11 механические колебания параметры колебательного движения уравнение гармонического колебания

Механические колебания. Параметры колебаний. Гармонические колебания

11 механические колебания параметры колебательного движения уравнение гармонического колебания

Механические колебания. Параметры колебаний. Гармонические колебания.

Колебанием называется процесс точно или приблизительно повторяющийся через определенные промежутки времени.

11 механические колебания параметры колебательного движения уравнение гармонического колебания11 механические колебания параметры колебательного движения уравнение гармонического колебания11 механические колебания параметры колебательного движения уравнение гармонического колебания

Особенность колебаний — обязательное наличие на траектории положения устойчивого равновесия, в котором сумма всех сил, действующих на тело равна нулю называется положением равновесия.

Математическим маятником называют материальную точку, подвешенную на тонкой, невесомой и нерастяжимой нити.

Параметры колебательного движения.

1. Смещение или координата (x) – отклонение от положения равновесия в данный

2. Амплитуда (Xm) – максимальное отклонение от положения равновесия.

3. Период колебаний (T) – время, за которое совершается одно полное колебание.

11 механические колебания параметры колебательного движения уравнение гармонического колебания

11 механические колебания параметры колебательного движения уравнение гармонического колебания

4. 11 механические колебания параметры колебательного движения уравнение гармонического колебанияЧастота (линейная) (n) – число полных колебаний за 1 с.

11 механические колебания параметры колебательного движения уравнение гармонического колебания[n] = Гц

5. Циклическая частота (w ) – число полных колебаний за 2p секунд, т. е. приблизительно за 6,28 с.

11 механические колебания параметры колебательного движения уравнение гармонического колебания

w = 2pn ; [w] =11 механические колебания параметры колебательного движения уравнение гармонического колебания.

6. Фаза колебаний (j) показывает какая часть периода в угловой мере прошла от начала колебаний.

11 механические колебания параметры колебательного движения уравнение гармонического колебания

11 механические колебания параметры колебательного движения уравнение гармонического колебания11 механические колебания параметры колебательного движения уравнение гармонического колебания

Тень на экране колеблется.

Уравнение и график гармонических колебаний.

Гармонические колебания — это колебания, при которых координата изменяется с течением времени по закону синуса или косинуса.

11 механические колебания параметры колебательного движения уравнение гармонического колебания

11 механические колебания параметры колебательного движения уравнение гармонического колебанияx = X m sin ( w t + j0 )

Xm – амплитуда колебаний,

w – циклическая частота,

w t +j0 = j – фаза колебаний,

j0 – начальная фаза колебаний.

11 механические колебания параметры колебательного движения уравнение гармонического колебания

11 механические колебания параметры колебательного движения уравнение гармонического колебания

Графики отличаются только амплитудой

Графики отличаются только периодом (частотой)

11 механические колебания параметры колебательного движения уравнение гармонического колебания

Графики отличаются только начальной фазой

Виды колебаний. Резонанс.

Свободные и вынужденные колебания.

Колебания могут возникать как под действием сил, действующих внутри системы(внутренних), так и под действием внешних сил.

4. Колебания, возникающие под действием периодически изменяющихся внешних сил называются

5. Колебания, возникающие под действием внутренних сил называются свободными.

Частным случаем свободных колебаний являются собственные колебания. Это модель колебаний не учитывающая силу трения.

Условия возникновения свободных колебаний:

1. Наличие избыточной энергии по сравнению с положением равновесия.

2. Наличие возвращающей силы, направленной в сторону положения равновесия.

Если амплитуда колебаний уменьшается с течением времени, колебания называются затухающими .

При свободных колебаниях колебательная система получает энергию только в начальный момент времени, а далее энергия системы расходуется на преодоление трения. Поэтому свободные колебания всегда затухают.

11 механические колебания параметры колебательного движения уравнение гармонического колебания

Если амплитуда колебаний не изменяется течением времени, колебания называются незатухающими.

11 механические колебания параметры колебательного движения уравнение гармонического колебания

Собственные колебания не учитывают трения, полная механическая энергия системы, остается постоянной: Eк + Eп = Eмех = const.

Собственные колебания незатухающие.

При вынужденных колебаниях энергия, поступающая непрерывно или периодически от внешнего источника, восполняет потери, возникающие за счет работы силы трения, и колебания могут быть незатухающими.

Кинетическая и потенциальная энергия тела при колебаниях переходят друг в друга. Когда отклонение системы от положения равновесия максимально, потенциальная энергия максимальна, а кинетическая равна нулю. При прохождении положения равновесия, наоборот.

Частота свободных колебаний определяется параметрами колебательной системы.

Частота вынужденных колебаний определяется частотой действия внешней силы. Амплитуда вынужденных колебаний тоже зависит от внешней силы.

11 механические колебания параметры колебательного движения уравнение гармонического колебанияРезонансом называется резкое увеличение амплитуды вынужденных колебаний при совпадении частоты действия внешней силы с частотой собственных колебаний системы.

При совпадении частоты w изменения силы с собственной частотой w0 колебаний системы сила в течение всего совершает положительную работу, увеличивая амплитуду колебаний тела. При любой другой частоте в течение одной части периода сила совершает положительную работу, а в течение другой части периода — отрицательную.

При резонансе рост амплитуды колебаний может привести к разрушению системы.

В 1905 году под копытами эскадрона гвардейской кавалерии рухнул Египетский мост через реку Фонтанку в Петербурге.

Автоколебаниями называются незатухающие колебания в системе, поддерживаемые внутренними источниками энергии при отсутствии воздействия внешней переменой силы.

В отличие от вынужденных колебаний частота и амплитуда автоколебаний определяются свойствами самой колебательной системы.

От свободных колебаний автоколебания отличаются независимостью амплитуды от времени и от начального кратковременного воздействия, возбуждающего процесс колебаний. Автоколебательную систему обычно можно разделить на три элемента:

1) колебательную систему;

2) источник энергии;

3) устройство с обратной связью, регулирующее поступление энергии из источника в колебательную систему.

Энергия, поступающая из источника за период, равна энергии, потерянной в колебательной системе за то же время.

11 механические колебания параметры колебательного движения уравнение гармонического колебания

Примером механической автоколебательной системы могут служить часы с маятником.

Видео:МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебанийСкачать

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебаний

Гармонические колебания

11 механические колебания параметры колебательного движения уравнение гармонического колебания

О чем эта статья:

9 класс, 11 класс, ЕГЭ/ОГЭ

Видео:Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Механические колебания

Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.

Колебания делятся на два вида: свободные и вынужденные.

Видео:Физика 11 класс (Урок№1 - Механические колебания.)Скачать

Физика 11 класс (Урок№1 - Механические колебания.)

Свободные колебания

Это колебания, которые происходят под действием внутренних сил в колебательной системе.

Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.

Видео:Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.

Вынужденные колебания

А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

Вынужденные колебания — это колебания, которые происходят под действием внешней периодически меняющейся силы.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.

Видео:Урок 327. Гармонические колебанияСкачать

Урок 327. Гармонические колебания

Автоколебания

Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.

У автоколебательной системы есть три важных составляющих:

  • сама колебательная система
  • источник энергии
  • устройство обратной связи, обеспечивающей связь между источником и системой

Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

Видео:Тема 1. Колебательное движение. Гармонические колебания. Уравнение гармонических колебанийСкачать

Тема 1. Колебательное движение. Гармонические колебания. Уравнение гармонических колебаний

Характеристики колебаний

Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение можно описать величинами: период, частота, амплитуда, фаза колебаний.

Период — это время одного полного колебания. Измеряется в секундах и обозначается буквой T.

Формула периода колебаний

T = t/N

N — количество колебаний [—]

Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

Формула частоты

ν = N/t = 1/T

N — количество колебаний [—]

Амплитуда — это максимальное отклонение от положения равновесия. Измеряется в метрах и обозначается либо буквой A, либо x max .

Она используется в уравнении гармонических колебаний:

Видео:Гармонические колебания | Физика 9 класс #25 | ИнфоурокСкачать

Гармонические колебания | Физика 9 класс #25 | Инфоурок

Гармонические колебания

Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:

Уравнение гармонических колебаний

x — координата в момент времени t [м]

t — момент времени [с]

(2πνt) в этом уравнении — это фаза. Ее обозначают греческой буквой φ

Фаза колебаний

t — момент времени [с]

Фаза колебаний — это физическая величина, которая показывает отклонение точки от положения равновесия. Посмотрите на рисунок, на нем изображены одинаковые фазы:

Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.

На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

11 механические колебания параметры колебательного движения уравнение гармонического колебания

Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.

На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.

В первом случае (а) красная кривая описывает колебание, у которого амплитуда больше колебания, описанного синей линией.

Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.

Видео:Выполнялка 53.Гармонические колебания.Скачать

Выполнялка 53.Гармонические колебания.

Математический маятник

Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.

Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.

Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:

Формула периода колебания математического маятника

l — длина нити [м]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2

Видео:Гармонические колебания | Физика 11 класс #8 | ИнфоурокСкачать

Гармонические колебания | Физика 11 класс #8 | Инфоурок

Пружинный маятник

Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

В пружинном маятнике колебания совершаются под действием силы упругости.
Пока пружина не деформирована, сила упругости на тело не действует.

Формула периода колебания пружинного маятника

m — масса маятника [кг]

k — жесткость пружины [Н/м]

Видео:Колебательное движение. Свободные колебания | Физика 9 класс #23 | ИнфоурокСкачать

Колебательное движение. Свободные колебания | Физика 9 класс #23 | Инфоурок

Закон сохранения энергии для гармонических колебаний

Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.

Рассмотрим его на примере математического маятника.

  • Когда маятник отклоняют на высоту h, его потенциальная энергия максимальна.
  • Когда маятник опускается, потенциальная энергия переходит в кинетическую. Причем в нижней точке, где потенциальная энергия равна нулю, кинетическая энергия максимальна и равна потенциальной энергии в верхней точке. Скорость груза в этой точке максимальна.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

Видео:Урок 325. Колебательное движение и его характеристикиСкачать

Урок 325. Колебательное движение и его характеристики

Механические колебания.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ : гармонические колебания; амплитуда, период, частота, фаза колебаний; свободные колебания, вынужденные колебания, резонанс.

Колебания — это повторяющиеся во времени изменения состояния системы. Понятие колебаний охватывает очень широкий круг явлений.

Колебания механических систем, или механические колебания — это механическое движение тела или системы тел, которое обладает повторяемостью во времени и происходит в окрестности положения равновесия. Положением равновесия называется такое состояние системы, в котором она может оставаться сколь угодно долго, не испытывая внешних воздействий.

Например, если маятник отклонить и отпустить, то начнутся колебания. Положение равновесия — это положение маятника при отсутствии отклонения. В этом положении маятник, если его не трогать, может пребывать сколь угодно долго. При колебаниях маятник много раз проходит положение равновесия.

Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание. Дальше этот процесс будет периодически повторяться.

Амплитуда колебаний тела — это величина его наибольшего отклонения от положения равновесия.

Период колебаний — это время одного полного колебания. Можно сказать, что за период тело проходит путь в четыре амплитуды.

Частота колебаний — это величина, обратная периоду: . Частота измеряется в герцах (Гц) и показывает, сколько полных колебаний совершается за одну секунду.

Видео:Контрольная работа. Уравнения с МОДУЛЕМСкачать

Контрольная работа. Уравнения с МОДУЛЕМ

Гармонические колебания.

Будем считать, что положение колеблющегося тела определяется одной-единственной координатой . Положению равновесия отвечает значение . Основная задача механики в данном случае состоит в нахождении функции , дающей координату тела в любой момент времени.

Для математического описания колебаний естественно использовать периодические функции. Таких функций много, но две из них — синус и косинус — являются самыми важными. У них много хороших свойств, и они тесно связаны с широким кругом физических явлений.

Поскольку функции синус и косинус получаются друг из друга сдвигом аргумента на , можно ограничиться только одной из них. Мы для определённости будем использовать косинус.

Гармонические колебания — это колебания, при которых координата зависит от времени по гармоническому закону:

Выясним смысл входящих в эту формулу величин.

Положительная величина является наибольшим по модулю значением координаты (так как максимальное значение модуля косинуса равно единице), т. е. наибольшим отклонением от положения равновесия. Поэтому — амплитуда колебаний.

Аргумент косинуса называется фазой колебаний. Величина , равная значению фазы при , называется начальной фазой. Начальная фаза отвечает начальной координате тела: .

Величина называется циклической частотой. Найдём её связь с периодом колебаний и частотой . Одному полному колебанию отвечает приращение фазы, равное радиан: , откуда

Измеряется циклическая частота в рад/с (радиан в секунду).

В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1) :

График функции (1) , выражающей зависимость координаты от времени при гармонических колебаниях, приведён на рис. 1 .

11 механические колебания параметры колебательного движения уравнение гармонического колебания
Рис. 1. График гармонических колебаний

Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

Пусть маятник отклонили, но начальной скорости не сообщали (отпустили без начальной скорости). Ясно, что в этом случае , поэтому можно положить . Мы получаем закон косинуса:

График гармонических колебаний в этом случае представлен на рис. 2 .

11 механические колебания параметры колебательного движения уравнение гармонического колебания
Рис. 2. Закон косинуса

Допустим теперь, что маятник не отклоняли, но ударом сообщили ему начальную скорость из положения равновесия. В этом случае , так что можно положить . Получаем закон синуса:

График колебаний представлен на рис. 3 .

11 механические колебания параметры колебательного движения уравнение гармонического колебания
Рис. 3. Закон синуса

Видео:Введение в гармонические колебанияСкачать

Введение в гармонические колебания

Уравнение гармонических колебаний.

Вернёмся к общему гармоническому закону (1) . Дифференцируем это равенство:

Теперь дифференцируем полученное равенство (4) :

Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем :

Это соотношение называется уравнением гармонических колебаний. Его можно переписать и в таком виде:

C математической точки зрения уравнение (7) является дифференциальным уравнением. Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).
Так вот, можно доказать, что:

-решением уравнения (7) является всякая функция вида (1) с произвольными ;

-никакая другая функция решением данного уравнения не является.

Иными словами, соотношения (6) , (7) описывают гармонические колебания с циклической частотой и только их. Две константы определяются из начальных условий — по начальным значениям координаты и скорости.

Видео:Гармонические колебанияСкачать

Гармонические колебания

Пружинный маятник.

Пружинный маятник — это закреплённый на пружине груз, способный совершать колебания в горизонтальном или вертикальном направлении.

Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4 ). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

Трением пренебрегаем. Груз имеет массу , жёсткость пружины равна .

Координате отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.

11 механические колебания параметры колебательного движения уравнение гармонического колебания
Рис. 4. Пружинный маятник

В горизонтальном направлении на груз действует только сила упругости со стороны пружины. Второй закон Ньютона для груза в проекции на ось имеет вид:

Если 0′ alt=’x>0′ /> (груз смещён вправо, как на рисунке), то сила упругости направлена в противоположную сторону, и . Наоборот, если , то 0′ alt=’F_>0′ /> . Знаки и всё время противоположны, поэтому закон Гука можно записать так:

Тогда соотношение (8) принимает вид:

Мы получили уравнение гармонических колебаний вида (6) , в котором

Циклическая частота колебаний пружинного маятника, таким образом, равна:

Отсюда и из соотношения находим период горизонтальных колебаний пружинного маятника:

Если подвесить груз на пружине, то получится пружинный маятник, совершающий колебания в вертикальном направлении. Можно показать, что и в этом случае для периода колебаний справедлива формула (10) .

Видео:Колебательное движение. 1 часть. 9 класс.Скачать

Колебательное движение. 1 часть. 9 класс.

Математический маятник.

Математический маятник — это небольшое тело, подвешенное на невесомой нерастяжимой нити (рис. 5 ). Математический маятник может совершать колебания в вертикальной плоскости в поле силы тяжести.

11 механические колебания параметры колебательного движения уравнение гармонического колебания
Рис. 5. Математический маятник

Найдём период малых колебаний математического маятника. Длина нити равна . Сопротивлением воздуха пренебрегаем.

Запишем для маятника второй закон Ньютона:

и спроектируем его на ось :

Если маятник занимает положение как на рисунке (т. е. 0′ alt=’x>0′ /> ), то:

Если же маятник находится по другую сторону от положения равновесия (т. е. ), то:

Итак, при любом положении маятника имеем:

Когда маятник покоится в положении равновесия, выполнено равенство . При малых колебаниях, когда отклонения маятника от положения равновесия малы (по сравнению с длиной нити), выполнено приближённое равенство . Воспользуемся им в формуле (11) :

Это — уравнение гармонических колебаний вида (6) , в котором

Следовательно, циклическая частота колебаний математического маятника равна:

Отсюда период колебаний математического маятника:

Обратите внимание, что в формулу (13) не входит масса груза. В отличие от пружинного маятника, период колебаний математического маятника не зависит от его массы.

Видео:Урок 326. Динамика колебательного движенияСкачать

Урок 326. Динамика колебательного движения

Свободные и вынужденные колебания.

Говорят, что система совершает свободные колебания, если она однократно выведена из положения равновесия и в дальнейшем предоставлена сама себе. Никаких периодических внешних
воздействий система при этом не испытывает, и никаких внутренних источников энергии, поддерживающих колебания, в системе нет.

Рассмотренные выше колебания пружинного и математического маятников являются примерами свободных колебаний.

Частота, с которой совершаются свободные колебания, называется собственной частотой колебательной системы. Так, формулы (9) и (12) дают собственные (циклические) частоты колебаний пружинного и математического маятников.

В идеализированной ситуации при отсутствии трения свободные колебания являются незатухающими, т. е. имеют постоянную амплитуду и длятся неограниченно долго. В реальных колебательных системах всегда присутствует трение, поэтому свободные колебания постепенно затухают (рис. 6 ).

11 механические колебания параметры колебательного движения уравнение гармонического колебания
Рис. 6. Затухающие колебания

Вынужденные колебания — это колебания, совершаемые системой под воздействием внешней силы , периодически изменяющейся во времени (так называемой вынуждающей силы).

Предположим, что собственная частота колебаний системы равна , а вынуждающая сила зависит от времени по гармоническому закону:

В течение некоторого времени происходит установление вынужденных колебаний: система совершает сложное движение, которое является наложением выужденных и свободных колебаний. Свободные колебания постепенно затухают, и в установившемся режиме система совершает вынужденные колебания, которые также оказываются гармоническими. Частота установившихся вынужденных колебаний совпадает с частотой
вынуждающей силы (внешняя сила как бы навязывает системе свою частоту).

Амплитуда установившихся вынужденных колебаний зависит от частоты вынуждающей силы. График этой зависимости показан на рис. 7 .

11 механические колебания параметры колебательного движения уравнение гармонического колебания
Рис. 7. Резонанс

Мы видим, что вблизи частоты наступает резонанс — явление возрастания амплитуды вынужденных колебаний. Резонансная частота приближённо равна собственной частоте колебаний системы: , и это равенство выполняется тем точнее, чем меньше трение в системе. При отсутствии трения резонансная частота совпадает с собственной частотой колебаний, , а амплитуда колебаний возрастает до бесконечности при .

💥 Видео

🔴 ОГЭ-2022 по физике. Урок №21. Механические колебания и волныСкачать

🔴 ОГЭ-2022 по физике. Урок №21. Механические колебания и волны

Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)Скачать

Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)
Поделиться или сохранить к себе: