать

Уравнения в частных производных первого порядка| poporyadku.school

Системы уравнений с частными производными. Характеристики

Для решения систем уравнений с частными производными первого порядка могут быть использованы различные разностные схемы метода сеток, разработанные для одного уравнения. С этой целью формально систему уравнений можно записать в векторной форме с помощью одного уравнения, и тогда вид разностных формул сохраняется таким же, как и для скалярного уравнения. Разница состоит в том, что вместо скалярной сеточной функции вводится векторная.

Рассмотрим систему двух квазилинейных уравнений относительно искомых функций 29 системы уравнений в частных производных:

29 системы уравнений в частных производных(2.60)

Коэффициенты 29 системы уравнений в частных производныхэтой системы переменные и зависят от х, t, U, V. Введем следующие обозначения: U — искомый вектор; F — вектор правой части; А, В — матрицы коэффициентов:

29 системы уравнений в частных производных

Запишем систему уравнений (2.60) в векторном виде:

29 системы уравнений в частных производных

Для решения этого квазилинейного векторного уравнения могут быть использованы различные разностные схемы, которые применяются для решения одного уравнения.

Мы не будем повторять сказанное ранее для одного уравнения, а остановимся на одном частном случае системы (2.60), важном для приложений. Речь идет о системах гиперболического типа. Введем матрицу С 29 системы уравнений в частных производныхгде α, β — некоторые числа. Тогда определитель этой матрицы

29 системы уравнений в частных производных(2.61)

является квадратичной формой относительно α и β,т.е.

29 системы уравнений в частных производных(2.62)

где коэффициенты q1, q2, q3, легко выразить через элементы матриц А, В, раскрывая определитель (2.61).

Система уравнений с частными производными первого порядка (2.60) называется гиперболической,если квадратичная форма (2.62) разлагается на вещественные линейные множители:

29 системы уравнений в частных производных

причем векторы 29 системы уравнений в частных производныхнеколлинеарны. Эти векторы в каждой точке плоскости (х,t) образуют два направления, которые называются характеристическими. Линия, касательная к которой в каждой точке имеет характеристическое направление, называется характеристикой. Через каждую точку проходят две характеристики, соответствующие двум характеристическим направлениям. Таким образом, всю плоскость (х, t) можно покрыть двумя семействами характеристик (рис. 2.18).

29 системы уравнений в частных производных

Рис. 2.18. Характеристики

Заметим, что в случае системы уравнений (2.60) с постоянными коэффициентами характеристические направления, если они существуют, постоянны для всех точек плоскости. Им соответствуют два семейства прямолинейных характеристик. В самом общем случае, когда коэффициенты системы (2.60) зависят от х, t, U, V, характеристики могут существовать в одной части плоскости (х, t) и отсутствовать в другой. Следовательно, гиперболичность системы (2.60) может быть не на всей плоскости, а лишь в некоторой области.

Наряду с гиперболическими системами существуют также параболические (с одним семейством характеристик) и эллиптические (действительных характеристик нет) системы.

Характеристики можно использовать для построения алгоритма численного решения системы уравнений с частными производными в области ее гиперболичности. Такой способ решения называется методом характеристик.

Не приводя подробных выкладок и опуская сами формулы, изложим идею метода характеристик. Рассмотрим задачу Коши. Пусть при t = 0 заданы начальные значения функций 29 системы уравнений в частных производных. Выбираем любой отрезок [а,b] на оси х и разбиваем его на части точками 29 системы уравнений в частных производных(рис. 2.19). В данном случае принято n= 4.

29 системы уравнений в частных производных

Рис. 2.19. К решению задачи Коши методом характеристик

Из точки А0 проводим характеристику первого семейства, из А1 — второго. Находим точку пересечения В0. Используя некоторые соотношения (характеристические) вдоль отрезков характеристик А0В0 и А1В0,заменяющие исходные уравнения, вычисляем искомые функции в точке В0. Аналогично находим решение в других точках слоя В. При этом в отличие от метода сеток этот слой не является прямолинейным отрезком t= const, а определяется точками пересечения характеристик.

Далее вычисляем искомые значения в точках слоев С, Dи т.д. При этом каждый раз (при решении задачи Коши) при переходе от слоя к слою число узлов уменьшается на единицу, так что на последнем слое получается лишь один узел. Область решения задачи Коши представляет собой криволинейный треугольник с кусочно гладкими сторонами.

При решении краевой задачи используют значения искомых функций на границах. В этом случае расчетная область изменяется: она прилегает к границе х = const, на которой заданы значения функций U(x), V(x). При этом вблизи границы используют характеристики одного семейства, выходящие из границы и попадающие в расчетную область. Если граничные условия задают при двух значениях х, то алгоритм метода характеристик значительно усложняется.

Достоинством метода характеристик является то, что он основан на физической сущности задачи, поскольку возмущения распространяются по характеристикам. Метод позволяет выявить разрывы в решении. Недостатком метода является нерегулярность получаемой сетки, поскольку узлы располагаются неравномерно (в точках пересечения характеристик).

Для устранения этого недостатка разработаны так называемые сеточно-характеристические методы. Их идея состоит в том, что сетка фиксируется заранее, а характеристики проводятся «назад» из узлов (j+ 1)-ого слоя до пересечения с j-ым слоем. Значения U, Vв точках пересечения вычисляются путем интерполяции по ранее найденному решению в узлах j-ого слоя.

Геометрическая интерпретация сеточно-характеристического метода показана на рис. 2.20. Здесь точками отмечены заранее выбранные узлы; штриховые линии — отрезки характеристик. Значения функций в точках пересечения А и В находятся интерполированием решения в узлах 29 системы уравнений в частных производныхи 29 системы уравнений в частных производныхЭти значения используют для определения решения в расчетном узле (i, j+1).

29 системы уравнений в частных производных

Рис. 2.20. Геометрическая интерпретация сеточно-характеристического метода

Видео:Линейные дифференциальные уравнения в частных производныхСкачать

Линейные дифференциальные уравнения в частных производных

Примеры по дифференциальным уравнениям в частных производных

Видео:Найти общее решение уравнения в частных производных первого порядка.Скачать

Найти общее решение уравнения в частных производных первого порядка.

Немного теории

Дифференциальным уравнением с частными производными (ДУ с ЧП) называется уравнение относительно неизвестной функции нескольких переменных (ФНП) и ее частных производных. Наивысший порядок частных производных (существенно входящих в уравнение) называется порядком этого уравнения.

ДУ с ЧП называется линейным (ЛДУ с ЧП), если неизвестная функция и ее производные входят в это ДУ линейно (в первой степени).

В этом разделе вы найдете подробно решенные задачи по темам: классификация и приведение к каноническому виду ДУ с ЧП второго порядка с двумя переменными, определение типа уравнения, решение уравнений и систем ДУ в ЧП.

ДУ с ЧП находят широкое применение в прикладных науках: квантовая механика, электродинамика, термодинамика, теория теплои массопереноса и др. при математическом описании и моделировании различных физических процессов. Поэтому такие уравнения изучаются под общим названием уравнений математической физики (примеры решений 16 задач).

Видео:Уравнения с частными производными 2 ЗадачиСкачать

Уравнения с частными производными 2  Задачи

Приведение к каноническому виду

Задача 1. Привести к каноническому виду уравнение

Задача 2. Привести уравнение к каноническому виду.

Задача 3. Найти общее решение уравнения, приведя его к каноническому виду:

Видео:Приведение уравнений в частных производных к безразмерному виду.Скачать

Приведение уравнений в частных производных к безразмерному виду.

Решение ДУ в ЧП

Задача 4. Решить уравнение Пфаффа

$$ z^2 dx +zdy +(3zx +2y)dz=0. $$

Задача 5. Решить задачу Коши для уравнения в частных производных

$$ u_-2Delta u =(x^2+y^2+z^2)t; quad u(t=0)=xyz, u_t(t=0)=x-y. $$

Задача 6. Найти общее решение уравнения в частных производных

Задача 7. Найти общее решение уравнения в частных производных первого порядка.

$$ xy u_x +(x-2u)u_y = yu. $$

Задача 8. Найти решение задачи Коши для уравнения в частных производных

$$ y u_x -xy u_y=2xu, quad u(x+y=2)=1/y. $$

Задача 9. Решить систему дифференциальных уравнений в частных производных

Видео:Математический анализ, 29 урок, Функции нескольких переменных. Частные производныеСкачать

Математический анализ, 29 урок, Функции нескольких переменных. Частные производные

Разные задачи на исследование ДУ в ЧП

Задача 10. Найти поверхность, удовлетворяющую данному уравнению и проходящую через данную линию

Задача 11. Найти области гиперболичности, эллиптичности и параболичности уравнения и исследовать их зависимость от $l$, где $l$ – числовой параметр.

Задача 12. Найти функцию, гармоническую внутри круга радиуса $R$ c центром в начале координат и такую, что

Видео:Сеточные методы решения дифференциальных уравнений в частных производных.Скачать

Сеточные методы решения дифференциальных уравнений в частных производных.

Помощь с решением ДУ в ЧП

Если вам нужна помощь с решением задач и контрольных по дифференциальным уравнениям (и другим разделам математического анализа), обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.

📸 Видео

1. Уравнения в частных производных первого порядка (уравнения переноса)Скачать

1. Уравнения в частных производных первого порядка (уравнения переноса)

Приводим диффур в частных производных к каноническому виду | УМФ (УрЧП) | КАК РЕШАТЬ?Скачать

Приводим диффур в частных производных к каноническому виду | УМФ (УрЧП) | КАК РЕШАТЬ?

6. Линейные однородные уравнения в частных производных первого порядкаСкачать

6. Линейные однородные уравнения в частных производных первого порядка

Уравнения в частных производных 1Скачать

Уравнения в частных производных 1

Горицкий А. Ю. - Уравнения математической физики - Уравнения с частными производными 1-го порядкаСкачать

Горицкий А. Ю. - Уравнения математической физики - Уравнения с частными производными 1-го порядка

Сергеев И. Н. - Дифференциальные уравнения II - Уравнения в частных производных первого порядкаСкачать

Сергеев И. Н. - Дифференциальные уравнения II - Уравнения в частных производных первого порядка

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Шапошникова Т. А. - Уравнения с частными производными. Часть 1. Семинары - Семинар 1Скачать

Шапошникова Т. А. - Уравнения с частными производными. Часть 1. Семинары - Семинар 1

Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.Скачать

Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.
Поделиться или сохранить к себе: