Актуальность этой темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе и при сдаче экзаменов.
Цели работы: изучить различные способы решения квадратных уравнений.
Исходя из данной цели, мною были поставлены следующие задачи:
— изучить историю развития квадратных уравнений;
— рассмотреть стандартные и нестандартные способы решения квадратных уравнений;
— выявить наиболее удобные способы решения квадратных уравнений;
— научиться решать квадратные уравнения различными способами.
Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Скачать:
Вложение | Размер |
---|---|
sposoby_resheniya_kvadratnyh_uravneniy.docx | 513.31 КБ |
Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать
Предварительный просмотр:
МБОУ Новотроицкая СОШ
решения квадратных уравнений
Выпонил: ученица 9 класса
Чемоданогва Ирина Сергеевна
Работа допущена к защите «_____» _______________ 201____г.
Подпись руководителя проекта ____________________(__________________)
I. История развития квадратных уравнений
1.1. Из история квадратных уравнений
1.1.1. Квадратные уравнения в Древнем Вавилоне
1.1.2.Квадратные уравнения в Индии.
1.1.3. Квадратные уравнения у ал — Хорезми.
1.1.4. Квадратные уравнения в Европе XIII — XVII вв.
- Квадратные уравнения и их виды
II. Способы решения квадратных уравнений
2.1.Разложение левой части уравнения на множители
2.2.Метод выделения полного квадрата
Решение квадратных уравнений по формулам
Решение уравнений с использованием теоремы Виета
5.Решение уравнений способом переброски».
- Свойства коэффициентов квадратного уравнения
7.Графическое решение квадратного уравнения
8.Решение квадратных уравнений с помощью циркуля и линейки
9.Решение квадратных уравнений с помощью номограммы
10. Геометрический способ решения квадратных уравнений
Список информационных источников
Теория уравнений в школьном курсе алгебры занимает ведущее место. На их изучение отводится времени больше, чем на любую другую тему школьного курса математики. Это связано с тем, что большинство жизненных задач сводится к решению различных видов уравнений.
В учебнике алгебры для 8 класса мы знакомимся с несколькими видами квадратных уравнений, и отрабатывали их решение по формулам. У меня возник вопрос «Существуют ли другие методы решения квадратных уравнений? Насколько сложны данные методы и можно ли ими пользоваться на практике?» Поэтому в этом учебном году я выбрала тему исследования связанную с квадратными уравнениями, в ходе работы она получил название «10 способов решения квадратных уравнений».
Актуальность этой темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе и при сдаче экзаменов.
Цели работы: изучить различные способы решения квадратных уравнений.
Исходя из данной цели, мною были поставлены следующие задачи:
— изучить историю развития квадратных уравнений;
— рассмотреть стандартные и нестандартные способы решения квадратных уравнений;
— выявить наиболее удобные способы решения квадратных уравнений;
— научиться решать квадратные уравнения различными способами.
Объект исследования : квадратные уравнения.
Предмет исследования : с пособырешения квадратных уравнений.
Теоретические: изучение литературы по теме исследования;
Анализ: информации полученной при изучении литературы;
результатов полученных при решении квадратных уравнений различными способами.
Сравнение способов на рациональность их использования при решении квадратных уравнений.
1. История развития квадратных уравнений.
1.1.1.Квадратные уравнения в Древнем Вавилоне
Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков, с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне.
Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:
X 2 + X = ¾; X 2 — X = 14,5
Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.
Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.
1.1.2.Квадратные уравнения в Индии.
Задачи на квадратные уравнения встречаются в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученный, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ах 2 + bх = с, а > 0. (1)
В уравнении (1) коэфиценты, кроме а , могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим. В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.
Вот одна из задач знаменитого индийского математика XII в. Бхаскары.
«Обезьянок резвых стая А двенадцать по лианам…
Власть поевши, развлекалась. Стали прыгать, повисая…
Их в квадрате часть восьмая Сколько ж было обезьянок,
На поляне забавлялась. Ты скажи мне, в этой стае?»
Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений (рис).
Соответствующее задаче уравнение:
Бхаскара пишет под видом: х 2 — 64х = -768
и, чтобы дополнить левую часть этого
уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем: х 2 — 64х + 32 2 = -768 + 1024,
х 1 = 16, х 2 = 48.
1.1.3.Квадратные уравнения у ал — Хорезми.
В алгебраическом трактате ал — Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:
1) «Квадраты равны корнями», т.е. ах 2 + с = bх.
2) «Квадраты равны числу», т.е. ах 2 = с.
3) «Корни равны числу», т.е. ах = с.
4) «Квадраты и числа равны корням», т.е. ах 2 + с = bх.
5) «Квадраты и корни равны числу», т.е. ах 2 + bx = с.
6) «Корни и числа равны квадратам», т.е. bx + с = ах 2 .
Для ал — Хорезми, избегавшего употребления отрицательных чисел, члены каждого их этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал — джабр и ал — мукабала. Его решения, конечно, не совпадает полностью с современным решением. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал — Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал — Хорезми на частных числовых примерах излагает правила решения, а затем и геометрические доказательства.
Задача . «Квадрат и число 21 равны 10 корням. Найти корень»
(подразумевается корень уравнения х 2 + 21 = 10х).
Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножишь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.
Трактат ал — Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.
1.1.4. Квадратные уравнения в Европе XIII — XVII вв.
Формулы решения квадратных уравнений по образцу ал — Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII.
Общее правило решения квадратных уравнений, приведенных к единому каноническому виду: х 2 + bx = с,
при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М. Штифелем.
Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.
1.2.Квадратные уравнения и их виды.
Уравнение вида ax 2 + bx + c = 0, где a , b , c — действительные числа, причем a ≠ 0, называют квадратным уравнением.
Если a = 1 , то квадратное уравнение называют приведенным; если a ≠ 1, то неприведенным.
Числа a , b , c носят следующие названия: a — первый коэффициент, b — второй коэффициент, c — свободный член.
Если в квадратном уравнении ax2 + bx + c = 0 второй коэффициент b или свободный член c равен нулю, то квадратное уравнение называется неполным.
Неполные квадратные уравнения бывают трёх видов:
Видео:Квадратные уравнения: 9 способов решения(Не только дискриминант)Скачать
Исследовательская работа на тему»10 способов решения квадратных уравнений»
Теория уравнений занимает ведущее место в алгебре и математике в целом. Значимость ее заключается не только в теоретическом значении для познания естественных законов, но и служит практическим целям. Большинство жизненных задач сводится к решению различных видов уравнений, и чаще это уравнения квадратного вида.
Просмотр содержимого документа
«Исследовательская работа на тему»10 способов решения квадратных уравнений»»
Муниципальное учреждение «Отдел образования администрации муниципального района Мишкинский район
Муниципальное Бюджетное Общеобразовательное
Учреждение Лицей № 1 им. Флорида Булякова с. Мишкино
Тема: 10 способов решения квадратных уравнений
Выполнила: ученица 9 В класса
МБОУ Лицей № 1 им. Флорида Булякова с. Мишкино
Руководитель: учитель математики
МБОУ Лицей № 1 им. Флорида Булякова с. Мишкино
Алексеева Гузель Фанавиевна
Мишкино 2017 год
Исторические сведения о квадратных уравнениях……………………..стр.4
Определение квадратного уравнения………………………………. стр.7
Способы решения квадратных уравнений…………………………. стр.8
Разложение на множители левой части……………………………. стр.10
Метод выделения полного квадрата…………………………………стр.10
Решение квадратных уравнений по формуле…………………. стр.11
Решение уравнений с использованием теоремы Виета………. стр.11
Решение уравнений способом «переброски»…………………. стр.12
Свойства коэффициентов квадратного уравнения………………….стр.13
Графическое решение квадратного уравнения……………………. стр.13
Решение квадратных уравнений с помощью циркуля и линейки….стр.14
Уменьшение степени уравнения (использование теоремы Безу)….стр.15
Геометрический способ решения квадратных уравнений…………стр.15
Тренировочные задания для отработки различных способов решения квадратных уравнений…………………………………………………. стр.16
Теория уравнений занимает ведущее место в алгебре и математике в целом. Значимость ее заключается не только в теоретическом значении для познания естественных законов, но и служит практическим целям. Большинство жизненных задач сводится к решению различных видов уравнений, и чаще это уравнения квадратного вида.
В школьной программе рассматривается только 3 способа их решения. Готовясь к предстоящим экзаменам, я заинтересовался другими способами их этих уравнений. Поэтому я выбрала тему «10 способов решения квадратных уравнений».
Актуальность темы: на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно, и рационально решать квадратные уравнения, что также пригодится и при решении более сложных задач, в том числе и при сдаче экзаменов. Плюс выбранная тема мне очень интересна.
Цель работы: выявить способы решения уравнений второй степени и рассмотреть применение данных способов решения квадратных уравнений на конкретных примерах.
1) Проследить историю развития теории и практики решения квадратных уравнений;
2) Описать технологии различных существующих способов решения квадратных уравнений;
3) Выявить наиболее удобные способы решения квадратных уравнений;
4) Подобрать тренировочные задания для отработки изученных приемов;
5) Провести кружок для одноклассников.
Гипотеза: любое квадратное уравнение можно решить всеми существующими способами.
Объект исследования: квадратные уравнения.
Предмет исследования: способы решения квадратных уравнений.
теоретические: изучение литературы по теме исследования, изучение тематических Интернет-ресурсов;
анализ полученной информации;
сравнение способов решения квадратных уравнений на удобство и рациональность.
Время исследования: с 12 октября 2016 года по 20 декабря 2016 года.
Исторические сведения о квадратных уравнениях.
Уравнения второй степени умели решать еще в древнем Вавилоне. Математики Древней Греции решали квадратные уравнения геометрически; например, Евклид — при помощи деления отрезка в среднем и крайнем отношениях. Задачи, приводящие к квадратным уравнениям, рассматриваются во многих древних математических рукописях и трактах.
Вывод формулы решения квадратного уравнения в общем, виде имеется у Виета. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.
Квадратные уравнения в древнем Вавилоне
В математических текстах, выполненных клинописью на глиняных пластинках, есть квадратные и биквадратные уравнения, системы уравнений с двумя неизвестными и даже простейшие кубические уравнения. При этом вавилоняне также не использовали букв, а приводили решение «типовых» задач, из которых решение аналогичных задач получались заменой числовых данных.
Необходимость решать квадратные уравнения возникла ещё в древности, была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются кроме неполных квадратных уравнений и полные уравнения. Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствует понятие отрицательного числа и общее методы решения квадратных уравнений.
Квадратные уравнения у ал-Хорезми
В алгебраическом трактате ал-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений. Основная идея для ал-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-Джабр и ал-Мукабала. Его решения, конечно, не совпадает полностью с современным решением. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал-Хорезми, как и все математики до XVII века., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.
XIII-XVII ввКвадратные уравнения в Европе . Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардо Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI-XVII вв. и частично XVIII в.
Квадратные уравнения в ИНДИИ
Задачи на квадратные уравнения встречаются уже в астрономическом трактате «АРИАБХАТТИАМ», составленном в 499г. индийским математиком и астрономом АРИБХАТТОЙ. Другой индийский ученый, БРАХМАГУПТА VII век, изложил общее правило решения квадратных уравнений приведенных к единой канонической форме. В уравнении коэффициенты, кроме положительных, могут быть и отрицательными. Правило БРАХМАГУПТЫ по существу совпадает с современным решением. В древней ИНДИИ были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующие: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.
Одна из задач знаменитого индийского математика XIIв. Бхаскары:
Обезьянок резвых стая
Всласть поевши, развлекалась.
Их в квадрате часть восьмая
На поляне забавлялась.
А двенадцать по лианам…
Стали прыгать повисая…
Сколько было обезьянок
Ты скажи мне, в этой стае?
Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.
Часть страницы из алгебры Бхаскары (вычисление корней).
2.Определение квадратного уравнения
Квадратным уравнением называют уравнение вида ах²+bх+с=0, где коэффициенты а, b, с — любые действительные числа, причем, а≠0. Коэффициенты а, b, с, различают по названиям: а – первый или старший коэффициент; b – второй или коэффициент при х; с – свободный член, свободен от переменной х.
Квадратное уравнение также называют уравнением второй степени, так как его левая часть есть многочлен второй степени.
Квадратное уравнение называют приведенным, если старший коэффициент равен 1; квадратное уравнение называют неприведенным, если старший коэффициент отличен от 1.
х²+рх+q=0 – стандартный вид приведенного квадратного уравнения
Кроме приведенных и неприведенных квадратных уравнений различают также полные и неполные уравнения.
Полное квадратное уравнение – это квадратное уравнение, в котором присутствуют все три слагаемых; иными словами, это уравнение, у которого коэффициенты b и с отличны от нуля.
Неполное квадратное уравнение – это уравнение, в котором присутствуют не все три слагаемых; иными словами, это уравнение, у которого хотя бы один из коэффициентов b и с равен нулю.
Корнем квадратного уравнения ах²+вх+с=0 называют всякое значение переменной х, при котором квадратный трехчлен ах²+bх+с обращается в нуль.
Можно сказать и так: корень квадратного уравнения – это такое значение х, подстановка которого в уравнение обращает уравнение в верное числовое равенство (0=0).
Решить квадратное уравнение – найти все его корни или установить, что их нет.
3.Способы решения квадратных уравнений
Сначала математики научились решать неполные квадратные уравнения, поскольку для этого не пришлось, как говорится, ничего изобретать.
Видео:Как решать квадратные уравнения без дискриминантаСкачать
10 способов решения квадратных уравнений проект 10 класс
1. Методы и способы решения квадратных уравнений 4
1.1. Решение квадратных уравнений по общей формуле. 5
1.2.Разложение левой части на множители. 5
1.3.Метод выделения полного квадрата 5
1.4.Решение уравнений с помощью теоремы Виета 6
1.5.Решение уравнений с использованием свойств коэффициентов. 6
1.6. Решение уравнений способом «переброски». 7
1.7. Геометрический способ решения квадратных уравнений 7
1.8. Графическое решение квадратного уравнения. 7
1.9. Решение уравнения при помощи циркуля и линейки.. 8
1.10.Решение квадратных уравнений с помощью номограммы. 8
Введение
Теория уравнений занимает ведущее место в алгебре и математике в целом. Значимость ее заключается не только в теоретическом значении для познания естественных законов, но и служит практическим целям. Большинство жизненных задач сводится к решению различных видов уравнений, и чаще это уравнения квадратного вида.
В школьной программе рассматривается только 3 способа их решения. Готовясь к предстоящим экзаменам, я заинтересовался другими способами их этих уравнений. Поэтому я выбрал тему «10 способов решения квадратных уравнений».
Актуальность этой темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, что также пригодится и при решении более сложных задач, в том числе и при сдаче экзаменов.
Цель работы: изучить различные способы решения квадратных уравнений, научиться решать квадратные уравнения.
Задачи:
— рассмотреть стандартные и нестандартные методы решения квадратных уравнений;
— выявить наиболее удобные способы решения квадратных уравнений;
— научиться решать квадратные уравнения различными способами.
Объект исследования: квадратные уравнения.
Предмет исследования: способы решения квадратных уравнений.
Методы исследования:
теоретические: изучение литературы по теме исследования, изучение тематических Интернет-ресурсов;
анализ полученной информации;
сравнение способов решения квадратных уравнений на удобство и рациональность.
1. Методы решения квадратных уравнений
Квадратным уравнением называется уравнение вида ,где х-переменная, a, b и с-некоторые числа, при этом а≠0. Корень такого уравнения – это значение переменной, обращающее квадратный трёхчлен в ноль, то есть значение, обращающее квадратное уравнение в тождество. Коэффициенты квадратного уравнения имеют собственные названия: коэффициент а называют первым или старшим, коэффициент b называют вторым или коэффициентом при х, с называется свободным членом этого уравнения.
Полным квадратным уравнением называют такое, все коэффициенты которого отличны от нуля (a, b, c≠0).
Приведённым называют квадратное уравнение, в котором старший коэффициент равен единице. Такое уравнение может быть получено делением всего выражения на старший коэффициент а: , р=b/a, q=c/a.
Неполные квадратные уравнения бывают трёх видов:
В рамках данной работы мы будем рассматривать способы решения только полных квадратных уравнений.
1.1. Решение квадратных уравнений по общей формуле
Для решения квадратных уравнений применяется способ нахождения корней через дискриминант. Для нахождения дискриминанта используется следующая формула . После нахождения D мы используем формулу для нахождения корней уравнения .
Стоит заметить, что если:
D>0 – уравнение имеет два корня;
D=0– уравнение имеет один корень;
), окружность Рис. 4
— если радиус окружности равен ординате центра (AB = AС, или
, окружность касается оси абсцисс в точке С(х1 ; 0), где х1 – корень квадратного уравнения.
— если радиус окружности меньше ординаты центра (AB
🎬 Видео
Квадратные уравнения #shorts Как решать квадратные уравненияСкачать
Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать
Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Алгебра 10 класс (Урок№3 - Квадратные уравнения, неравенства и их системы.)Скачать
Геометрический способ решения квадратных уравнений. Без дискриминанта!Скачать
5 способов решения уравнений | Эрик Легион | 100балльный репетиторСкачать
СИСТЕМА УРАВНЕНИЙ различные способы решения 9 10 класс алгебраСкачать
10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
Как решают уравнения в России и СШАСкачать
Повторяем решение уравнений. Полезно всем! Вебинар | МатематикаСкачать
Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать
Как решают уравнения в России и США!?Скачать
Как решать квадратные уравнения для чайниковСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
УРАВНЕНИЯ С МОДУЛЕМ. Метод интервалов для решения уравнений.Скачать
Схема Горнера. 10 класс.Скачать