23 решение систем нелинейных уравнений методом итераций оценка погрешности

СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕНИИ

Многие практические задачи сводятся к решению системы нелинейных уравнений [2, 6, 10, 12].

Пусть для вычисления неизвестных Х, х2, . х„ требуется решить систему п нелинейных уравнений:

23 решение систем нелинейных уравнений методом итераций оценка погрешности

В отличие от систем линейных уравнений не существует прямых методов решения нелинейных систем общего вида. Лишь в некоторых случаях систему (4.1) можно решить непосредственно. Например, для случая двух уравнений иногда удается выразить одно неизвестное через другое и таким образом свести задачу к решению одного нелинейного уравнения относительно одного неизвестного. Для решения систем нелинейных уравнений обычно используют итерационные методы. Рассмотрим два из них — метод простой итерации и метод Ньютона.

Видео:Метод простых итераций пример решения нелинейных уравненийСкачать

Метод простых итераций пример решения нелинейных уравнений

Метод простой итерации

Систему уравнений (4.1) представим в следующем виде:

23 решение систем нелинейных уравнений методом итераций оценка погрешности

Запишем систему (4.2) в векторной форме: 23 решение систем нелинейных уравнений методом итераций оценка погрешностигде 23 решение систем нелинейных уравнений методом итераций оценка погрешности

Для нахождения вектора корня х* = (х*,х*. х*) уравнения (4.3) часто удобно использовать метод итерации:

23 решение систем нелинейных уравнений методом итераций оценка погрешности

где начальное приближение х (0) * х*. Это грубое значение искомого корня. Заметим, что если процесс итерации (4.5) сходится, то предельное значение

23 решение систем нелинейных уравнений методом итераций оценка погрешности

обязательно является корнем уравнения (4.3). Действительно, предполагая, что соотношение (4.6) выполнено, и переходя к пределу в равенстве (4.5) прир—>оо, в силу непрерывности функции ф(х) будем иметь:

23 решение систем нелинейных уравнений методом итераций оценка погрешности

23 решение систем нелинейных уравнений методом итераций оценка погрешности

Таким образом, ?> есть корень векторного уравнения (4.3).

Рассмотрим метод простой итерации на примере системы двух нелинейных уравнений с двумя неизвестными:

23 решение систем нелинейных уравнений методом итераций оценка погрешности

Решением системы (4.7) для хе [о, Ь] и ye [с, d будут такие значения х* и у*, которые обращают эту систему в тождество. Необходимо найти х* и у* с заданной степенью точности е.

Запишем систему (4.7) в эквивалентной форме:

23 решение систем нелинейных уравнений методом итераций оценка погрешности

Последовательные приближения будут вычисляться по формулам: 23 решение систем нелинейных уравнений методом итераций оценка погрешности

где х0, уо — начальные приближения значения искомого корня.

Итерационный процесс можно считать законченным, как только выполнится неравенство

23 решение систем нелинейных уравнений методом итераций оценка погрешности

Для определения сходимости процесса имеет место следующая теорема.

Теорема. Пусть в некоторой заданной области хе[а, Ь] и ye[c,d] имеется единственное решение х*, у* системы (4.8) тогда, если:

  • ф)(х,у) и ф2(х, у) определены и непрерывно дифференцируемы в заданной области;
  • • начальные приближения х0, у0и все последующие приближения х,„у„ принадлежат заданной области;
  • • в рассматриваемой области выполняются неравенства:

23 решение систем нелинейных уравнений методом итераций оценка погрешности

то процесс последовательных приближений (4.9) сходится к решению системы уравнений (4.11).

Пр имер 4.1. Методом итерации приближенно решить систему 23 решение систем нелинейных уравнений методом итераций оценка погрешностиРешение. Преобразуем данную систему к виду (4.2):

23 решение систем нелинейных уравнений методом итераций оценка погрешности

Из графического построения (см. рис. 4.1) видно, что система имеет два решения, отличающиеся только знаком.

Ограничимся нахождением положительного решения. Из чертежа видим, что за начальное приближение положительного решения системы можно принять

23 решение систем нелинейных уравнений методом итераций оценка погрешности 23 решение систем нелинейных уравнений методом итераций оценка погрешности

Рис. 4.1. Отделение корней системы нелинейных уравнений Полагая

23 решение систем нелинейных уравнений методом итераций оценка погрешности

23 решение систем нелинейных уравнений методом итераций оценка погрешности

Аналогично, 23 решение систем нелинейных уравнений методом итераций оценка погрешности

23 решение систем нелинейных уравнений методом итераций оценка погрешности

Точное решение системы Х = 0,8261, х2 = 0,5636.

Блок-схема метода итераций приведена на рис. 4.2. Имеют место следующие обозначения неравенств (4.11):

Видео:4.2 Решение систем нелинейных уравнений. МетодыСкачать

4.2 Решение систем нелинейных уравнений. Методы

Численные методы решения систем нелинейных уравнений

Введение

Многие прикладные задачи приводят к необходимости нахождения общего решения системы нелинейных уравнений. Общего аналитического решения системы нелинейных уравнений не найдено. Существуют лишь численные методы.

Следует отметить интересный факт о том, что любая система уравнений над действительными числами может быть представлена одним равносильным уравнением, если взять все уравнения в форме , возвести их в квадрат и сложить.

Для численного решения применяются итерационные методы последовательных приближений (простой итерации) и метод Ньютона в различных модификациях. Итерационные процессы естественным образом обобщаются на случай системы нелинейных уравнений вида:

(1)

Обозначим через вектор неизвестных и определим вектор-функцию Тогда система (1) записывается в виде уравнения:

(2)

Теперь вернёмся к всеми любимому Python и отметим его первенство среди языков программирования, которые хотят изучать [1].

Этот факт является дополнительным стимулом рассмотрения числительных методов именно на Python. Однако, среди любителей Python бытует мнение, что специальные библиотечные функции, такие как scipy.optimize.root, spsolve_trianular, newton_krylov, являются самым лучшим выбором для решения задач численными методами.

С этим трудно не согласится хотя бы потому, что в том числе и разнообразие модулей подняло Python на вершину популярности. Однако, существуют случаи, когда даже при поверхностном рассмотрении использование прямых известных методов без применения специальных функций библиотеки SciPy тоже дают неплохие результаты. Иными словами, новое- это хорошо забытое старое.

Так, в публикации [2], на основании проведенных вычислительных экспериментов, доказано, что библиотечная функция newton_krylov, предназначенная для решения больших систем нелинейных уравнений, имеет в два раза меньшее быстродействие, чем алгоритм TSLS+WD
(two-step least squares), реализованный средствами библиотеки NumPy.

Целью настоящей публикации является сравнение по числу итераций, быстродействию, а главное, по результату решения модельной задачи в виде системы из ста нелинейных алгебраических уравнений при помощи библиотечной функции scipy.optimize.root и методом Ньютона, реализованного средствами библиотеки NumPy.

Возможности решателя scipy.optimize.root для численного решения систем алгебраических нелинейных уравнений

Библиотечная функция scipy.optimize.root выбрана в качестве базы сравнения, потому что имеет обширную библиотеку методов, пригодных для сравнительного анализа.

scipy.optimize.root(fun, x0, args=(), method=’hybr’, jac=None, tol=None,callback=None, ptions=None)
fun — Векторная функция для поиска корня.
x0 –Начальные условия поиска корней

method:
hybr -используется модификация Пауэлл гибридный метод;
lm – решает системы нелинейных уравнений методом наименьших квадратов.
Как следует из документации [3] методы broyden1, broyden2, anderson, linearmixing, diagbroyden, excitingmixing, krylov являются точными методами Ньютона. Остальные параметры являются «не обязательными» и с ними можно ознакомится в документации.

Методы решения систем нелинейных уравнений

Приведенный далее материал действительно можно прочитать в литературе, например в [4], но я уважаю своего читателя и для его удобства приведу вывод метода по возможности в сокращенном виде. Те, кто не любит формулы, этот раздел пропускают.

В методе Ньютона новое приближение для решения системы уравнений (2) определяется из решения системы линейных уравнений:

(3)

Определим матрицу Якоби:

(4)

Запишем(3) в виде:

(5)

Многие одношаговые методы для приближенного решения (2) по аналогии с двухслойными итерационными методами для решения систем линейных алгебраических уравнений можно записать в виде:

(6)

где — итерационные параметры, a — квадратная матрица n х n, имеющая обратную.

При использовании записи (6) метод Ньютона (5) соответствует выбору:

Система линейных уравнений (5) для нахождения нового приближения может решаться итерационно. В этом случае мы имеем двухступенчатый итерационный процесс с внешними и внутренними итерациями. Например, внешний итерационный процесс может осуществляться по методу Ньютона, а внутренние итерации — на основе итерационного метода Зейделя

При решении систем нелинейных уравнений можно использовать прямые аналоги стандартных итерационных методов, которые применяются для решения систем линейных уравнений. Нелинейный метод Зейделя применительно к решению (2) дает:

(7)

В этом случае каждую компоненту нового приближения из решения нелинейного уравнения, можно получить на основе метода простой итерации и метода Ньютона в различных модификациях. Тем самым снова приходим к двухступенчатому итерационному методу, в котором внешние итерации проводятся в соответствии с методом Зейделя, а внутренние — с методом Ньютона.

Основные вычислительные сложности применения метода Ньютона для приближенного решения систем нелинейных уравнений связаны с необходимостью решения линейной системы уравнений с матрицей Якоби на каждой итерации, причем от итерации к итерации эта матрица меняется. В модифицированном методе Ньютона матрица Якоби обращается только один раз:

(8)

Выбор модельной функции

Такой выбор не является простой задачей, поскольку при увеличении числа уравнений в системе в соответствии с ростом числа переменных результат решения не должен меняться, поскольку в противном случае невозможно отследить правильность решения системы уравнений при сравнении двух методов. Привожу следующее решение для модельной функции:

Функция f создаёт систему из n нелинейных уравнений, решение которой не зависит от числа уравнений и для каждой из n переменных равно единице.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью библиотечной функции optimize.root для разных методов отыскания корней

Только один из методов, приведенных в документации [3] прошёл тестирование по результату решения модельной функции, это метод ‘krylov’.

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Krylov method iteration = 4219
Optimize root time 7.239 seconds:

Вывод: С увеличением числа уравнений вдвое заметно появление ошибок в решении. При дальнейшем увеличении n решение становится не приемлемым, что возможно из-за автоматической адаптации к шагу, эта же причина резкого падения быстродействия. Но это только моё предположение.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью программы написанной на Python 3 с учётом соотношений (1)-(8) для отыскания корней по модифицированному методу Ньютона

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Newton iteration = 13
Newton method time 0.496 seconds

Решение для n=200:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.]
Newton iteration = 14
Newton method time 1.869 seconds

Чтобы убедиться в том, что программа действительно решает систему, перепишем модельную функцию для ухода от корня со значением 1 в виде:

Получим:
Solution:
[ 0.96472166 0.87777036 0.48175823 -0.26190496 -0.63693762 0.49232062
-1.31649896 0.6865098 0.89609091 0.98509235]
Newton iteration = 16
Newton method time 0.046 seconds

Вывод: Программа работает и при изменении модельной функции.

Теперь вернёмся к начальной модельной функции и проверим более широкий диапазон для n, например в 2 и 500.
n=2
Solution:
[1. 1.]
Newton iteration = 6
Newton method time 0.048 seconds
n=500

💥 Видео

Решение системы нелинейных уравнений графическим способом средствами ExcelСкачать

Решение системы нелинейных уравнений графическим способом средствами Excel

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.

Способы решения систем нелинейных уравнений. 9 класс.Скачать

Способы решения систем нелинейных уравнений. 9 класс.

Вычислительная математика. Лекция 4. Решение нелинейных уравнений и систем уравненийСкачать

Вычислительная математика. Лекция 4. Решение нелинейных уравнений и систем уравнений

10 Численные методы решения нелинейных уравненийСкачать

10 Численные методы решения нелинейных уравнений

Метод простой итерации Пример РешенияСкачать

Метод простой итерации Пример Решения

После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных УравненийСкачать

После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных Уравнений

Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14Скачать

Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14

Математика это не ИсламСкачать

Математика это не Ислам

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Метод итерацийСкачать

Метод итераций

Решение систем линейных уравнений, урок 5/5. Итерационные методыСкачать

Решение систем линейных уравнений, урок 5/5. Итерационные методы

Метод Зейделя Пример РешенияСкачать

Метод Зейделя Пример Решения

Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравненийСкачать

Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравнений

1 3 Решение нелинейных уравнений методом простых итерацийСкачать

1 3 Решение нелинейных уравнений методом простых итераций

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.
Поделиться или сохранить к себе: